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Abstract

Bluelink is Australia’s contribution to the Global Ocean Data Assimilation Ex-

periment (GODAE). The goals of GODAE include the development and application

of eddy-resolving, data assimilating ocean forecast systems. In this paper, we de-

scribe several aspects of the Bluelink effort that are motivated by this goal. One

of the main innovations of Bluelink is the development of the Bluelink Ocean Data

Assimilation System (BODAS). The initial test-bed for BODAS is the Bluelink

ReANalysis (BRAN), a multi-year model integration with data assimilation. The

Bluelink model is a global ocean general circulation model that is eddy-resolving in

the Australian region. Observations that are assimilated into BRAN include satel-

lite altimetry, sea surface temperature and in situ temperature and salinity data

from Argo, XBT, TAO and other sources.

BODAS is an ensemble optimal interpolation system that uses an ensemble of in-
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traseasonal anomalies from a free running model to estimate the background error

covariances (BECs). The ensemble-based BECs are multivariate and inhomogeneous

and are shown to reflect the length-scales, the anisotropy and the covariability of

mesoscale oceanic processes. We evaluate the performance of BODAS and BRAN

(version 1.5), spanning the period January 2003 to June 2006, by comparing reanal-

ysed fields to a range of satellite-derived and in situ observations. Specifically, we

demonstrate that BRAN realistically reproduces the mesoscale circulation around

Australia, representing both the broad-scale circulation and, in many instances, the

relatively small-scale mesoscale features. Quantitatively, we show that reanalysed

fields in the region around Australia are typically within 6-12 cm of withheld alti-

metric observations, within 0.5-0.9◦ of observed sea-surface temperature and within

4-7 cm of observed coastal sea-level. Comparisons with Argo profiles and surface

drifting buoys show that BRAN fields are within 1◦ of observed sub-surface tem-

perature, within 0.15 psu of observed sub-surface salinity and within 0.2 m s−1 of

near-surface currents. We identify initialisation as a key area in which the Bluelink

system could be improved.

Key words: Data Assimilation, Ensemble Optimal Interpolation, Ocean

Reanalysis, GODAE, Operational oceanography, Multivariate assimilation

1 Introduction

Bluelink is an Australian partnership between the Commonwealth Scientific

and Industrial Research Organisation, the Bureau of Meteorology (BoM) and

the Royal Australian Navy. The primary objective of Bluelink is the develop-

ment of a forecast system for the mesoscale ocean circulation in the Australian

region. The Bluelink forecast system (Brassington et al. 2007) became opera-

tional at the BoM in August 2007 (www.bom.gov.au/oceanography/forecasts/).
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Bluelink represents Australia’s contribution to the Global Ocean Data Assim-

ilation Experiment (GODAE). The goals of GODAE (Smith 2000; Le Traon et

al. 2001) include the application of state-of-the art ocean models and assimila-

tion methods for short-range open-ocean forecasts; and the provision of global

ocean analyses and reanalyses for developing and improving understanding

of the oceans, improving assessments of the predictability of ocean systems,

and as a basis for improving the design and effectiveness of the global ocean

observing system.

There are several data assimilating ocean modelling systems used for opera-

tional ocean forecasting or reanalyses on either regional or global scales that

contribute to the goals of GODAE. These include Bluelink from Australia

(Oke et al. 2005; Brassington et al. 2007) that is described here; FOAM from

the United Kingdom (e.g., Bell et al. 2000; Martin et al. 2007); HYCOM and

NLOM from the United States (e.g., Cummings et al. 2005; Smedstad et al.

2003); Mercator from France (Brasseur et al. 2006); TOPAZ from Norway

(topaz.nersc.no); MOVE and COMPASS-K from Japan (Kamachi et al. 2004)

and the ECCO group (www.ecco-group.org).

The purpose of this paper is to describe the main elements of the Bluelink

system; and to evaluate its performance in a multi-year reanalysis. We briefly

describe the model; and provide a detailed description of the data assimila-

tion system and how it’s applied. We also present results from the Bluelink

ReANalysis (BRAN), a multi-year model integration with data assimilation,

including a series of comparisons with observations. The Bluelink system has

also been used to explicitly evaluate the impact of different observation types

(altimetry, Argo and SST) on the performance of BRAN experiments (Oke

and Schiller 2007).
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The key elements of the Bluelink system are the Bluelink Ocean Data Assimi-

lation System (BODAS; Oke et al. 2005) and the Ocean Forecasting Australia

Model (OFAM), a global ocean general circulation model. One of the main

innovations under Bluelink is the development of BODAS. Therefore, the fo-

cus of this paper is the development and evaluation of BODAS through its

application to BRAN.

BODAS is an ensemble optimal interpolation (EnOI) system, similar to that

described by Oke etal. (2002) and Evensen (2003; his Appendix B). BO-

DAS uses model-based, multivariate background error covariances (BECs).

The BECs used in BODAS are analogous to the Gaussian covariances used in

more traditional optimal interpolation systems (e.g., Carton et al. 2000; Cum-

mings 2005; Brasseur et al. 2006), and are the means by which an observation

of some variable is projected onto the full model state at that time, including

all model grid points and all model variables. There are many benefits in us-

ing the model-based covariances of EnOI. For example, the BECs reflect the

length-scales and the anisotropy of the ocean circulation in different regions.

They also quantify the covariances of different model variables in a dynam-

ically consistent way (we use the term “dynamically consistent” to describe

an ocean state that can be generated by the model). Additionally, EnOI does

not involve the assumption of explicit balance constraints (e.g., Burgers et

al. 2002) that are not valid everywhere. EnOI has the advantage that it can

be used to readily assimilate different observation types in a single step. This

contrasts to many other data assimilation schemes that require special treat-

ment to assimilate both satellite derived sea-level anomalies (SLA) and in situ

temperature (T) and salinity (S) (e.g., Cooper and Haines 1996; Troccoli and

Haines 1999; Segschneider et al. 2000; Fox et al. 2002; Guinehut et al. 2004;
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Cummings 2005; Martin et al. 2007; Chassignet et al. 2007). Despite these

benefits, there are some limitations of EnOI. For example, a straight forward

implementation of EnOI does not typically preserve water mass properties

during the assimilation step. This makes EnOI inappropriate for some climate

applications, where preservation of water masses may be regarded as essential.

The estimates of the BECs for an EnOI scheme are only an approximation

to the true BECs. Therefore EnOI is not an optimal method of assimilation.

Also, EnOI does not provide time varying estimates of analysis errors, such as

those derived from an Ensemble Kalman Filter (EnKF; e.g., Evensen 2003).

Finally, the inversion step in EnOI requires some form of domain decomposi-

tion, in practice, while variational methods of assimilation do not require such

approximations about the localised influence of observations.

The primary test-bed for BODAS is BRAN. BRAN is a multi-year integration

of OFAM, where BODAS is used to sequentially assimilate observations once

every 7 days. Observations assimilated in BRAN include SLA from satellite

altimetry, satellite-derived sea-surface temperature (SST) and in situ T and S

profiles. Conceptually, BRAN is a three-dimensional time-varying synthesis of

oceanic observations that uses OFAM as a dynamic interpolator. The sequen-

tial nature of the assimilation used here means that BRAN can be regarded as

a series of 7-day “forecasts”. Of course, the skill of BRAN should exceed that

of an equivalent real-time forecast system with a 7-day update cycle, because

of the use of real-time surface fluxes and observations; and particularly be-

cause of the latency of real-time altimetry in the operational system. Despite

these differences, we assess the short-range predictive skill of the system for

SLA and SST in BRAN as a way of measuring the potential performance of

the operational system.
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Results from the first BRAN experiment (BRAN1.0) are described by Oke et

al. (2005), where it was shown that through the assimilation of SLA and in situ

T and S observations, using BODAS, OFAM can produce three-dimensional,

time-varying fields that are qualitatively consistent with the real ocean. BRAN1.5

is the next multi-year integration of the Bluelink system. The main differ-

ences between BRAN1.0 and BRAN1.5 are the inclusion of assimilation of

SST, changes in the initialisation scheme and improvements to various as-

pects of BODAS and OFAM that are described below. In this paper we also

provide a more comprehensive, quantitative assessment of BRAN than Oke

et al. (2005). Results from the latest BRAN experiment (version 2.1) are de-

scribed by Schiller et al. (2007), showing details of the seasonal circulation of

the various current systems in the Asian-Australian region, with a strong focus

on the circulation in the Indonesian Seas. BRAN2.1 is a 14-year reanalysis,

using a configuration that is very similar to that of BRAN1.5.

