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We propose an ensemble Kalman filter (EnKF) without perturbed 
observations, referred to as the deterministic EnKF, or DEnKF.  DEnKF 
is asymptotically equivalent to the ensemble square root filter (ESRF) 
in the case when the analysis correction is small; and readily permits 
the use of the traditional Schur product-based localisation schemes.

Theory
• Kalman filter:

Numerical tests
Models:
• Linear advection (LA) model (Evensen, 2004), Figures 1 and 2.

• Lorenz-40 model (Lorenz and Emanuel, 1998; setup as in Whitaker   
   and Hamill, 2002), Figures 3, 4 and 5.

xa = xƒ + K (d − Hx ƒ ),

P a = (I − KH )P ƒ ,
where K = P ƒH T (HP ƒH T + R )−1

 << Figure 1

An example of RMSE and 

spread of ESRF, DEnKF and 

EnKF for LA and L40 models.
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<< Figure 2

RMSE of ESRF, DEnKF 

and EnKF for the LA 

model, averaged for 

the time interval 

t = [900, 1000], and 

over 50 realisations.

<< Figure 3

RMSE of ESRF, 

DEnKF and EnKF 

for the L40 model 

averaged over a long 

model run.

<< Figure 4

The best RMSE from 

Figure 3 for a given 

ensemble size over all 

inflation factors.

• Ensemble approach:

x 1
m

m

i=1

X i P 1
m − 1

AA T (A = X − [x , . . . , x ])

• Traditional EnKF:

X a = X ƒ + K (D − HA ), D :
1

m − 1
DD T = R

• ESRF:
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• Deterministic EnKF (DEnKF):

xa = x f + K (d − Hx f ),

Aa = A f −
1
2
KHA f .
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<< Figure 5

Comparison of convergence 

from the initial ensemble for 

the ESRF and DEnKF with L40 

model in difficult conditions. 

Shows mean RMSE for time 

interval t = [200, 500], averaged 

over 50 realisations;  

10 observations with observation 

error variance of 0.3 are assimilated 

every 2 time steps.
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