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Summary 

This is the Final Report of the CSIRO Marine and Atmospheric Research (former Earth 
Observation Centre) component of the Australian Water Availability Project, Phase 1 (1 January 
2005 to 30 June 2006).  The objectives of this component (in summary) are: 
• To develop a "Hydrological and Terrestrial Biosphere Data Assimilation System" (HTBDAS) 

for the near-real-time estimation and prediction of water availability (relative soil moisture 
and water balance fluxes including transpiration, soil evaporation, runoff and drainage) with 
daily time resolution and 5 km spatial resolution; 

• To evaluate the system for 5 selected catchments in the Murray-Darling Basin; 
• To apply the system over the Murray-Darling Basin and adjacent coastal region in southeast 

Australia, obtaining climate histories of water availability over the last two decades. 

The project has met its primary objectives.  A working model has been developed, tested and 
applied to obtain histories of relative soil moisture and water balance fluxes (transpiration, soil 
evaporation, runoff and drainage) over southeast Australia for the 25 years from 1981 to 2005. 

Specific achievements fall into three categories (model, data, assimilation) representing the 
essential generic components of a data assimilation system. 
Model: 
• Dynamic and observation models have been developed and tested in point mode; 
• Forward model predictions have been extended successfully to spatial mode (southeast 

Australia, 25 years from 1981 to 2005); 
• Model results are encouraging, even with prior-knowledge parameter values; 
• Tests have been carried out for over 150 unimpaired gauged catchments, by comparing 

predicted and measured runoff. 
Data: 
• Remotely sensed (vegetation greenness and surface temperature) data have been assembled;  
• Discharge data have been assembled for over 200 unimpaired catchments;  
• Both datasets have been subjected to extensive quality assessment and evaluation. 
Assimilation: 
• The Ensemble Kalman filter (EnKF) has been developed and tested for sequential parameter 

estimation of catchment discharge at the scale of individual unimpaired catchments and 
collections of catchments taken together; 

• Traditional (down-gradient) parameter estimation is being used as a check on the EnKF. 

There are several remaining challenges and issues for future work.  These include: 
• Further improvements to the dynamic and observation models; 
• Finalisation of model parameter estimation in spatial mode with both down-gradient and 

ensemble Kalman filter methods; 
• Assimilation of more data streams (especially land surface temperature); 
• Extension of the spatial domain to the whole of the Australian continent. 



 4

Preface 

This is the Final Report for the CSIRO Marine and Atmospheric Research (former Earth 
Observation Centre) component of the Australian Water Availability Project, Phase 1 (1 January 
2005 to 30 June 2006).   

The report is structured as follows: In the introductory Section 1, the aims of the project are 
defined.  Section 2 provides an overview of data assimilation in the context of water balance 
estimation.  Section 3 describes the input observations, including both meteorological data used 
to drive the model and the remote sensing and runoff data which are assimilated as the model is 
running to improve the predictions.  Section 4 describes the model development and presents the 
main results from forward runs for southeast Australia.  Section 5 describes the data assimilation 
(model-data fusion) methodology, and presents results.  Section 6 describes future developments, 
including (1) challenges remaining from the present work, and (2) the path to prediction, by 
linking water availability products to seasonal forecasts and climatological scenarios. 
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1 Introduction 

The Australian Water Availability Project (AWAP) is a partnership between the Bureau of Rural 
Science, CSIRO (EOC and Land and Water), and the Bureau of Meteorology.  The overall 
objective and outcome statement for AWAP are (AWAP WorkPlan 2004-2006, Version 6, 27 
September 2004): 

Objective: To develop an operational prototype of a new and integrated approach to monitoring 
and predicting soil moisture and other components of the water balance, for space scales ranging 
from 1km to all Australia, and for time scales ranging from fortnightly to decades.   

Outcome statement: This project will demonstrate a new and integrated approach to monitor 
and predict seasonal and multi-year water balance status from paddock to national scales.  It 
will be focused on the needs of government, industry sectors and individuals to manage the 
landscape more productively and sustainably.  Importantly, the products will be scalable from 
paddock to catchment to continent.  Outputs will include maps and electronic information on 
past, present and future levels of the components of the water balance, from rainfall to soil 
moisture, and will be relevant to a broad range of government and non-government programs. 

The CSIRO Marine and Atmospheric Research (former Earth Observation Centre) component of 
AWAP, the subject of this report, has the following more specific objectives (summarised from 
the AWAP WorkPlan 2004-2006, Version 6, 27 September 2004):  

• To develop a "Hydrological and Terrestrial Biosphere Data Assimilation System" (HTBDAS) 
for the near-real-time estimation and prediction of water availability (relative soil moisture 
and water balance fluxes including transpiration, soil evaporation, runoff and drainage) with 
daily time resolution and 5 km spatial resolution; 

• To evaluate the system for 5 selected catchments in the Murray-Darling Basin; 
• To apply the system over the Murray-Darling Basin and adjacent coastal region in southeast 

Australia, obtaining climate histories of water availability over the last two decades. 

Appendix A gives the milestone schedule for the CSIRO components of the project, including 
contributions from both CSIRO Land and Water (CLW) and the Earth Observation Centre 
(EOC), now part of CSIRO Marine and Atmospheric Research (CMAR).  Three EOC/CMAR 
milestone reports1 have described progress towards these milestones. 

                                                 
1 Raupach, M.R., Briggs, P.R. and Trudinger, C. (2005) Australian Water Availability Project (CSIRO Earth 
Observation Centre Component) Milestone Report 1: Proposed methods for generating an operational hydrological 
and terrestrial-biosphere data assimilation system (HTBDAS). 7 May 2005. 
Raupach, M.R., Briggs, P.R. and Trudinger, C. (2005) Australian Water Availability Project (CSIRO Earth 
Observation Centre Component) Milestone Report 2. 18 November 2005. 
Raupach, M.R., Briggs, P.R. and Trudinger, C. (2005) Australian Water Availability Project (CSIRO Earth 
Observation Centre Component) Milestone Report 3. 17 March 2006. 
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2 Overview of Data Assimilation for Water Availability Estimation 

Like a financial balance sheet, the terrestrial water balance includes "revenue" (the inflows of 
water from precipitation and possibly irrigation) and "costs" (the outflows of water through plant 
transpiration, soil evaporation, runoff and drainage to groundwater).  The "net cash result" or 
"cash reserve" of the water balance is soil moisture, the amount of water stored in the soil profile 
for use in plant growth.  Soil water reserves are the most important indicators of drought status, 
but unlike the financial analogue, nature does not issue a regular balance sheet.  Instead, indirect 
means must be used to map the soil moisture across large regions.  Traditionally there are two 
main options, measurements and modelling. 