This paper is organised as follows. The components of the reanalysis system

are described in section 2, followed by an analysis of some characteristics of

BODAS in section 3. Results from BRAN1.5, including comparisons with ob-

servations and an assessment of the predictive skill of the system are presented

in section 4, followed by an analysis in section 5. Finally, a summary and the

conclusions are presented in section 6.
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2 Reanalysis System

2.1 OFAM

OFAM is based on version 4.0d of the Modular Ocean Model (Griffies et al.

2004), using the hybrid mixed layer model described by Chen et al. (1994).

OFAM is intended to be used for reanalyses and short-range prediction. The

horizontal grid has 1191 and 968 points in the zonal and meridional directions

respectively; with 1/10◦ horizontal resolution around Australia (90-180◦E,

south of 17◦N). Outside of this domain, the horizontal resolution decreases to

0.9◦ across the Pacific and Indian basins (to 10◦E, 60◦W and 40◦N) and to 2◦ in

the Atlantic Ocean. OFAM has 47 vertical levels, with 10 m resolution down to

200 m depth. The topography for OFAM is a composite of topography sources

including dbdb2 (www7320.nrlssc.navy.mil/DBDB2 WWW/) and GEBCO

(www.ngdc.noaa.gov/mgg/gebco/). Horizontal diffusion is zero. Horizontal

viscosity is resolution and state-dependent according to the Smagorinsky vis-

cosity scheme (Griffies and Hallberg 2000).

OFAM is initialised with a blend of climatologies from Ridgway et al. (2002)

and Levitus (2001); and is forced at the surface using 6-hourly fluxes of mo-

mentum, heat and freshwater from ERA-40 (www.ecmwf.int/research/era/)

for 1992 to mid-2002; and using ECMWF 6-hourly forecasts from mid-2002 to

2006. A 13-year spin-up run, with no data assimilation, has been performed.

During this spin-up OFAM forcing includes a flux correction, restoring the SST

to a blend of Reynolds-SST (Reynolds and Smith 1994) and high-resolution

satellite-derived observations over 30 days; and restoring surface salinity to

monthly climatologies (Levitus 2001) over 30 days. An analysis of the mod-
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elled trends of globally averaged sea-level indicate that the modelled upper

ocean reaches a state of quasi-equilibrium after 3 years of integration. Interior

T and S properties require much longer to properly equilibrate. The mean

sea-level (MSL) during the spin-up run is shown in Figure 1. This field shows

evidence of the major current systems in the Australian region including the

East Australian Current (EAC), the Leeuwin Current and the Antarctic Cir-

cumpolar Current (ACC).

2.2 BODAS

Analyses of sea-level η, T, S, and horizontal currents (u,v), are computed by

solving the analysis equations,

wa =wb + K
(
wo −Hwb

)
(1)

K= (ρ ◦P)H∗ (H(ρ ◦P)H∗ + R)−1 , (2)

where w = [η T S u v]∗ (3)

is the state vector; superscripts a, b, o and ∗ denote analysis, background,

observed and matrix transpose respectively (here the background field refers to

a model-generated estimate of the ocean state at the analysis time; sometimes

called the first guess); K is the gain matrix; H is an operator that interpolates

from the model grid to observation locations; ρ is a correlation function used to

localise the ensemble-based BECs in P; R is the observation error covariance

matrix; and the open circles denote a Schur, or Hadamard, product (an element

by element matrix multiplication). This formulation of the analysis equations

is the same as that of Houtekamer and Mitchell (2001).
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Estimates of the BECs in (2) are given by

P = AAT /(n− 1), (4)

where n is the ensemble size and A is an ensemble of model anomalies. Each

anomaly field consists of all model variables included in (3). The calculation

of the anomalies for an EnOI system is critical to the performance of the

scheme. They should be computed in such a way that the scales of variabil-

ity and features represented by the anomalies resemble the dominant errors

of the model. For example, for application to OFAM, where we seek to cor-

rectly reproduce the mesoscale variability around Australia, we expect that

the errors of an individual forecast will be dominated by the errors associated

with mis-placement of eddies. Section 4 shows that this turns out to be true,

although it is also true that errors at other scales exist. We hope to address

this compromise in the future. Consequently, for application to OFAM, the

ensemble of anomalies are generated by calculating intraseasonal anomalies

derived from the spin-up run:

A = α [w′
1 w′

2 · · · w′
n] (5)

where α is a scalar that can tune the magnitude of the covariances for a par-

ticular application (for BRAN1.5, α = 1); w′
i is the ith intraseasonal anomaly,

defined here as the 3-day average of the model state minus the seasonal cycle

of the model spin-up run. Using this approach, anomaly fields in the ensem-

ble look like typical eddy fields (in the high resolution region). Because the

ensemble in (5) is essentially a time series of anomalies, care is taken when

constructing the ensemble to ensure that the time series is stationary, with

zero mean and no trend. For both BRAN1.0 and BRAN1.5, BODAS uses an
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ensemble size of 72, with one anomaly from every month of the last 6 years of

a 13-year model spin-up.

The BECs in (4) are localised in the horizontal around each observation in (2)

using the localising correlation function ρ. Elements of ρ are defined by the

quasi-Gaussian function of Gaspari and Cohn (1992), after Houtekamer and

Mitchell (2001). Localisation has been shown to reduce the effects of sampling

error for applications of an EnKF (e.g., Hamill et al. 2001) and EnOI (Oke

et al. 2006). The localising correlation function in ρ forces the BECs to re-

duce to exactly zero, over L◦ from an observation location. Note that in the

application, we do not localise the covariances in the vertical direction. The

present implementation of BODAS uses a uniform horizontal radial distance

L=8◦, corresponding to an e−folding scale of about 3.5◦. This has several

ramifications for the system’s performance. Firstly, the rank of the estimated

BECs in P is increased significantly. Using an ensemble size of n, the rank

of P without localisation is at most n − 1. By contrast, using an ensemble

of only 72 with localisation with L=8◦ we estimate that the effective rank of

ρ ◦P becomes O(104) (Oke et al. 2005). This enables the assimilation system

to determine analysis increments that fit the background innovations, given

by
(
wo −Hwb

)
from (1), reasonably well. There are however, a few draw-

backs to localisation. For example, analyses are not as dynamically balanced

as they would be without localisation (Mitchell et al. 2002; Oke et al. 2006).

Also, the inversion of the innovation covariance matrix (H(ρ ◦P)HT +R) be-

comes expensive, since the techniques for computational efficiency described

by Evensen (2003) are not suitable when localisation is used. This makes the

practical implementation of BODAS, described in the following sections, a

technical challenge.

10



2.3 BRAN

Observations that can be assimilated for BRAN experiments include SLA from

all altimeters (ERS 1 and 2, Topex/Poseidon, Geosat Follow-On, Jason and

Envisat) and from a coastal tide gauge array around Australia. When SLA

observations are assimilated, the background innovation (wo−Hwb) from (1),

is constructed by first subtracting the MSL, shown in Figure 1, from the model

sea-level. This field then represents a SLA that can be compared directly to

altimetric SLA. BRAN also typically assimilates T and S profiles from a range

of field surveys including Argo, the TAO array (McPhaden et al. 1998), XBTs

and field surveys (e.g., WOCE); and satellite SST (currently Pathfinder and

AMSR-E). Quality-controlled T and S profiles are obtained from the Bluelink

Ocean Archive (Ridgway et al. 2002).

Results presented in section 4 of this paper are restricted to BRAN1.5, a

3.5-year experiment covering the period January 2003 to June 2006. The de-

velopments, compared to BRAn1.0 (Oke et al. 2005), include the assimilation

of satellite SST, tuned observation error statistics and improvements to the

ensemble fields that define the BECs. Problems with the neglect of the surface

albedo in BRAN1.0 are also fixed for BRAN1.5. Additionally, Topex/Poseidon

(T/P) and coastal sea-level observations are withheld from BRAN1.5 so they

can be used for independent validation in section 4.
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2.4 Treatment of Observations

2.4.1 Observation time window

The ensemble-based method used by BODAS is capable of assimilating differ-

ent observation types in a single step. We have found that it is beneficial to

use a relatively long time window (i.e., 7-11 days), in order to better constrain

the analysis. In practice, this simply means that with more observations, our

analysis is better constrained by observations and is therefore less likely to

have unrealistic features that can result when a sparse network of observa-

tions are analysed. To this end, for a typical application of BODAS, we use an

11-day time window for SLA, yielding approximately global coverage, a 7-day

time window for in situ T and S observations and a single day’s AMSR-E SST

observations. Because our focus here is on reanalyses, the time window is cen-

tered around the analysis time. So an 11-day time window for SLA means that

we use SLA observations for the day of the analysis, plus SLA observations

for 5 days before and after the analysis day.

