On the correct implementation of the

v - - - - - T - D A Bl T R - -l - L] - - ~ - -y
I’/’¢”’ ‘—’——’_ ———————————— ~~—~ --~~- -~-—_ ------------- ——— _—‘—— ———— ----------- ‘\NN: \\\\\N\\\~~
o - L | L] — = - - L
””’ ”’ ”————— e e S ~--~~-~--__ _ e e e am Em =m _———————— ———_— e mm = = ome e ~~~ \\\\\\\ \\~~\~
o - - — L] [ e e - = - — —_y \
& - - - = — —_— -~y - . e m ma a oan oen oem mm mm mm s S —-— - - = —y ~ ~ ~ ~ ~ -~y
- - - - - - " s N A am . _ il N . L - . - -_— T L mm R E . ~ SN S ~ -~ =~
o - - - -—n _— e -~- -_— e o ey e _— - — = _— ~ ~ ~ ~ ~y —_—
- - - - — - e T e e ey o o o . om mm == - == ~y
’f - - - - = - - -_—e, . e Em o Em s == - = I - -— ~ \\\ N ~ -~
o - f‘ - - —— _ o ~-~~ —__— —'—_ - - -— ~ ~ ~ ~ ~ NN ~ -
A - “ - - e . YT amm—_— . - - = ~ N ~ -~ —
- - - - e L, O E O OhD oD EEmm = - - - = ~ ~ N ~ -~
'f - ’f - —____ ___— ~ \\ ~ \\ ~y -
¢ - ~ “~.~ ~ "'h._.
"’/ ~ \\ ~y - L]
— ~ ~~~ -—y
~y ~
~
\~

- (-

S Iy ey e T g wE R Ty - - R 4 4
—_— i mmEm =TT ~~-—___—‘ ///,'
— — -_—— T e mmmm RN .- ~ — — — " /, ,
————————————— ~~--————— /,/,'
- mm W __-"" — — ”f’ ,/‘
— — -_—— T e mm e .- - — — — ” /, ,
————————————— R PRI
- mm W __-"" — _— ”f’ ,/‘
— — -_—— T e m TR .- - — — — ” /, ,
_________________ — ~-_-__——’,’, /,'
-
— _—___- ____________ ~~-—_’ ” /,,/
— - _— -~y —’ -
_________ _———— —~~~-—___— - ’//
— = = p mmmm———, — — —-— - ” /
_e_— T o mm=-T L - ~~- —_’ -
________ - = = = - ~~ il -
— -

ensemmple square roofl

Pavel Sakov and Peter R. Oke

CSIRO Marine and Atmospheric Research and Wealth from Oceans Flagship, Hobart, Tasmania, Australia

pavel.sakov@csiro.au

VWe compare the performance of mean-preserving and non-mean-

()
preserving solutions for the ensemble transform in the ensemble a
square root filter (ESRFs) and demonstrate a significant advantage of L
the former. We argue that only mean-preserving solutions should be
used In practice.
Theory
* ESRF analysis scheme:
Given a forecast ensemble X/, calculate the ensemble mean x/
and the ensemble anomalies A:
1 m
_ f f_x/f
xf = %in, Al = X - x.
=1
Calculate the analysis x“ -
'
x? = x/ + K(d - Hx/), 80
L
K=PH' (HP'H! + R)!.
Calculate the analysed anomalies:
A* = A'T,
T
T: A'TA'T)Y! = d- KH)A’A' .
Calculate the analysed ensemble x“
X=A%+ [x%,...,x%]
o
O
-
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* General mean-preserving solution for the
ensemble transform:
T = T*U?,| UPU?' =1, U’1=1,
T - 1/2
Al "H'R-THA/
TS = [I+ = cr-"=c’,
m — 1
T
A/ "H'R-'HA'
where CI'C’ = I+
m — 1
* Some particular non-mean-preserving
solutions used in practice:
-
one-sided solution T = CT"? (Tippett et al., 2003) -
20
L

solution with random rotations T = CI'"2U, UU’=1 (Evensen, 2004)

Numerical experiments

Models:
* Linear advection (LA) model (Evensen, 2004), Figures | and 2.

* Lorenz-40 model (Lorenz and Emanuel, 1998; setup as in Whitaker
and Hamill, 2002), Figures 3 and 4.

Filters:

* EnKF

* ESRF, symmetric

 ESRF one-sided

ESRF with random rotations

ESRF, with mean-preserving random rotations
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<<Figure |

RMSE of different flavours of
ESRF and EnKF for the LA
model, averaged for the time

interval r = [900, 1000], and

over 50 realisations.

<<Figure 2

Normalised singular-

value spectra of the

singular value number
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ensemble anomalies
for the LA model,
averaged over 50
realisations:

(a) m = 30;

(b) m = 60.

<<Figure 3

RMSE of different
flavours of ESRF
and EnKF for the

L40 model averaged

over a long model

run.
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<<Figure 4

The best RMSE from

Figure 3 for a given

ensemble size over all

inflation factors.
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