Measurement:  This involves measuring a surrogate (something related to soil moisture), and 
inferring soil moisture indirectly from this quantity.  A common surrogate is vegetation 
greenness, measurable by satellite through numerous "vegetation indices".  These all rely on 
measuring the strength of spectral features such as the "red edge", whereby green, growing 
vegetation absorbs strongly in the red (around 0.7 μm) and reflects strongly in the near infrared 
(NIR) (around 0.9 μm).  One common and longstanding vegetation index is NDVI (Normalised 
Difference Vegetation Index).  A different possibility is Land Surface Temperature (LST), also 
measurable from satellites, which (together with in-situ meteorological information) can provide 
information about the surface energy balance and thence the total evaporation rate, which in turn 
is related to soil moisture. 

Modelling:  This involves the calculation of soil moisture using a water balance model, by (1) 
measuring the water inflows (rainfall, irrigation), (2) modelling the outflows (transpiration, soil 
evaporation, runoff and drainage, which all depend on the soil moisture itself, together with 
weather, vegetation and soil properties), and (3) combining all this information using the water 
balance equation 
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where input and output fluxes are identified by colour. 

Each approach has its own has generic problems.  Measurements are always indirect and depend 
on knowing complex relationships between the surrogate and soil moisture itself, as well as being 
subject to errors in the measurements themselves.  Models are subject to a range of errors and 
uncertainties in model formulation and parameterisation, as well as uncertainties in measured 
input and ancillary data used by the model. 

The intent of this project is to map and predict soil moisture and related quantities by using 
model-data fusion methods to combine both measurements and modelling.  This approach (1) 
overcomes the individual weaknesses of measurement and modelling approaches on their own; 
and (2) provides information not only about soil moisture but also about other important 
quantities such as water flows through transpiration, evaporation, runoff and drainage, and 
vegetation growth itself.  
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The suite of techniques for combining measurements and models is collectively called "model-
data fusion" or "model-data synthesis", a term which covers two broad approaches (each with 
numerous variants): “parameter estimation” and “data assimilation”.  All approaches involve 
minimising some measure of the disagreement between the model and the measurements, such as 
a search for “least-squared-error”.  Parameter estimation involves finding values of parameters 
(poorly known but supposedly constant quantities) that appear in all biophysically based models 
of landscape processes.  It is almost always necessary to choose these parameters so that the 
model best fits some set of test data which it is attempting to predict.  Techniques for finding the 
best (“optimum”) parameters range from simple graphical methods to advanced search 
procedures for finding multiple parameters simultaneously.  Data assimilation is a more subtle 
way of combining models with measurements, in which either or both of model state variables 
(for example, soil moisture in the present work) and parameters are refined step by step in time as 
the model is run forward and as new data become available to correct the model.  Data 
assimilation has been developed over the last two decades in meteorology and oceanography, and 
has contributed to substantial improvements in the accuracy of weather forecasts.  The extent of 
this improvement is evident in Figure 1, showing the increase in weather forecast skill over the 
period 1981-2001 in both the northern and southern hemispheres. 

This project uses model-data fusion (with a combination of data assimilation and parameter 
estimation) to provide maps and predictions of landscape processes (particularly soil moisture). 
The benefit for landscape management and productivity is potentially large.  In the long term, the 
outcomes of such a development will be (a) integrated monitoring of the state and metabolism of 
landscape systems; thence (b) monitoring of system responses to resource management and 
climate variability and change; and thence (c) guidance for adaptive, system-wide management 
through continual feedback via measurement and monitoring. 

The vehicle for implanting this vision in the context of the AWAP is a "Hydrological and 
Terrestrial-Biosphere Data Assimilation System" (HTBDAS).  Figure 2 shows its six main 
components:  (a) observations (covered here in Section 3), (b) a model (Section 4), (c) prior 
information (Section 4), (d) a model-data fusion process (Section 5), (e) a product interface, and 
(f) mechanisms for product utilisation (covered by other AWAP components).  The first three of 
these are components for information supply, the fourth is a component for information 
integration, and the last two carry out information delivery and uptake.  The major innovation is 
in the integration or model-data fusion component, (4).  

3 Observations 

In this project, two kinds of observation2 are assimilated into the model:  measures of vegetation 
greenness from remote sensing, and in-situ data on river flows, where available.  A third class of 
observations, weather data, is used to drive the model.  The distinction between driving data and 

                                                 
2 We had intended to assimilate land surface temperature (LST) as an additional remotely sensed data stream, but 
delays in the availability of LST from elsewhere mean that this is no longer possible.  Therefore it has been agreed 
that LST data will not be used in the HTBDAS in the current project.  This will not affect the ability of this project to 
meet its prototype demonstration goal. 
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assimilated data is that the driving data are applied as external inputs to the model, while the 
assimilated data are compared with model outputs and the resulting discrepancy is minimised to 
produce best model performance.   

The data are described in the following subsections, in each case with separately headed outlines 
of (1) data sources, (2) interpretation methods, and (3) analysis carried out in this project to 
assess the character and quality of each data set. 

3.1 Remotely Sensed Measures of Vegetation Greenness 

Data sources: The main remote sensing data used in this project are from the long time series 
available from the NOAA-AVHRR sensor aboard the operational series of NOAA polar orbiting 
satellites, processed and archived for the Australian continent in the CSIRO AVHRR Time Series 
(CATS) (King 2003).  These data are supplemented with data from several other sensors 
(MODIS, SeaWiFS, SPOT-VGT) and a compilation project (GlobCarbon, European Space 
Agency) for comparison.  Details are given in Appendix B.  All these data sources provide 
measures of vegetation condition covering the entire Australian continent, at spatial resolutions 
from less than 1 km to 25 km, and over various multi-year periods (see below). 