Depending on the time, there might be around 106 individual observations

available for assimilation on any given day. Using the long time windows dis-

cussed above, this can result in over 3×106 individual observations available

for assimilation at any single analysis. Calculation of a global analysis using (1)

involves the inversion of a p×p matrix, where p is the number of observations

(here 3 × 106). It is not practical to even store this matrix, let alone explic-

itly invert it. This issue is addressed by BODAS in two ways; by reducing

the number of observations to be assimilated directly, and by decomposing

the global domain into many smaller sub-domains. These tasks are described
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below in sections 2.4.3 and 2.5, respectively.

2.4.2 Observation error estimates

For assimilation, every observation is weighted according to its expected er-

ror. Given the relatively long time window of observations assimilated in each

analysis the observations do not all correspond to the analysis time. We have

not yet implemented the so-called first-guess at appropriate time (FGAT)

method (Huang et al. 2002). Therefore, to be consistent, we should not give

observations made several days before or after the same weight as observations

made at the analysis time. This is achieved in practice by adjusting the es-

timated observation error variance (diagonals of R) according to the relative

“age” of each observation. The observation error variance ε2
o for an individual

observation is here defined as:

ε2
o = ε2

instr + ε2
RE + ε2

age (6)

where ε2
instr is the estimated variance of the instrument error, ε2

RE is the es-

timated variance of the representation error (RE), sometimes referred to as

the error of representativeness, and ε2
age is the estimated variance of the error

associated with the relative age of an observation. The estimates of εinstr used

in BRAN1.5 are listed in Table 1, along with the range of values for εRE and

εage.

Estimates of εage are given by

εage = RMSmod

(
1− e−0.5|ta−to|/tef

)
, (7)

where RMSmod is the spatially dependent RMS of the model fields about a

seasonal cycle during the spin-up run; ta is the analysis time; to is the time

13



of the observation; and tef is an e-folding time scale (here 3 days), following

Oke et al. (2005). Therefore, if an observation is made at the analysis time,

εage = 0; and as |ta − to| increases, εage approaches RMSmod, so that the

influence of the observation on the analysis decreases. At ±4 days, for example,

εage ≈ 0.5×RMSmod.

Estimates of εRE are calculated using the method described by Oke and Sakov

(2007). This method provides estimates of RE for T, S and η that reflect the

variance of unresolved mesoscale variability in the ocean. Figure 2 shows a

map of εRE for η, showing large (small) RE estimates in regions of coarse

(high) resolution and energetic (quiescent) mesoscale variability.

2.4.3 Super-observations

As outlined above, a direct solution to (1) requires the storage and inver-

sion of a very large matrix. In practice, this is not feasible. The first practi-

cal strategy to address this technical challenge is super-obing. Super-obing is

commonly used in objective analysis (e.g., Ducet et al. 2000) and data assim-

ilation (e.g., Cummings 2005), particularly in numerical weather prediction

where many redundant (compared to the model resolution) observations are

available. Super-obing is where a number of observations, with a known error

estimate, are combined to produce a single super-observation with a smaller

error. For a given application, suppose there is more than one observation of

a certain type (e.g., SLA from altimetry) that fall within a model grid cell.

These observations either contain the same information, making all but one

observation redundant; or they contain different information, presumably rep-

resenting some sub-grid-scale process that cannot be resolved by the model.
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In either case, it is appropriate to combine these observations into a single

super-observation. In practice, we identify all observations within a model

grid cell and compute the average position of all observations. This position

is ascribed to the super-observation. These observations are then combined,

using a simple weighted average, yielding the super-observation. The errors of

all observations, from (6), are used to compute an appropriate error for the

super-observation using standard error propagation techniques. This process

of super-obing is used to significantly reduce the number of observations that

are directly assimilated using (1).

The level of super-obing for any application can be controlled according to the

computational resources available. For application to OFAM, we have chosen

to compute one super-observation for every 6×6 model grid cells. This yields a

super-observation every 0.6◦×0.6◦ around Australia and every 12◦ in the North

Atlantic Ocean. In practice, we only apply this super-obing to observations of

altimetric SLA, and to satellite SST. For both observation types, super-obing

in the manner described above yields about 20,000 super-observations of each

type.

We choose to treat observations from T and S profiles (e.g., Argo) differently

to SLA and SST. Instead of computing super-observations, we simply sub-

sample the available profiles out, rather than average them, so that there is

no more than one profile for every 6×6 model grid cells. This is because the

horizontal averaging of profiles is somewhat problematic, with observations

at varying depths; and with adjacent profiles often covering different depth

ranges. For a given region covered by a 6 by 6 cluster of model grid cells,

we therefore select the T and S profile with the most good observations and

with-hold the other profiles for validation. We define a good observation as one
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that passes all of the automatic quality control checks. This sub-sampling of

profiles eliminates many profiles in the coarse resolution region of the model

and far fewer in the high resolution region. The nominal vertical resolution

of Argo is typically finer than the model grid, so super-obing of each profile

is done to ensure that no more than one super-observation falls within each

model depth level. This is a significant saving for profiles that are well-resolved

over depth.

2.5 Domain Decomposition

Even with the significant reduction in the number of observations assimilated

by BODAS due to the super-obing described above, a global inversion of the

innovation covariance matrix in (1) remains computationally expensive. There

are a number of approaches to address this issue. One such approach that is

used in BODAS involves a domain decomposition, where the model domain is

decomposed into a number of smaller sub-domains that are here referred to as

analysis domains. For application to OFAM, the global domain is divided into

about 800 analysis domains. An analysis for each of these domains is computed

independently, using observations from an observational domain. The obser-

vational domain spans each analysis domain and includes a surrounding halo

region from which observations are used to compute each analysis (typically

less than 3000 observations in each domain). Provided the size of the halo

regions correspond to the localising length-scales, described in section 3, and

provided the localising function reaches exactly zero within this halo (e.g.,

Gaspari and Cohn 1999), the analysis is seam-less, with no discontinuities

between adjacent analysis domains; and is equivalent to the solution from a
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global analysis, but without the prohibitive computational expense and with

significantly more numerical accuracy. A benefit of this approach is that it is

highly parallel; and can take advantage of computer platforms with multiple

processors.

2.6 Initialisation

The problem of initialisation is common to all data assimilating geophysical

applications. Briefly, when a non-linear model is updated with an unbalanced

state, the model generates an artificial response that may involve, for exam-

ple, the excitation of various types of waves. This response can often degrade

the quality of a subsequent integration. Given that a statistically generated

analysis field, such as that produced by BODAS, is always unbalanced to

some degree when applied to a non-linear model, care must be taken when

initialising, or updating, the model. For a comprehensive review of issues in

initialisation, see Daley (1991). There are a number of options for dealing with

initialisation that include digital filtering (e.g., Lynch and Huang 1992), nor-

mal mode initialisation (e.g., Moore 1990), balance constraints (e.g., Burgers

et al. 2002), incremental analysis updating (Bloom et al. 1996; Ourmieres et

al. 2006) and nudging (e.g., Leslie et al. 1998). Here, we have opted for a very

simple, inexpensive and conservative approach, and chosen to use nudging.

Details of the initialisation procedure we use are represented schematically in

Figure 3. We integrate the model for 7-days with no data assimilation. After

6 days, we store the fields necessary for a model restart. On the 7th day,

we compute the background field (BGF) that is the 24-hour mean. We then

combine the BGF and the observations using BODAS and compute an analysis
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of the full model state. We then restart the model, using the restart fields

referred to above, and then nudge the model T, S and η towards the analysis

using a time-scale of 1 day. The choice of the time-scale involves some tradeoffs.

If it is too long, the model will not be corrected by the observations. If it is

too short, however, the model will be continuously driven towards a stationary

field for the whole day-long nudging period, suppressing all transients. Our

choice of a 1-day nudging time-scale applied for 1 day means that the actual

increment added to the model should only be about 70% of the total increment

computed by BODAS. While this is not ideal, our preliminary experiments led

us to the expectation that this is a reasonable compromise between forcing

the model too hard and creating numerical instabilities; and forcing the model

too gently and not adequately constraining the model.

For BRAN1.5, we do not explicitly update the velocities. We simply allow

the currents to adjust according to the model equations during the period of

nudging. However, we note that some centers have found a benefit in explicitly

updating with geostrophically balanced currents (e.g., Martin et al. 2007).