Data Interpretation:  Our primary measure of land condition is the Normalised Difference 
Vegetation Index (NDVI), based on the difference in reflectance of the surface to light in visible 
(red, wavelength approximately 0.65 μm) and near-infrared (NIR, wavelength approximately 0.7 
to 1 μm) spectral bands. The NDVI is defined as NDVI = (NIR−Red)/(NIR+Red).  This quantity 
has been shown to be a useful index of the "vegetation greenness".  More formally, NDVI is a 
(far from perfect) measure of two biophysical vegetation properties:  (1) the green-vegetation 
cover fraction (v), the fraction of the surface covered by green or actively growing vegetation at 
nadir view, and (2) the green leaf area index (Λ) (Tucker 1979; Sellers 1985; Sellers et al. 1992; 
Lu et al. 2003).  The relationship between these two biophysical quantities is complex, depending 
on factors such as leaf clumping and leaf angle distribution.  However, a common simplification 
is to treat the canopy as an absorbing medium obeying Beer's law of absorption, which implies 
that  

 ( )1 exp Extv c= − − Λ   

where cExt is an extinction coefficient.  This assumption is used here with cExt = 0.5, the 
theoretical value for isotropically oriented vegetation elements. 

The relationship between the biophysical vegetation properties (either v or Λ) and remotely 
sensed variables such as NDVI is not unique and depends on a range of non-vegetation factors 
including sun and view angles and soil colour, in addition to sensor characteristics such as precise 
spectral wavebands of the Red and NIR channels.  Roughly, the NDVI observed on a surface 
with no green vegetation (v = 0) is around 0.1 to 0.3 (with significant dependence on factors such 
as background soil colour), while the NDVI on a surface with 100% green vegetation cover 
(vc = 1) is around 0.7 to 0.8 (Lu et al. 2003).  NDVI values for the same land-surface location and 
time from AVHRR and other sensors (such as MODIS) are not identical, even with identical 
pixel sizes and sun and view angles, because of differing Red and NIR spectral wavebands. 
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Data Assessment:  The overall spatial behaviour of vegetation greenness across the Australian 
continent is shown in Figure 3, as the mean and standard deviation for the period 1981-2002 of 
NDVI (from BPAL AVHRR; see Appendix B).  The mean NDVI follows the continental rainfall 
distribution quite closely because vegetation in Australia is predominantly water limited.  The 
standard deviation is largest in the cropping regions because of the annual forcing of land cover 
by management (so that standard deviation of vegetation greenness is a remotely-sensed index of 
cropping as a land use). 

We have assessed the overall integrity of the NDVI time series from AVHRR (our primary 
source) by comparing long-term trends in large-area spatial averages of vegetation greenness, as 
measured by all the satellite sources summarised in Appendix B.  Figure 4 shows such a 
comparison where the averaging area is the entire Australian continent (similar comparisons have 
been done for 17 smaller regions).  Three groups of data are evident in this figure: 

• AVHRR-NDVI is represented by the "BPAL" series (1981 to 2003 at 8 km resolution, 
resampled to 5 km for consistency with other spatial data), and by the "CATS2a" series (1992 
to 2005 at 1 km resolution, with BRDF correction and cloud clearing; see Appendix B).  In 
principle, the CATS2a series represents best currently available processing practice for 
AVHRR data. 

• The data from MODIS, SeaWiFS and SPOT-VGT represent NDVI results from "modern" 
(1990s) environmental satellites with on-board calibration and active position control.  (The 
NOAA satellites which carry the AVHRR sensors have neither of these attributes). 

• The vegetation cover fraction series (from GlobCarbon; see Appendix B) is an estimated 
biophysical product, as opposed to a remotely sensed index, though it has been derived solely 
from remotely sensed data (see http://geofront.vgt.vito.be/geosuccess/ for algorithm details). 

The following conclusions emerge from Figure 4. 

• All time series show significant declining trends in vegetation greenness, especially over the 
period 2000 to 2003. 

• More spatially explicit investigation (not shown here) suggests that the observed declining 
trend in vegetation greenness is most pronounced in arid and semi-arid regions (annual 
rainfall less than around 500 mm). 

• The AVHRR data set suggests that this decline is continuing.  This may be caused in part by 
calibration drifts in the afternoon-overpass AVHRR satellite active through this period 
(NOAA-16), but the question is under continuing investigation. 

• The data from "modern" environmental satellites (MODIS, SeaWiFS SPOT-VGT) are closely 
grouped, except in some details such as discrepancies in SeaWiFS and SPOT-VGT before 
2000. 

• Differences in overall NDVI levels between this group of modern sensors and AVHRR are 
seen, and are expected because of differing Red and NIR spectral wavebands (AVHRR 
spectral filters are coarser than those in modern sensors).  Despite this, there is a high degree 
of similarity in the patterns of temporal variability seen between AVHRR and the modern 
sensors. 
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3.2 River Discharge Data 

Data Sources:  River discharge data have been obtained from Dr Francis Chiew (e-Water CRC 
and CSIRO Land and Water).  These data are presently available in archive form only, for model 
development and testing.  The data represent monthly (sometimes daily) measurements of 
catchment discharge at outlet stream gauging stations, for around 300 "unimpaired" catchments 
for which water extraction and diversion within the catchment is minimal.  The durations of the 
records are variable, ranging from a few years to nearly 100 years.  About 200 of these gauging 
stations are providing ongoing data (as of December 2004), while for the others, historical but not 
contemporary records are available. 

Data Interpretation:  Because these catchment discharge data are restricted to unimpaired 
catchments as defined above, we interpret the measured catchment discharge as being equal to 
the sum of surface runoff and subsurface drainage into streams, spatially integrated across the 
catchment.  This approximation neglects in-stream losses of water (such as evaporation and 
drainage from the stream itself) and assumes that the catchment outlet is the only route by which 
water leaves the catchment through horizontal transport. 

Data Assessment:  Results presented later (Section 4.2) will show the nature of these data and 
offer a comparison with model predictions. 

3.3 Weather Data 

Data Sources:  The required weather data to drive the HTBDAS include daily rainfall, solar 
radiation, maximum and minimum temperature, gridded to a spatial resolution of 5 km.  Two 
sources are available: 

• Gridded data on daily rainfall, solar radiation, maximum and minimum temperature (5 km 
resolution, continental domain, time period 1980 to present) are being produced by the 
Bureau of Meteorology (BoM) as a component of the Australian Water Availability Project.  
At the time of this report, all variables are available except for solar radiation. 

• Use is also being made of the SILO historic gridded weather dataset for Australia from the 
Queensland Department of Natural Resources, Mining and Environment.  This covers all 
required variables (rainfall, solar radiation, maximum and minimum temperature, at 5 km 
resolution, continental domain, time period from pre-1957 to present, with decreasing 
accuracy before 1957). 

Data Interpretation:  For model runs to date, we have used the SILO archive because of the 
availability of solar radiation.  Future runs will switch to the BoM dataset. 

Data Assessment:  Figure 5 compares the continentally and annually averaged rainfall, daily 
maximum and daily minimum temperature series from the BoM and SILO gridded weather 
archives.  In addition to the gridded archives, the figure shows nongridded series from Torok and 
Nicholls 1996 for temperature, Lavery et al. 1997 for precipitation, and from the National 
Climate Centre (BoM) at http://www.bom.gov.au/cgi-bin/silo/reg/cli_chg/timeseries.cgi for both 
rainfall and temperature.   
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There is good agreement between all series at this coarse aggregation level, with excellent 
agreement between the two gridded data sets for all plotted variables.  There is a small systematic 
difference of about 0.3 degC between the gridded and nongridded series for the annual mean of 
daily minimum temperature, with the nongridded series being higher. 

4 Models 

4.1 Dynamic and Observation Models 

Two kinds of model are needed: a dynamic model and a set of observation models.  The dynamic 
model predicts the landscape state, quantified by a set of state variables including soil moisture 
and other variables such as carbon stores.  This is done using the water balance equation (Section 
2) with specifications for all soil-water-dependent fluxes, together with similar equations for 
other state variables.  The observation models predict what the assimilated observables (such as 
NDVI, LST, discharge) should be, from the landscape state predicted by the dynamic model.  The 
difference between the predicted and measured observables is then used in the model-data fusion 
step to correct the model. 

• Dynamic model:  This is a simplification of the Bios and SimBios models, developed at 
CSIRO Land and Water and the CSIRO Earth Observation Centre (Raupach et al. 2001a; 
Raupach et al. 2001b). The dynamic model has two state variables: the soil water in a single 
store (W), and green leaf carbon (CL).  The model equations are summarised in Appendix C.  
They consist of two mass-balance equations for W and CL respectively, together with 
phenomenological equations relating the fluxes of water and carbon in these mass-balance 
equations to the state variables (W, CL), driving meteorological variables (daily rainfall, solar 
radiation, maximum and minimum temperature) and model parameters.  The reasons for 
including green leaf carbon in the model are (1) a leaf vegetation estimate is needed to 
assimilate both NDVI and LST, and (2) vegetation greenness is a diagnostic of plant growth, a 
crucial quantity in the dynamics of the terrestrial biosphere and in particular for the 
phenomenological equation for transpiration.   

• Observation models:  These express the observables in terms of predicted quantities available 
from the dynamic model (the state variables W and CL, and the water and carbon fluxes which 
depend on them).  The observables for which observation models have been written are NDVI, 
land surface temperature (LST)3, and catchment discharge.  The present equations for the 
observation models are summarised in Appendix D. 

The present formulation of both the dynamic and observation models is deliberately minimal 
(only essentials have been included).  The basic reason for this approach is to allow the eventual 
level of complexity in both the dynamic and observation models to be an emergent property of 
the model-data fusion process, rather than being imposed at the beginning.  The tension between 
simplicity and complexity in terrestrial biosphere modelling is discussed by (Raupach et al. 

                                                 
3 LST is not being assimilated in the project, but the observation model has been written in WaterDyn. 
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2005a).  In this methodology, "model failure" is demonstrated by irreconcilable discrepancies 
between model and data which cannot be removed by the model-data fusion process.  Model 
failure in this sense is a good thing, as it precisely identifies areas where the dynamic and/or 
observation models are oversimplified and need to be increased in sophistication.  More 
sophisticated algorithms can then be developed in these areas.  Hence we are developing models 
of the right level of sophistication for this application by starting simple and working up, rather 
than starting from a complicated initial formulation and attempting to work down without 
empirical guidance as to where the model is over-complicated. 

4.2 Prior information 

Prior information includes all prior knowledge (expressed as values and uncertainties) brought to 
bear on the problem.  It is of two kinds. 

• Prior estimates and constraints on process parameters:  These have been derived from the 
literature and previous experience with antecedents to the WaterDyn model (Raupach et al. 
2001a; Raupach et al. 2001b).  These estimates are not definitive, but when used with 
appropriate (often wide) uncertainty bounds, they provide valuable initial constraints on 
model process parameters such as water and light use efficiencies, or lower-level parameters 
that determine these aggregated model properties.  

• Information on soils and vegetation types:  Several soil and vegetation properties are 
required, such as the depth of available soil water and the decay time constant for water 
extraction.  Initial estimates are derived from soil and vegetation type maps gathered under 
the National Land and Water Resources Audit (NLWRA 2001a; NLWRA 2001b).  The 
original source of the soil data is the Atlas of Australian Soils (McKenzie and Hook 1992; 
McKenzie et al. 2000). 

4.3 Model Setup 

The dynamic and observation models are both embodied in an overall code called WaterDyn (for 
Water Dynamics), written in Fortran 95.  The model time step is daily and the present spatial 
resolution is 0.05 degrees of latitude and longitude (approximately 5 km).  The results presented 
here cover a spatial domain consisting of the entire southeast Australian region4, defined as the 
Murray-Darling Basin and the adjacent coastal regions covered by the Southeast Coast Drainage 
Division (NLWRA 2001a; NLWRA 2001b).  Figure 6 shows the spatial domain, identifying 
drainage basin boundaries, rivers and main towns.  Figure 7 shows the gauged unimpaired 
catchments (see Section 3.2) within the spatial domain. 

The model is run in one of two modes, "forward mode" and "assimilation mode".  In forward 
mode, the model makes predictions of the observed quantities to be used for data assimilation but 

                                                 
4 Our spatial domain covers (and extends beyond) a rectangular area in southeast Australia defined as the spatial 
domain for AWAP.  We have used a domain based on drainage boundaries rather than rectangles because much of 
our model testing relies on catchment discharge data for which catchments provide the natural spatial boundaries. 
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these predictions are not actually assimilated.  In assimilation mode, differences between 
predicted and actual observations are used to correct the model, as described in Sections 2 and 5.  
The results presented in this section are all from the model in forward mode; results in 
assimilation mode are given in Section 5. 