After 1 day of nudging, we again integrate the model forward in time for

another 7-days and so the cycle repeats.

3 Characteristics of BODAS

As stated above, one of the advantages of EnOI is that the BECs are inho-

mogeneous and anisotropic, reflecting the variability and length-scales of the

ocean circulation. An example of the anisotropy and inhomogeneity of the

ensemble-based BECs used by BODAS is shown in Figure 4. The chosen ex-

amples show the localised ensemble-based cross-correlation between sea-level
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at a reference location and sea-level in the surrounding region. These fields

demonstrate the region of influence of an observation at the reference loca-

tion. Where the correlation is positive, the increment that is given by the term

K(wo −Hwb) in (1), due to each observation has the same sign as the back-

ground innovation (wo−Hwb). So if the observed sea-level is higher than the

background field at the reference location, in the absence of other observations

in the same region, the solution to (1) will produce an increment that is also

positive. The magnitude of the increment depends on the relative magnitudes

of the estimated background error and observation error covariances (i.e., the

relative magnitudes of H(ρ ◦ P)HT and R). The structure of the increment

also depends on the structure of the localised background error covariance,

ρ ◦PHT .

The reference locations for the examples presented in Figure 4 are at 32.5◦S,

corresponding to the typical separation point of the EAC (Godfrey et al. 1980).

These examples include correlations when the reference location is on the con-

tinental shelf at 115 m depth, where the correlation field has short decorre-

lation scales in the across-shore direction and long decorrelation scales in the

alongshore direction (Figure 4a). The long length-scales in the alongshore di-

rection are probably a reflection of the covariability associated with northward

propagation of slow-moving coastal trapped waves and the along-shore advec-

tion of the EAC and wind-driven circulation. Also shown is a correlation map

when the reference location is over the continental slope at 1800 m depth (Fig-

ure 4b), less than 50 km east of the shelf example (Figure 4a). This field shows

a more isotropic correlation, but with a tendency to have higher correlations

to the east and south-east, in the typical direction of the EAC as it separates

from the coast. The final example considered here shows correlations when the

19



reference location is over the deep ocean at 4500 m depth (Figure 4c). This

field shows a somewhat isotropic correlation field, but also shows areas of weak

negative correlation to the north-east and south-west. These negative corre-

lations may be related to variations in sea-level associated with the typical

eddy field in this region. The correlation fields presented in Figure 4 highlight

the anisotropy and inhomogeneity of the ensemble-based correlations, with

relatively long quasi-isotropic correlations in the deep ocean, transitioning to

very anisotropic correlations nearer the coast.

An example of the multivariate nature of BODAS is demonstrated in Figures 5

and 6, showing the increments from a single observation analysis (i.e., where

an analysis is computed by combining a single observation with a background

field). In this example, an observation of sea-level at the coast is presumed to

be 20 cm lower than the background sea-level. BODAS is used to calculate

the increments to the full model state (η, T, S, u and v) in the surrounding

region. We choose to use sea-level from a coastal location off South Australia at

140.35◦E and 37.85◦S. This location is arguably the best region for observing

wind-driven, coastal upwelling along the Australian coastline (e.g., Lewis 1981;

Kampf et al. 2004). We therefore expect the increments to be consistent with

a conceptual model of upwelling (i.e., consistent with the oceanic response to

south-easterly winds).

Decreased sea-level at the coast may be due to a number of factors that include,

but are not limited to, wind-driven upwelling. However, the dominance of

locally wind-driven circulation in this region leads us to the expectation that

it will also dominate the statistical properties of the ensemble fields here.

We find that the increments to sea-level and surface currents in Figure 5 are

consistent with wind-driven upwelling, with reduced sea-level along the coast,
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a relatively strong coastal jet and weak south-westerly flow in the deep ocean.

Figure 6 shows the impact of the observation along a shore-normal section

offshore of the observation location. This figure shows that the negative sea-

level increment is strongest at the coast as we expect, and approaches zero

moving offshore in a quasi-exponential fashion. Increments to the across-shore

currents show an offshore flow of up to 5 cm s−1 over the top 30 m, that is

consistent with an offshore wind-driven Ekman layer, and a weak, shoreward

return flow at depth. Increments to the along-shore currents are consistent

with a baroclinic, wind-driven coastal jet, with the strongest currents of 0.5

m s−1 at the surface near the coast. Figure 6d-e shows the background and

analysed T and S fields. Both of these fields show an uplift of isotherms and

isohalines, with an implied vertical excursion of about 25 m near the shelf

break and 40-50 m over the upper slope. From this analysis, we conclude that

the statistical properties of the ensemble are consistent with a conceptual

model of wind-driven upwelling in the region considered.

The analysis described above indicates that if the model does not produce an

upwelling event, due to incorrect surface forcing for example, and we assimilate

a single observation of sea-level at the coast that reflects the upwelling through

reduced sea-level, then BODAS will compute increments that more closely

match the observation at the coast, and in a manner that is consistent with

wind-driven upwelling. While this feature is presented here as a benefit of

EnOI, there is also a down-side. Suppose the model-observation mismatch

is due to a mis-represented process other than wind-driven upwelling. Say,

the encroachment of an eddy, or the propagation of a coastal trapped wave.

Then the EnOI-derived increments will still be consistent with upwelling as

in Figures 5 and 6. This may not be desirable, and may result in a reanalysed

21



state that is somewhat inconsistent with reality. However, we note that the

example described here is very idealised. In practice, we typically assimilate

multiple observations of various types (e.g., sea-level, T and S) and in the

presence of additional observations that provide a more complete picture of

the ocean state, BODAS will compute increments that more appropriately

represent the true circulation.

Another limitation of EnOI that can be seen from the example described

by Figures 5 and 6 is that it implies a symmetry in the increments for an

observation-model mis-match of the opposite sign. Suppose that the observation-

model difference considered above is reversed. That is, the observation is 20

cm higher than the background sea-level. In this case, the increments simply

have the opposite sign to those presented in Figures 5 and 6. This might occur

if a modelled upwelling is too strong, or perhaps if the model fails to repre-

sent a downwelling event. However, we note that studies into the dynamics

of idealised wind-driven upwelling (e.g., Allen et al. 1995) and wind-driven

downwelling (e.g., Allen and Newberger 1996) on the continental shelf have

shown that they are very different, and do not simply result in symmetric

anomalies about some mean field as the EnOI-based increments would imply.

These problems are the result of assuming ergodicity in the BECs. A better

approach is to employ some flavour of the EnKF (e.g., Evensen 2003; Sakov

and Oke 2007), where the anomalies in (5) evolve in time and more accurately

reflect the dominant dynamical processes for a particular time. However, these

types of filters require an ensemble of states to be evolved, which is currently

too computationally expensive for applications as large as OFAM.
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4 Results

In this section, we present a qualitative assessment of BRAN, a quantitative

assessment of the predictive skill for SLA and SST in BRAN; comparisons

with T and S fields from Argo observations, and comparisons of near-surface

currents with surface drifting buoys. For each comparison presented here, we

use daily mean fields from BRAN and instantaneous observations, unless oth-

erwise stated. We also typically refer to BRAN fields as a forecast. This is

because BRAN can be regarded as a series of 7-day forecasts (Figure 3) for

the purpose of assessing predictive skill. However, the use of real time surface

fluxes and observations; and the latency of altimetry for the operational sys-

tem, means that results from BRAN should exceed the performance of a true

forecast system.

4.1 Qualitative assessment

A qualitative assessment of the ability of BRAN to realistically reproduce

the mesoscale variability in the Tasman Sea is presented in Figure 7. We

show a series of comparisons, from the 15th day of every month during 2004,

between 6-day composite SST images from AVHRR and 5-day averaged SST

from BRAN. These SST observations are not assimilated into BRAN (AMSR-

E data are the only SST data assimilated). Also included in Figure 7 are

Lagrangian trajectories, computed from the time-varying surface velocities in

BRAN. This region is dominated by the EAC and a complex field of eddies

(e.g., Nilsson and Cresswell 1981). These comparisons are representative of the

rest of the BRAN period and show good agreement between the observed and
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reanalysed mesoscale features. The broad-scale features, such as the southward

penetration and position of the warm water associated with the EAC, are well

reproduced in BRAN. Moreover, there are also many examples in Figure 7,

where even relatively small-scale eddies are realistically represented in BRAN

in a qualitative sense. Examples include the cold-core feature around 156◦E,

31◦S in September 2004 and the structure of the filaments between the warm

EAC water (> 19◦C) and the cold Tasman Sea water (< 19◦C) around 32-36◦S

in June-August 2004.