For the forward runs, prior values of all model parameters were selected to give credible model 
performance for one particular catchment (Adelong, near the Tumbarumba flux tower site).  
These parameters were then applied unchanged across the spatial domain.  The initial conditions 
for the state variables (W and CL) were set to uniform values across the entire spatial domain. 

To illustrate the typical model behaviour, Figure 8 shows time series for the meteorological 
driving data (top), the predicted model state variables W and CL (bottom) and the water fluxes in 
the water balance (middle), for a 25-year run (1 Jan 1981 to 31 Dec 2005).  All quantities in 
Figure 8 are averaged spatially across the Murrumbidgee Basin (the stippled area in Figure 7).  
The time series are shown at monthly-averaged time intervals for clarity, though the model runs 
at a daily time step and produces all outputs at daily time resolution. 

In Figure 8, the first few months of the run stand out as anomalous because the model takes a few 
months to "forget" its assumed initial conditions for W and CL and settle into a realistic pattern of 
interannual variability in W and CL determined by the forcing meteorology (mainly rainfall).  The 
strong trends near the beginning of the prediction period are a result of this settling down.  To 
avoid this problem the model is normally "spun", that is, run twice through the 25-year period (1 
Jan 1981 to 31 Dec 2005).  The end values of W and CL on 31 Dec 2005 from the first 25-year 
spin are used as realistic estimates of the initial conditions for the second spin, which provides the 
results actually used.  (In practice, archived results for W and CL at the end of the first spin are 
usually used to start the second spin, rather than running the model twice on every occasion). 

4.4 Model Results in Forward Mode 

Here we present the basic model predictions in forward mode across the entire spatial domain, for 
the 25-year period January 1981 to December 2005.  Figure 9 shows a monthly map sequence of 
rainfall (the most variable meteorological forcing quantity) across this space and time domain.  
The temporal variability is made clearer by plotting the corresponding map sequence for rainfall 
anomaly, in Figure 10.  (The anomaly in defined in the next paragraph).  Figures 9 and 10 
together show the high variability of Australian rainfall, and that much of this variability at the 
wet end arises from individual very wet months. 

In general, we define the anomaly for a quantity as [current value of quantity] − [monthly mean 
value of quantity].  Hence, the anomaly is the quantity with the regular seasonal cycle subtracted 
out.  In figure 10 and subsequent anomaly plots, grey denotes a zero anomaly (indicating that the 
plotted quantity at that location and time is average), red denotes a negative anomaly (indicating 
that the quantity is below average for that month), and blue denotes a positive anomaly 
(indicating an above-average value for the plotted quantity in that month).  The anomaly plots are 
not normalised, so they have the same units as the quantity itself. 

Figures 11 shows the relative soil moisture over southeast Australia as predicted by a 25-year 
forward run of WaterDyn, and Figure 12 shows the soil moisture anomaly (as defined above).  
The predicted relative soil moisture scales from 0 to 1 through the range from wilting point to 
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field capacity.  Figures 11 and 12 show that there is strong interannual variability in soil 
moisture, superimposed on a regular annual pattern in which the relative soil moisture is high in 
late winter and spring, especially in the southeast highlands and southern Victoria.  The soil 
moisture anomaly (Figure 12) varies much more smoothly than the rainfall anomaly (Figure 10) 
because of the lag imparted by soil moisture storage, which is of the order of months.  A positive 
soil moisture anomaly is correlated with an antecedent positive rainfall anomaly over this time 
scale, rather than the current rainfall anomaly. 

Dominant features of the interannual variability in soil moisture over the period 1981-2005 are 
the major droughts in 1982, 1994 and 2002 (in which relative soil moisture throughout the basin 
remains less than around 0.3 for the whole year except in the wet southeast corner), and the very 
wet years of 1983-84 and 1988-89.  There are also the milder low-moisture anomalies in 1986, 
1991 and 1997 and the whole period following the major 2002 drought to the end of 2005.  These 
features are correlated with the ENSO (el Nino-Southern Oscillation) cycle in the equatorial 
Pacific Ocean.  Three indices of ENSO are plotted in Figure 13: the Southern Oscillation Index 
(SOI) based on the Tahiti-Darwin air pressure difference, the Nino4 index based on central 
Pacific sea surface temperature, and the Multivariate ENSO Index (MEI) based on a combination 
of six atmosphere-ocean variables.  All three indices agree well.  Overall, dry soil moisture 
anomalies in southeast Australia align with strong el Nino events in the Pacific Ocean (positive 
values of the indices in Figure 13), and wet anomalies with strong la Nina events (negative 
indices in Figure 13).  However, the agreement is not complete: for example, 2002 was drought 
with a near-record soil moisture negative anomaly (Figure 12) but was only a mild ENSO event, 
whereas 1997 was a near-record ENSO event but only a mild drought. 

Figure 14 shows the total evaporation (plant transpiration plus soil evaporation), and Figure 15 its 
anomaly.  The energy-driven annual cycle in total evaporation is clearly evident, but with wet and 
dry anomalies consistent with those for soil moisture.  The evaporation anomalies in winter are 
substantially less than in other seasons because the evaporation itself is very much lower 
(recalling that the anomalies plotted here are absolute, not relative). 

Figures 16 and 17 show the values and anomalies (respectively) of net primary production of 
plant carbon (NPP).  The NPP is very closely coupled to total evaporation, as is expected in a 
water-limited environment.  The closeness of this coupling is real but is perhaps a little overstated 
by the current version of the WaterDyn model, which assumes a highly simplified relationship 
between transpiration and NPP based on water use efficiency. 

To give an idea of the relationship between the variations in the four quantities shown above 
(rainfall, soil moisture, evaporation and NPP), Figure 18 shows the annual mean of each quantity 
over each year from 1981 to 2005.  The trends discussed above are apparent, though less 
dramatically in a comparison of mean annual quantities. 