The comparisons in Figure 7 are repeated for the region off south-west Western

Australia in Figure 8. This region is dominated by the southward flowing

Leeuwin current and a complex field of mesoscale eddies and meanders that

typically spawn from instabilities along the coast (e.g., Ridgway and Condie

2004; Feng et al. 2005). Most of the features evident in the observations are well

reproduced in BRAN. For example, the changes in the southward penetration

of the warm Leeuwin current water along the coast is well modelled. Similarly,

much of the mesoscale variability in the observations is also evident in BRAN.

A comparison between reanalysed, observed and climatological T along a sec-

tion off eastern Australia, at 30◦S, in August 2003 is shown in Figure 9b-d.

Also shown in Figure 9a is the SLA field for the same period. The SLA field is

included to give the context of these comparisons; and show the presence of a

large warm-core eddy at around 156◦E and a series of smaller, cold-core eddies

to the east. Both the BRAN and XBT fields show the sub-surface T struc-

ture that is consistent with these features. The qualitative agreement between

the observed and reanalysed T fields is good. By contrast, the T climatology

(Ridgway et al. 2002) shows broadscale agreement with the observations, but

does not represent any of the mesoscale features as we expect.
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A comparison between reanalysed, observed and climatological T along a sec-

tion off Western Australia, along the IX15 line, in July 2004 is shown in

Figure 10b-d. The corresponding SLA field, from BRAN, is also shown in Fig-

ure 10a to provide the context of the circulation. The SLA field shows a series

of warm- and cold-core features along the XBT section. The BRAN T field

shows good qualitative agreement with the XBT data. Again, the T climatol-

ogy shows the same broad-scale structure as the observations, but does not

show the mesoscale features as we expect.

Based on the comparisons described above, it is clear that BRAN qualita-

tively reproduces many aspects of the complex mesoscale circulation around

Australia. However, in the examples shown, BRAN does not always get the

mesoscale features in precisely the right locations or with the correct strength

or intensity. This has implications for the interpretation of the statistical com-

parisons that we present below.

4.2 Assessment of predictive skill

As noted above, BRAN can be regarded as a series of 7-day forecasts. We wish

to determine whether BRAN has any skill over a typical 7-day cycle. This is

quantified here by calculating the root-mean-squared error (RMSE), here de-

fined as the RMS difference between observed fields and reanalysed fields from

BRAN. We assess the predictive skill, by showing the RMSE as a function of

lead time, averaged over all 7-day cycles; and comparing it to the RMSE of the

persistence of both the analysed and initialised fields, hereafter the “analysed

persistence” and the “initialised persistence” respectively. Persistence is best

described as a forecast of no change from the analysed or initialised state.
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The RMSE of the analysed (initialised) persistence is computed by comparing

the analysed (initialised) fields, valid for the analysis time (0 lead time), to

observed fields that are valid for each day of the subsequent 7-day cycle. The

analysed fields are simply those computed by BODAS. The initialised fields

are daily means computed on the “nudging” day (Figure 3). We consider the

initialised fields to be a dynamically filtered version of the analysis, where the

model rejects features in the analysis, during the nudging period, that are not

dynamically consistent. As a result, the RMSEs of the initialised fields are

inevitably greater than the RMSEs of the analysed fields. However, we expect

that over the course of the nudging day, the difference between the model

field and the analysis gradually reduces. Therefore a daily mean field over this

period doesn’t necessarily represent the final model state at the end of the

nudging period.

We include statistics of the persistence of the analysis to enable us to assess

which product provides better agreement with observations over a 7-day cycle;

an N -day old analysis, or an N -day forecast? Similarly, we include statistics of

the persistence of the initialised state because it enables us to assess whether,

given the initial conditions of the initialised field, the model adds any skill

during the subsequent 7-day integration. When the RMSE of the forecast

is less than the RMSE of the initialised persistence, we conclude that the

ocean model itself has some skill. When the RMSE of the forecast is less than

the RMSE of persistence of the analysis, we conclude that the whole system

(assimilation and model) has skill.

We note the use of a centered observation time window for assimilation (Fig-

ure 3) means that we should have some artificial skill. However, recall that we

only assimilate SST from 1 day in 7; so data from 6 days in 7 are independent.
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Similarly, we do not assimilate all T and S profiles available. We simply thin

out the profiles so that there is no more than one profile for every 6-grid points.

Also, recall that the observations made before or after the analysis time are

down-weighted by εage as indicated in (6-7) and in Table 1. Therefore as the

“age” of an observation increases, its impact on an analysis decreases.

The RMSE of SLA from BRAN forecasts and analysed and initialised persis-

tence, using SLA observations from T/P (tracks are interleaved with Jason),

are plotted in Figure 11. Corresponding calculations for SST are plotted in

Figure 12, using SST observations from AMSR-E. Statistics are shown for

the north-west (NW), north-east (NE), south-west (SW) and south-east (SE)

quadrants of the Australian region. The RMSEs shown in Figures 11 and 12

indicate that the errors in SLA typically range from 6-12 cm; and that the

errors in SST typically range from 0.5-0.9◦C. As noted in the captions of Fig-

ures 11 and 12, the errors in BRAN SLA and SST are typically less than the

errors in the spin-up run, with no data assimilation. Similarly, we note in the

caption of Figure 12 that the errors in BRAN and also less than the differences

between observations and seasonal climatology (Ridgway et al. 2002).

We find that the RMSE of the analysed persistence for SLA is consistently

less than the RMSE of the SLA forecasts (Figure 11). Thus, we conclude that

the analysis typically provides the best quantitative estimate of an SLA field

over a 7-day forecast period.

We find that the RMSE of the initialised persistence for SLA is consistently

greater than the RMSE of the SLA forecasts. This indicates that the model

typically adds some skill to the initialised state over a 7-day forecast.

Figure 11 shows that there is a big discrepancy between the RMSE of the
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analysed and initialised fields at day-0. This indicates that the nudging ap-

proach that we use here is ineffective in some regions; particularly in the

southern quadrants. That is, the initialised fields do not usually match the

analysed fields towards which they are being nudged. We expect that this is

due to a number of factors. Recall that we simply nudge the model T, S and

η towards the analysed T, S and η for 1 day, with a nudging time-scale of

1 day. We anticipate that if we update the velocities as well as T, S and η,

using incremental analysis updating (Bloom et al. 1996) for example, then

the subsequent forecast should retain more of the features introduced during

the initialisation process. Indeed, this has been the experience of the UK Met

Office (e.g., Martin et al. 2007); and recently conducted experiments using the

Bluelink system confirm this. We also think that part of these problems may

relate to the presence of systematic errors in some regions of the model. This

suggestion is explored below, in section 5.

We expect the RMSE should increase monotonically over the course of a 7-day

forecast cycle. However, this is not always the case here. In some regions, the

RMSEs for SLA and SST typically decrease for some period over the course

of a 7-day forecast (e.g., Figures 11a,c and 12a,b). In part, this may be due

to sampling error; these statistics are computed over 182 cycles. However,

it may also be due to problems with initialisation, where the model field is

temporarily degraded by the shocks introduced when the model is initialised;

and then may subsequently recover (e.g., Figure 12a). In some cases it may also

be due to the definition of the initialised state. Recall that the initialised state

(0-day forecast) is the daily mean field during the day of nudging (Figure 3).

The RMSE statistics for SST, shown in Figure 12, indicate that the forecast

typically has a small amount of skill compared to both analysed and initialised
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persistence. This indicates that the forecast SST is typically the best quantita-

tive estimate of SST over a 7-day forecast; and that the system has predictive

skill over 7-days. The RMSE for SST is generally less in the NE and NW,

compared to the SE and SW. This is probably a reflection of the errors as-

sociated with the mixed layer scheme used in OFAM or errors in the surface

fluxes. Both of these factors may result in errors in the depth of the ocean

surface mixed layer that are likely to be most pronounced under strong wind

conditions and weak stratification that frequently occur at high latitudes.

Analysis of the RMSEs for SST show a clear seasonal dependence. This is

demonstrated in Figure 13 showing the RMSEs of BRAN forecasts for each

season. The seasonal dependence is most pronounced in the southern quad-

rants, where the RMSE is typically about 0.15◦ greater in winter than it is in

summer. Again, we suspect that this is due to errors in the mixed layer model

or surface fluxes, and the poorer performance at high southern latitudes in

Austral winter is due to poorly represented mixed layer variability during

winter storms. By contrast, the RMSEs are largest during summer in the

NW quadrant. This is probably associated with the representation of the NW

monsoon that occurs in Austral summer. The NW monsoon results in strong

surface heating and a large, intermittent injection of freshwater that results

in barrier layers (Sprintall and Tomczak 1992). Barrier layers are particularly

difficult to model and may be poorly represented in BRAN, especially if there

are significant errors in the surface fluxes associated with the NW monsoon.

BRAN1.5 does not assimilate coastal sea-level from tide gauge stations, or

altimetric sea-level in water less than 200 m deep. To assess the predictive skill

of BRAN along the Australian coast, we compare SLA from BRAN to daily

mean observations at 58 tide gauge stations along the Australian coastline
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(locations are denoted in Figure 1). We present the RMSE of SLA, compared to

SLA at tide gauge stations, as a function of lead time in Figure 14. Specifically,

we show the RMSE of BRAN forecasts; persistence of the analysed fields, the

initialised fields and the observed fields; and the RMSE of the spin-up run with

no data assimilation. We present results that are averaged over all forecast

cycles in each Australian state (states boundaries are denoted in Figure 1).

We also show the corresponding average of the observed standard deviations

in Figure 14.

For all Australian states, both the modelled SLA in BRAN and the spin-up

run with no data assimilation generally have smaller RMSEs than any of the

persistence fields, including persistence of the observed field (Figure 14), for

lead times of greater than 2-days. This indicates that the decorrelation time-

scale of coastal sea-level is quite short; and therefore that any persisted field

does not provide a good indication of the SLA beyond 2-3 days into the future.

Interestingly, there is generally no significant difference in the RMSEs of

BRAN and the spin-up run with no data assimilation. This indicates that

the model skill is not due to the assimilation, but is likely to be simply due

to the accuracy of the local wind forcing and the model’s response to this

forcing. Recall that we use delayed-model, quality controlled surface fluxes

in BRAN. We do not therefore expect the quality of these fluxes to degrade

over each forecast cycle, as we would if the fluxes were from a true weather

forecast. This aspect of the reanalysis, together with the dominance of local

wind forcing around much of Australia’s coastline, explains why there is no

significant increase in the RMSE of the forecast over the course of a typical

7-day forecast.
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The statistics of the SLA at the stations off Tasmania (Figure 14c), two of

which are off north-west Tasmania and one is off the east coast (see Figure 1),

are different to those for other states. Firstly, the magnitude of the observed

standard deviation is relatively small off Tasmania. Secondly, the RMSEs of

the forecast SLA are significantly less than that of the spin-up run with no

data assimilation. This is because the coastal circulation off Tasmania depends

more on the circulation in the open ocean than on the local wind forcing. In this

case, the influence of the offshore SLA that is constrained by the assimilation

of altimeter and SST data has a positive impact on the skill of coastal sea-level

forecasts.

The statistics off South Australia (Figure 14a) also represent somewhat of an

anomaly compared to the other Australian states. Specifically, the magnitude

of the observed variance is very large, owing to the strong wind-driven cir-

culation, and the RMSE of the persistence of observed SLA is greater than

that of the modelled SLA after 1-day. There is also a dip in the RMSE of

the forecast after 1 day, possibly indicating that the assimilation does have a

positive impact on the skill of SLA, but that the dominance of the local wind

forcing means that this impact is quickly “forgotten” by the model.

We note that for most Australian states the RMSE of the analysed field on

day 0 is typically greater than the RMSE of the forecast on day 7 (i.e., the

background field used to compute the analysis). This result indicates that the

extrapolation of the other observation types (including altimetric SLA, SST

and sub-surface T and S) often produces analysed SLA near the coast that

has larger errors than the background field. Recall that SLA from these tide

gauges are not assimilated into this version of BRAN. We also note that the

RMSE of the analysed field on day 0 is typically greater than the RMSE of the
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initialised field on day 0. This result indicates that during the nudging process,

the model appropriately filters the analysis, resulting in an initialised state

that is in better agreement with the withheld observations. It also suggests

that assimilation of coastal SLA would be worthwhile.

4.3 Comparisons with Argo

Profiles of the RMSE of T and S in BRAN1.5, the spin-up run (with no data

assimilation) and monthly climatology (Ridgway et al. 2002) are presented in

Figures 15 and 16, using both assimilated and withheld Argo profiles sepa-

rately for comparison. Assimilated and withheld Argo profiles made between

January 2003 and December 2005 (the overlapping period for BRAN1.5 and

the spin-up run) are binned into 30◦ by 30◦ boxes (comprising about 9500

assimilated and 3000 withheld profiles in the Australian region) and RMSEs

are computed for each region.

The RMSE of BRAN T and S is typically less than the RMSE of T and S in

the spin-up run for both assimilated and withheld profiles (Figures 15 and 16).

This demonstrates the benefit of data assimilation. By contrast the errors in

BRAN T and S are typically greater than errors in climatology.

There are some places where the RMSE of BRAN T and S are greater than the

RMSEs of the spin-up run. Examples include the withheld S-profiles off north-

eastern Australia; and the withheld T-profiles, below 1000 m depth, south and

south-west of Australia (Figures 15 and 16). There may be a number of reasons

for this result. The BECs used by BODAS are only an approximation of the

true BECs. This may result in a degradation of the BRAN state in some

32



regions. Also, the configuration of BODAS used here does not localise the

BECs in the vertical spatial direction. As a result, a T or S observation near

the surface, for example, may degrade the analysis at depth if the BECs are

not well defined by the ensemble.

In general, the S-field is not very well constrained in BRAN. This may be

because of the short length-scales of S. This means that the observing system

required to properly observe S variability is very dense; and that the Argo

profiles that are assimilated here may be insufficient to properly constrain

the modelled S-field using the chosen assimilation method. In most regions,

the RMSEs of BRAN S near the surface are greater than the RMSEs of S in

the spin-up run. This is, in part, because the surface S in the spin-up run is

restored to climatological S and surface S in BRAN is not.

Clearly, the exploitation of Argo observations in BRAN is not optimal. How-

ever, despite this, in general, we find that the RMSEs of T and S in BRAN are

typically less than 1◦ and 0.15-0.2 psu respectively (Figure 15 and 16). The T

field is generally quite well constrained considering the eddy-resolving nature

of the model. However, the S field does not appear to be well constrained as

discussed above.

4.4 Comparison with drifting buoys

Surface drifting buoys are an important observation platform that is not as-

similated in BRAN1.5. We compare the near surface currents and T from

BRAN with all available quality controlled and interpolated drifter data from

MEDS with reanalysed fields from the second model level at 15 m depth. We
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calculate the complex cross-correlation (Kundu 1976) between the observed

and reanalysed currents and present the magnitude ρ, and phase angles θ, in

Table 2, along with the RMSE of the speed of the currents and T. We find

that the correlation between observed and reanalysed currents is 0.29-0.6, the

phase angle (i.e., the error in the direction of the currents) is less than 6◦

in the northern quadrants and is 15◦ and 23◦ in the SW and SE quadrants

respectively. The RMSE of the drifter-derived current speed is about 0.2 m

s−1 and for T is about 0.35-0.81◦.

5 Analysis

In the comparisons presented in Figures 11 and 12 we find that the RMSEs of

the initialised fields are consistently greater than the RMSEs of the analysed

fields. This is most pronounced in the southern quadrants of the Australian

region (Figure 11c,d). To further investigate this we present geographically

resolved estimates of the RMSE for SLA, compared to assimilated and unas-

similated SLA observations, in Figure 17. Specifically, we show the RMSE

of BODAS analyses, forecasts and, for comparison, 1/3◦ SSALTO SLA maps

produced by Aviso (accessed in September 2006; Ducet et al. 2006). Note that

for BODAS and SSALTO, we only use observations from the day of each anal-

ysis (i.e., every 7th day), which by design corresponds to the day of each Aviso

map.

Figure 17 shows that compared to the assimilated altimeter data, the errors

of BODAS analyses are slightly less than the RMSEs of Aviso. This is likely

to be due to differences in the assumed errors, length-scales and the time-

windows used in the different analysis systems. T/P data are not assimilated
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by BODAS, but is included in the SSALTO analyses, so it is no surprise that

the Aviso RMSE is slightly less than the BODAS RMSE for these data. Most

striking in Figure 17 are the differences in the RMSEs of the forecast, com-

pared to the BODAS analyses. This is consistent with the results presented

in Figure 11, showing a significant discrepancy between the RMSEs of the

analysed and initialised fields for SLA. The RMSEs of the forecast are largest

in the Tasman Sea and along the path of the Antarctica Circumpolar Cur-

rent (ACC). Both of these regions correspond to areas of energetic mesoscale

variability. The larger errors in the forecast may therefore be due to a poor

initialisation, poor evolution of mesoscale features, or systematic errors in the

model.