4.5 Model Tests in Forward Mode 

The results presented in the last section are untested model predictions.  To test them, we have 
compared the results of the discharge observation model in WaterDyn with actual observations of 
discharge from unimpaired catchments. 
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We focus first on the Murrumbidgee Basin (the stippled area in Figure 7) which contains 11 
unimpaired catchments with sufficient discharge record durations in the period 1981 to 2005 for 
testing to be possible.  Figure 19 shows a plot of predicted against measured catchment discharge 
for these catchments.  The points represent average discharge over the whole of the available 
record for each catchment.  Details of the catchments are given in the table accompanying Figure 
19.  For these 11 catchments, Figure 20 shows month-by-month comparisons of predicted and 
measured discharge.  The scatter here is much higher, for at least two reasons: (1) the model does 
not include physics to enable an event-based prediction of storm hydrographs, and (2) the spatial 
rainfall pattern across these small catchments is spatially undersampled by the daily rainfall data 
at 5 km resolution, a problem which is more severe at short than long time scales. 

Turning to the entire spatial domain, Figure 21 shows a comparison of predicted against observed 
average discharge for 153 unimpaired catchments for which discharge data are available.  These 
catchments are mainly in the hilly southeast of the spatial domain where rainfall is medium to 
high (see Figure 7).  Figure 21 reveals a systematic underestimate of discharge by the forward 
model with prior parameters, amounting to a low bias of order 100 mm/y in the estimate of 
discharge for catchments with discharge significantly above this value.   

Figure 21 provides evidence of model failure (see discussion in Section 4.1).  A possible cause of 
the problem is the use of a single water store, which means that surface runoff cannot occur until 
the whole of the single store has reached maximum water-holding capacity.  To test this 
hypothesis, work in the immediate future will include the incorporation of multiple (initially two) 
water stores in the dynamic model, following earlier models (Raupach et al. 2001a; Raupach et 
al. 2001b) from which the present model was simplified. 

Figure 21 also shows that the model-measurement disagreement has two components, one due to 
bias (discussed above) and the other due to scatter.  The scatter component is comparable with or 
smaller than the bias. 

5 Model-Data Fusion 

5.1 Description 

A central component and major innovation in this project is the model-data fusion or integration 
process.  A basic description of this process has been given in Section 2.  The main model-data 
fusion approach being used here is "sequential parameter estimation with the Ensemble Kalman 
Filter (EnKF)".  This terminology can be unpacked to describe the model-data fusion approach in 
a little more detail.  

• Kalman Filter (KF):  The Kalman Filter is a group of algorithms for the sequential (step-by-
step through time) combination of information from a dynamic model and a set of 
observations.  Each step forward in time consists of two substeps: a prediction substep, in 
which the dynamic model is used to obtain a "prior state estimate" at the next time step, and a 
correction or analysis substep in which this prior estimate is corrected by comparison with 
observations to yield the final "posterior state estimate".  The analysis step takes the form 
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The innovation is the difference between the actual observation and the observation as 
predicted from the prior state by using the observation model.  The update to the prior state 
estimate is obtained by (matrix) multiplication of the innovation by the "Kalman gain matrix" 
K, a function of the prior state uncertainty, P (which depends on the error Q in the dynamic 
model) and the observation or measurement error, R.  The formal functional dependence is 
K = K(P(Q), R).  The uncertainties P, Q and R are all covariance matrices.  The KF is now 
widely used (navigation, weather forecasting, earth system science, hydrology, finance, …) 
and has been called "the most useful piece of mathematics of the twentieth century" (Casti 
2000).  Outlines of the mathematical details are given by Grewal and Andrews 1993 and 
Enting 2002, and for the present context by Raupach et al. 2005b. 

• Ensemble Kalman Filter (EnKF):  The ensemble Kalman filter (EnKF) (Evensen 1994) is a 
KF implementation appropriate for nonlinear problems which are high-dimensional 
(involving many state variables).  The present problem is both nonlinear (because of the 
inherent nonlinearity of the dynamic model; see Appendix C) and high-dimensional (because 
estimation of a common set of parameters across multiple land surface elements).  The EnKF 
involves simultaneous solution of the dynamic model for an ensemble of typically 100 
members which differ randomly because of the combined effects of initial state uncertainty 
(P0), model error (Q) and errors in past measurements (R).  The current prior state covariance 
matrix (P) is obtained from the covariance of the ensemble. 

• Sequential parameter estimation:  In this implementation the "target variables" (the model 
variables being adjusted to give best fit between observations and model) are model 
parameters which are nominally time-independent.  They are estimated sequentially, by 
refining current parameter estimates at each time step of the model run on the basis of model-
measurement discrepancies.  This is done by treating the parameters as extra elements of the 
state vector, so that the state being estimated in the above KF equation is an "augmented state 
vector" consisting of the union of the dynamic state vector and the parameters.  Sequential 
parameter estimation has two advantages: (1) it maximises the predictive power of the model, 
since all quantities represented in the model can be predicted into the future using current best 
estimates of parameters; and (2) it allows for detection and estimation of changes in the 
nominally constant parameters through time (for instance due to a change in the system not 
accommodated in the model, such as land use change), as these changes are detected through 
model-measurement discrepancies.  

In addition to the EnKF, we are using a more traditional down-gradient method of parameter 
estimation as a check on the EnKF.  In this method, fixed parameter estimates are used for a 
complete run of the model, yielding a set of predicted observables which are then compared with 
the actual observations at all times simultaneously.  Parameter optimisation then involves 
adjusting the parameters to minimise the sum of the squares of (observation − prior prediction), 
over all observations.  This is a "batch" or "non-sequential" method of parameter estimation, in 
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contrast with the sequential parameter estimation with the EnKF described above.  Differences 
between sequential and batch parameter estimation methods are outlined by Raupach et al. 
2005b.  To implement the down-gradient (batch) method here, we use the standard PEST 
(Parameter ESTimation) package. 

5.2 Results 

To date, our applications of model-data fusion to estimate parameters have focused on use of 
observations of monthly discharge from unimpaired catchments (Figure 7).  We have not yet used 
other potential observations for assimilation (NDVI and LST) in the model-data fusion process. 
Therefore, in this section we report the results of assimilation of monthly discharge data only. 

Five different parameters in the model were estimated, with all others being held at constant prior 
values.  The parameters to be estimated were selected as those to which the model predictions are 
most sensitive, on the basis of past experience.  The five estimated parameters are: 

• RateEW:  a specifier for the decay rate of water extraction by roots from a drying soil under 
water-limited transpiration (RateEW = kE in Appendix C) 

• RateLch:  a specifier for the depletion rate of soil water by deep drainage (RateLch = kD in 
Appendix C) 

• PwrFWSoil:  an exponent specifying the rate of decrease of soil evaporation with decreasing 
relative soil water (PwrFWSoil = β in Appendix C) 

• PrwFWLch:  an exponent specifying the rate of decrease of deep drainage with decreasing 
relative soil water (PwrFWLch = γ in Appendix C) 

• ZSoilMult:  a multiplier applied to the soil depth given by the maps of soil types and 
pedotransfer functions from the Atlas of Australian Soils (McKenzie and Hook 1992; 
McKenzie et al. 2000).  This recognises that the model parameter for soil depth (the depth of 
extractable soil water, ZW in Appendix C) is not the same as the soil depth in the Atlas, our 
source of information about spatially distributed soil properties.  However, the Atlas soil 
depth is expected to provide some prior information about the spatial distribution of ZW.  We 
therefore assume that ZW = ZSoilMult*(Atlas soil depth), where ZSoilMult is a spatially 
uniform multiplier.  The Atlas provides depths of two soil layers (upper and lower), which are 
summed to obtain the Atlas soil depth.  

The five parameters were estimated using the EnKF for sequential parameter estimation, with an 
ensemble of 100 members and with the WaterDyn model run in assimilation mode.  The 
assimilated observable was measured monthly discharge in one or more unimpaired catchments.  
Parameters and model state variables were assumed to have log-normal distributions, meaning 
that log(quantity) has a Gaussian distribution.  This assumption ensures that the EnKF cannot 
produce negative parameters or state variables in the model ensemble, which for most parameters 
and state variable would be physically unrealistic and likely to cause unpredictable model 
behaviour.  
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The results are presented in two stages:  first we show parameter estimation results for one 
particular catchment (Adelong).  Second, we estimate a uniform set of parameters for 9 different 
unimpaired catchments in the Murrumbidgee Basin, using discharge data from all 9 catchments 
together. 

1.  Parameters estimates for the Adelong catchment:  Evolving estimates of the parameters 
themselves in the Adelong catchment are shown in Figure 22, with the heavy solid lines showing 
the optimal estimate of each parameter and the pair of dashed lines the parameter uncertainty 
(±1 standard deviation of log(parameter), transformed back to determine an uncertainty for the 
parameter itself).  The parameter estimates depart rapidly from their initial (prior) values in the 
first year or two of the run, under the influence of information from the measurements which 
requires different optimum parameter values from the prior assumed values for the parameters.  
The parameter estimates then settle into a slow evolution, with the optimum values changing little 
but the uncertainties slowly decreasing as the information content from the measurements 
increases.  The estimates change most rapidly when the EnKF receives significant new 
information from the observations, for example in major rainfall events; this causes the evolution 
of the estimates to have a stepwise character.  The uncertainties are not symmetric on either side 
of the optimum estimate because of the use of log-normal distributions (see above). 

Figure 23 compares the predicted and observed discharge for the Adelong catchment with the 
predictions being computed using the evolving parameter estimates shown in Figure 22.  The 
agreement between predictions and observations is much improved by sequential parameter 
estimation, compared with the level of agreement obtained with prior parameter estimates (that is, 
without parameter estimation) shown in Figure 20.   

The innovation (the difference between observations and predictions) is an indicator of the 
amount of new information being brought to the sequential parameter estimation by each 
successive observation.  The innovation for this parameter estimation in the Adelong catchment 
is shown in Figure 24.  It decreases with time through the 25-year run, for two reasons which are 
each responsible for about half of the decrease:  (1) the parameter estimates progressively 
improve as data is assimilated, so that model performance becomes progressively better; (2) by 
chance in this 25-year record, the overall magnitude and variability in the observations decreases 
with time. 

2.  Uniform parameter estimates for 9 different unimpaired catchments, treated together:  
Having obtained satisfactory performance of the parameter estimation process for one catchment, 
the next step is to apply the process over a wider spatial domain.  For this purpose, we used a 
domain consisting of the union of 9 unimpaired catchments in the Murrumdidgee Basin.  (Of the 
11 catchments shown in Figure 19 and 20, two were not used here because observation record 
lengths were not long enough).   

Parameter values, held spatially uniform across all 9 catchments, were estimated by applying the 
EnKF with 100 ensemble members to assimilate observed monthly discharge from each 
catchment.  The spatial domain for the WaterDyn model consisted of the union of all 9 
catchments.   
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A problem encountered in this exercise was that occasionally one ensemble member would stray 
into physically unrealistic parts of state and parameter space. The most common example of this 
was that negative soil moisture could occur for certain parameter combinations, particularly at 
dry locations and times.  The EnKF uses the logarithm of state variables, so is not able to handle 
negative soil moisture.  The cure for this problem is to make the dynamic model for application 
in assimilation mode numerically robust, to standards that are much higher than for the model in 
forward mode (because forward-mode predictions only require the model to be robust in 
physically realistic parts of state and parameter space).  The process of making the dynamic 
model meet these high standards of robustness is still going on at the time of writing.  Therefore, 
in this report we present indicative results over a shortened run (1990 to 1997) for which all 
ensemble members were well behaved.  

Figure 25 shows the parameter estimates obtained in this way.  In comparison with the parameter 
estimates for the Adelong catchment (Figure 22), the uncertainties are significantly higher and 
the rate of convergence of parameter estimates is lower.  This is a result of three factors: the 
shortened run duration (7 years as opposed to 25), the fact that we are applying spatially uniform 
parameters across catchments which differ physically and climatically in ways which lead to 
differences among optimum parameters estimated for each catchment separately, and the use of 
large assumed data uncertainties in this run to promote stability in the EnKF and minimise the 
problem caused by occasional stray ensemble members (see above).  

Figure 26 compares the observed and predicted discharge for each of the 9 catchments.  As in 
Figure 25, identical parameter values have been applied across all catchments.  The agreement is 
fair but not as good as with parameters estimated and applied for a single catchment, as for the 
Adelong catchment in Figure 23.  This shows that spatial smoothing of parameters leads to a loss 
of predictive accuracy. 