To determine whether there is any systematic errors in the model, such as

a bias in MSL, we consider the statistics of the increments to sea-level (Fig-

ure 18). Specifically, we compute the mean sea-level increments, the RMS of

the increments and the ratio of the absolute value of the mean to the RMS

of the sea-level increments. In these calculations, we use the actual incre-

ments applied to OFAM that are the time integrals of the nudging term on

the analysis day. We note that these increments are generally smaller than

the increments computed by BODAS (typically 70-90%) because the nudging

period is the same as the time-scale of the nudging, as discussed earlier.

The analysis equations (1-2), solved by BODAS, assume that the model is

unbiased. This should result in mean increments of zero. We find that while

the mean sea-level increments (Figure 18a) are close to zero in most of the

Australian region, there are some regions where the mean increments are rel-

atively large. A comparison between the magnitude of the mean and RMS

increments provides an indication of the significance of these biases. This is
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quantified in Figure 18c by the ratio of the absolute value of the mean to the

RMS of the increments. Where the mean and RMS of the increments are of

comparable magnitude (i.e., where the ratio in Figure 18c are large; near 1),

we conclude that the model is consistently being adjusted in the “same direc-

tion” at each assimilation step. This is an indication that the model quickly

“forgets” the introduced changes and reverts to its state before it is updated.

This is symptomatic of a problem either with 1) the initialisation of the model,

2) a systematic error in the model, or 3) the observations. As a result, BODAS

computes similar increments, with the same sign, at each assimilation step.

Regions where this is the case (Figure 18c) include the regions around 120◦E

and 160◦E off Antarctica. This region is not well observed by the global ocean

observing system because it is covered by sea-ice for much of the year. Also

this may be due to the lack of a sea-ice model in OFAM. Other regions where

the ratio of the absolute value of the mean to the RMS of the increments is

large are south of Western Australia (120◦E), west of New Zealand and in

the region of the south equatorial current. This may be due, for example, to

errors in the MSL (Figure 1), used to convert model sea-level to SLA, or due

to systematic errors in the surface fluxes.

Regions where the mean increment is close to zero but where the RMS of the

increments is large, for example off SE Australia in the Tasman Sea, probably

correspond to areas where the circulation is poorly constrained. This may

be due to problems with the initialisation, where the introduced changes are

quickly “forgotten” by the model, or where the circulation is highly non-linear

and therefore quite unpredictable and even chaotic. Certainly, the circulation

in the Tasman Sea is very complex (Figure 7), with a vast array of warm-

and cold-core eddies and meanders. It is therefore reasonable to expect that
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the circulation there might be difficult to constrain with a 7-day assimilation

cycle.

During the first BRAN experiment (BRAN1.0), described by Oke et al. (2005),

we simply updated the full model state (including currents) in a single time

step. This resulted in a large artificial response that degraded the solution.

This result provided part of the motivation for adopting a more moderate

nudging for the initialisation of BRAN1.5. In section 4, we showed that the

errors of SST and SLA in BRAN1.5 are half as large as those in BRAN1.0. We

attribute part of this improvement to the changes in initialisation. However,

as noted above, we still regard initialisation as a key area in which the system

could be improved.

Statistical comparisons, such as those presented in Figures 15 and 16, are

particularly sensitive to the precise locations of mesoscale features like eddies,

meanders and fronts. If, for example, an eddy is misplaced by its diameter,

then the magnitude of the error can be up to twice the magnitude of the

signal associated with the eddy. For this reason, a climatological estimate

that contains no eddies at all, might be expected to have smaller RMSEs than

an estimate that contains eddies that are not in the right place. The results

in Figures 15 and 16 show clear evidence of this. This issue was recognised in

the numerical weather prediction literature and resulted in the introduction

of alternative measures of skill to assess categorical forecasts (e.g., Gandin

and Murphy 1992). An example of a categorical forecast provides a yes or no

answer to a question like: is there a cold-core eddy in region X on day Y? The

comparisons in Figures 9 and 10 demonstrate that climatology is not useful for

making a categorical forecast. By contrast, the comparisons in Figures 7, 8, 9

and 10 showing qualitative agreement between mesoscale features in BRAN
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and independent observations, lead us to believe that the BRAN system may

be useful for categorical forecasts, although we do not assess this here.

6 Summary and Conclusions

The current status of the Bluelink data assimilation system, BODAS, is de-

scribed. BODAS uses an EnOI scheme to assimilate observations of various

types in a single analysis step. This contrasts to many other data assimilation

schemes that require special treatment to assimilate both satellite derived SLA

and in situ T and S (e.g., Cooper and Haines 1996; Troccoli and Haines 1999;

Segschneider et al. 2000; Fox et al. 2002; Guinehut et al. 2004; Cummings

2005; Martin et al. 2007; Chassignet et al. 2007). We provide a comprehensive

description of BODAS, describe several positive characteristics of the assim-

ilation method and identify the components of the system that are presently

limiting the system’s performance.

We provide a comprehensive assessment of BRAN. We demonstrate that, to-

gether with the main components of the global ocean observing system (al-

timetry, SST, Argo, TAO and XBT), BODAS can constrain an eddy-resolving

ocean model. As far as we are aware, this is the first quantitative demonstra-

tion that an EnOI-based system can realistically constrain such a model. Al-

though we note that there are several examples, using the SEEK filter (Pham

et al. 1998), which is similar to EnOI, that provide a similar demonstration

(e.g., Penduff et al. 2002; Brankart et al. 2003; Testut et al. 2003).

We present a series of qualitative and quantitative comparisons between BRAN

and satellite and in situ observations. Through these comparisons we demon-
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strate that BRAN represents both the broad-scale ocean circulation and the

mesoscale ocean circulation, including features like eddies, meanders and fronts.

Such a demonstration is one of the primary goals of the international GODAE

community (Le Traon et al. 2001).

Based on the model-data comparisons we present in this study, we conclude

that in the region around Australia, BRAN SLA is within 6-12 cm of observa-

tions over the open ocean and within 4-7 cm along the coast; and that BRAN

SST is within 0.4-0.9◦ of observed SST. We also conclude that BRAN sub-

surface T and S are typically within 1◦ and 0.15 psu of observed fields in most

of the Australian region; and that near-surface currents are typically within

0.2 m s−1 of observations.

We also present a comprehensive evaluation of the predictive skill of the

Bluelink system for SLA and SST. We demonstrate that the model has posi-

tive skill for each of these variables over a typical 7-day cycle. Specifically, we

show that the RMSEs of a 7-day “forecast” are generally less than the RMSEs

of the persistence of the initialised fields. This means that given some initial

condition, the model integration over 7 days yields a better state than simply

allowing the initial conditions to persist over time. However, we find that the

RMSEs of the initialised fields are significantly greater than the RMSEs of

the analysed fields for SLA over the open ocean. This indicates that some of

the details in the analyses are not “getting through” to the model during the

initialisation step. We therefore conclude that the simple nudging approach

we use to initialise the model can be ineffective in some regions. As a result,

we identify initialisation as one of the key areas in which we need to improve.

Our analysis of the predictive skill of SST reveals a significant seasonal de-
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pendence. We attribute this to limitations of the mixed layer model that we

use here, but note that it may also be related to seasonal biases in the surface

fluxes. Another explanation could be that there is a seasonal dependence of the

non-linearity of the ocean, with more energetic eddies at different times of the

year resulting in a seasonal dependence to the predictability of the mesoscale

ocean circulation.

We demonstrate that OFAM has positive skill for coastal sea level compared

to analysed, initialised and observed persistence. We attribute the skill for

coastal sea level to the accuracy of the wind stress and the model’s response

to the forcing.

We analyse the statistics of increments to sea-level and find that there are

some regions where the model exhibits a significant bias. The reasons for these

biases are unclear, though we suspect they are related either to limitations of

the model parameterisations, inconsistency between the model’s MSL and the

reference MSL used for altimetric SLA, errors in surface fluxes or sub-optimal

initialisation.

The Bluelink forecast system, of which BODAS is a key component, became

operational at the BoM in August 2007. It now produces two forecasts each

week, using operational fluxes from the Bureau’s global numerical weather

prediction system and assimilation of near-real-time observations. The results

presented in this paper demonstrate the current potential of this system if we

continue to run for many years in its present configuration. Analyses of BRAN,

however, indicate that the performance could be significantly improved if the

initialisation step could be made to constrain the model fields closer to the

observations in a dynamically consistent way.
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Table 1

Estimates of the instrument error of different observation platforms; and the range of

values for εRE and εage used in BRAN1.5. The lower range of εRE is for observations

in the high resolution region; and the upper range of εRE is generally for observations

in the coarse resolution region. The lower range of εage is for observations that occur

at the analysis time; and the upper range of εage is generally for observations made

5-days before or after the analysis time in regions where the model’s variability is

greatest (e.g., Tasman Sea).

Platform εinstr εRE εage

GFO 5 cm 2-18 cm 0-20 cm

T/P, Envisat, Jason 3 cm 2-18 cm 0-20 cm

CTG 3 cm 1-3 cm 0-4 cm

AMSR-E SST 0.25◦ 0-2◦C 0-2◦C

CTD/Argo/TAO - S 0.05 psu 0-1 psu 0-1 psu

CTD/Argo/TAO - T 0.1◦ 0-3◦C 0-4◦C

XBT 0.2◦ 0-3◦C 0-4◦C
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Table 2

Statistical comparisons between BRAN and observations from surface drifting buoys

for each quadrant around Australia for the period January 2003-June 2006. Statis-

tics include the number of observations (nobs) the number of drifters (ndr), the

magnitude of the complex cross-correlation ρ(u, v) and the phase angles θ(u, v)

(Kundu, 1976) between the observed and reanalysed currents, the RMSE of current

speed (|u|, in m s−1) and T (in Deg C).

nobs ndr ρ(u, v) θ(u, v) RMSE |u| RMSE T

NE 279715 481 0.53 0.7◦ 0.19 0.35

NW 98098 463 0.60 5.9◦ 0.23 0.81

SE 86025 155 0.29 -23.9◦ 0.20 0.63

SW 111249 158 0.37 -14.7◦ 0.19 0.63
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Fig. 1. Mean sea-level from the spin-up run that is used to convert model sea-level

into SLA. Also shown are the state political boundaries and tide gauge locations

(blue dots) that are relevant to Figure 14.
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Fig. 2. Estimated RE for sea-level using the atSLA-based method described by Oke

and Sakov (2007).
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Fig. 3. Schematic of the 7-day assimilation cycle used during BRAN. The sequence

of steps are denoted on the left of the figure showing (1) integrate previous forecast;

(2) calculate background field (BGF; here a daily mean); (3) identify observations

that fall in the observation time window (shown here as 7-days); (4) compute an

analysis using BODAS; (5) nudge the model towards the analysis for one day and

then integrate the next 7-day forecast.
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Fig. 4. Examples of the ensemble-based cross-correlations between sea-level at a

reference location, denoted by the star, and sea-level in the surrounding region for

a reference location (a) on the continental shelf, (b) over the continental slope and

(c) over the deep ocean off eastern Australia (panel (d)). Contour intervals are 0.2;

zero is bold, dotted is negative, correlations above 0.6 are shaded.
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off south Australia.
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Fig. 6. Increments to (a) sea-level, (b) across-shore currents (dashed contours are

offshore; bold contour is zero) and (c) along-shore currents (solid contours are into

the page; bold contour is zero); and the background field (solid contours) and anal-

ysis (dashed contours) for (d) T and (e) S, based on a single observation of sea-level

at the coast as in Figure 5.
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Fig. 7. Columns 1, 3 and 5 show 6-day composite SST from AVHRR measurements.

Column 2, 4 and 6 show the corresponding 5-day averaged SST from BRAN. Com-

parisons are shown for the 15th day of each month of 2004, as labelled in the pan-

els showing observations. Overlaying the BRAN SST are Lagrangian trajectories,

computed from the time-dependent surface velocities from BRAN over the 5-day

averaging period. Overlaying the observed AVHRR SST fields are dots denoting the

locations of the assimilated, super-obed AMSR-E SST data.
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Fig. 8. As for Figure 7, except off south-west Western Australia.
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Fig. 9. Comparison between a observed, reanalysed and climatological T section

off eastern Australia at 30◦S. Panel (a) shows the daily mean SLA field in BRAN

on August 8 2003; the solid line denotes the BRAN section and the circles denote

the profile locations. Longitude versus depth sections are shown in panels (b-d)

showing (b) daily mean T in BRAN on August 8 2003; (c) objectively analysed T

from XBT observations between August 4-13 2003; and (d) T climatology (Ridgway

et al. 2002). The dots in panel (b) denote the observation locations and the triangles

indicate the profiles that are assimilated into BRAN. Contour intervals in panels

(b-d) are 2◦C; and the contour in panel (a) denotes zero SLA.
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Fig. 10. As for Figure 9, except for a section off Western Australia along the IX15

line. BRAN fields are for July 7 2004; and XBT data are from July 6-8 2004.
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Fig. 11. RMSE of SLA, compared to along-track Topex/Poseidon data (tracks are

interleaved with Jason), plotted as a function of lead time for each quadrant of the

Australian region as labelled in each panel. Results are shown for the forecast fields

and for persistence of the analysed and initialised fields. These results are based

on the period January 2003 to September 2005. For comparison, the RMSE of the

spin-up run, with no data assimilation is off-scale at 0.12, 0.13, 0.14 and 0.17 m for

the NW, NE, SW and SE regions respectively.
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Fig. 12. As for Figure 11, except compared to AMSR-E data in the period January

2003 to June 2006. For comparison, the RMSE of the spin-up run, with no data

assimilation, is off-scale at 1.2, 1.6, 1.3 and 1.3◦C for the NW, NE, SW and SE

regions respectively. Similarly, the RMS difference between the observed SST and

SST climatology is 0.86, 0.91, 0.92 and 1.1◦ for the NW, NE, SW and SE regions

respectively.

61



0 1 2 3 4 5 6 7

0.6

0.7

0.8

0.9

Lead time (days)

R
M

S
E

 (
D

eg
 C

)

(c) SW: (90°−135°E,60°−25°S)(c) SW: (90°−135°E,60°−25°S)(c) SW: (90°−135°E,60°−25°S)(c) SW: (90°−135°E,60°−25°S)

0.4

0.5

0.6

0.7

0.8

R
M

S
E

 (
D

eg
 C

)

(a) NW: (90°−135°E,25°S−10°N)(a) NW: (90°−135°E,25°S−10°N)(a) NW: (90°−135°E,25°S−10°N)(a) NW: (90°−135°E,25°S−10°N)

0 1 2 3 4 5 6 7
Lead time (days)

(d) SE: (135°−180°E,60°−25°S)(d) SE: (135°−180°E,60°−25°S)(d) SE: (135°−180°E,60°−25°S)(d) SE: (135°−180°E,60°−25°S)

 

 

DJF
MAM
JJA
SON

(b) NE: (135°−180°E,25°S−10°N)(b) NE: (135°−180°E,25°S−10°N)(b) NE: (135°−180°E,25°S−10°N)(b) NE: (135°−180°E,25°S−10°N)

Fig. 13. As for Figure 12, except showing the RMSE of the forecast in each season;

namely Austral summer (DJF), autumn (MAM), winter (JJA) and spring (SON).
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Fig. 14. As for Figure 11, except for SLA at coastal tide gauge stations around

Australia for each state (see Figure 1 for political boundaries). Most tide gauge

stations are not continuous for the entire BRAN1.5 period. Therefore the number

of tide gauge stations (nstations) in each state and the number of assimilation cycles

(ncycles) included in each calculation is shown in each panel.
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Fig. 15. Depth profiles of the RMSE between observed T profiles from Argo and

the spin-up run (red; with no data assimilation), BRAN1.5 (blue) and climatology

(green), using (a) assimilated profiles and (b) withheld profiles for the period Jan-

uary 2003 to December 2005 (the overlapping period for BRAN1.5 and the spin-up

run). Plots are shown for each 30◦ by 30◦ region around Australia. The central panel

over Australia shows the legend and the axis dimensions for all plots.64
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Fig. 16. As for Figure 15, except for S profiles from Argo.
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Fig. 17. RMSE between BRAN SLA and atSLA from (a-c) Jason, Envisat and GFO;

and (d-f) T/P for (top-bottom) Aviso, BODAS, BRAN forecasts, as labelled to the

left of each row. Calculations are made using all available atSLA observations for

the period January 2003 to June 2006 (note that T/P ended in October 2005).
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Fig. 18. Statistics of the increments to sea-level showing the (a) time-mean, (b)

RMS and (c) the ratio of the absolute value of the time-mean to the RMS of the

sea-level increments for the last 3-years of BRAN1.5 (June 2003 to June 2006).
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