6 Conclusions 

The CMAR component of the AWAP project has met its primary objectives for Phase 1 of the 
Australian Water Availability Project (January 2005 to June 2006).  Considering the model, data 
and assimilation components of the project in turn, specific achievements are as follows. 

• Model:  A water balance model has been developed, tested and applied to obtain histories of 
relative soil moisture and water balance fluxes (transpiration, soil evaporation, runoff and 
drainage) over southeast Australia for the 25 years from 1981 to 1995.  Results have been 
expressed both as values of the soil water store and fluxes, and also as monthly anomalies of 
these quantities over the period 1981-2005. 

• Data:  Remotely sensed data for vegetation greenness have been assembled from several 
sources and intercompared, showing broadly consistent trends but some differences among 
different measures of essentially the same quantity.  Discharge data have been assembled for 
over 200 unimpaired catchments.  Gridded meteorological data (rainfall, solar radiation, daily 
maximum and minimum temperature at 5 km spatial and daily time resolution) have been 
gathered from two sources (the SILO archive from QDNRM and from the Bureau of 
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Meteorology as part of the AWAP project itself): intercomparison of these datasets shows 
excellent agreement at large spatial scale. 

• Assimilation:  The Ensemble Kalman filter (EnKF) has been developed and tested 
successfully for sequential parameter estimation of catchment discharge at the scale of 
individual unimpaired catchments and collections of catchments taken together.  In addition, 
traditional (down-gradient) parameter estimation is being used as a check on the EnKF. 

There are several remaining challenges and issues for future work.  These are summarised here in 
the context of the extension of AWAP to Phase 2 for the period July 2006 to June 2007, with the 
central goal of implementing a prototype operational system for the determination of water 
availability in near-real-time across the whole of the Australian continent.  To build on the 
achievements of AWAP Phase 1 and achieve the Phase 2 goal, there are challenges in each major 
area of the project, as follows. 

• Model:  Further improvements in the dynamic model will be in two main areas: (1) to 
increase numerical robustness for application in assimilation mode (see Section 5.2), and to 
explore the use of multiple water stores (see Section 4.4).  A third possible area of 
improvement is the use of multiple carbon stores following Raupach et al. 2001a and 
Raupach et al. 2001b.  For the observation models, improvements are necessary in the skill of 
the observation model for vegetation greenness.  The observation model for land surface 
temperature (LST) requires testing. 

• Data:  The main data requirements for Phase 2 are (1) to test multiple sources of LST data, as 
already done in Phase 1 for vegetation greenness; and (2) to obtain all necessary data streams 
in near-real-time.  The latter requires close cooperation among all AWAP participants. 

• Assimilation:  The challenges are to overcome some technical issues which still remain with 
assimilation of discharge (See Section 5.2), and to extend the assimilation process to 
continental scale with assimilation of remotely sensed data, both for vegetation greenness and 
for LST. 
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Appendix A: Australian Water Availability Project Payment Schedule 

The table shows the milestone schedule for the CSIRO components of AWAP, including 
contributions from both CSIRO Land and Water (CLW) and the Earth Observation Centre 
(EOC), now part of CSIRO Marine and Atmospheric Research (CMAR).  The present report 
describes only the EOC-CMAR contribution. 

 
Milestone Date Unit Payment 

Project commencement Phase on signing of MOU EOC, 
CLW 

$50,000 

AWAP 01 Report on the proposed methods for 
generating remotely sensed moisture availability 
spatial products 

30 April 2005 CLW $50,000 

AWAP 02 Report on the specifications and outputs 
of a full terrestrial-biosphere data assimilation 
system for water balance 

30 April 2005 EOC $50,000 

AWAP 02.1 Report on observation models relating 
the variables represented in the dynamic model to 
observed quantities, and a model-data synthesis 
scheme based on the Ensemble Kalman Filter or 
similar method 

30 September 2005 EOC $25,000 

AWAP 01.1 Report on improved methods to 
downscale meteorological data from daily 
observations to time-of-overpass 

28 February 2006 CLW $25,000 

AWAP 02.2 Report on evaluation of the complete 
HTBDAS for approximately 5 selected sub-
catchments (ANRA Basins) from within the study 
area, including a simple demonstration of the 
forecast capabilities of the HTBDAS using 
"retrospective" seasonal forecasts 

31 March 2006 EOC $25,000 

AWAP 03 Draft final report of a prototype near-real-
time operational system for direct interpretation of 
soil moisture from remotely sensed data 

31 March 2006 CLW $25,000 

AWAP 04 Final comprehensive project report 
including sections on methodologies for linking 
available soil water and water balance spatial 
products to seasonal forecasting models, and 
possible future water availability scenarios 

30 June 2006 EOC, 
CLW 

$50,000 
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Appendix B: Details of Remote Sensing Data Sources 

This Appendix summarises information on several remote sensing data sources used here.  These 
include data from the following sensors: (1) NOAA-AVHRR; (2) MODIS, (3) SeaWiFS, (4) 
SPOT-VGT.  Of these, the NOAA time series is the only one operationally supported for the next 
decade.  In addition we have used data from (5) the GlobCarbon project, a compilation by the 
European Space Agency of satellite-based vegetation data from several sources. Details are 
summarised in Table B1. 

NOAA-AVHRR:  The NOAA polar-orbiting satellites have carried AVHRR instruments 
operationally since the launch of NOAA-6 in 1979.  The AVHRR sensor records data in 5 
spectral bands of the electromagnetic spectrum: (1) red (580-680 nm); (2) Near Infrared (NIR) 
(725-1100 nm); (3) 3.55-3.93 µm; (4) 10.5-11.3 µm; and (5) 11.5-12.5 µm.  The spacecraft are in 
sun-synchronous polar orbits of approximately 100 min duration at an altitude of about 700km.  
Each orbit comprises an ascending and a descending component corresponding to whether the 
spacecraft is travelling northwards or southwards respectively.  The overpass time of the 
ascending node is nominally around 1330 local solar time but changes slowly with orbital drift 
(typically at 0.25 to 0.5 h/y).  The spatial resolution of AVHRR data is 1.1 km at nadir (the point 
directly beneath the satellite), increasing to 5.4 km at the edge of the swath where the scan angle 
is 55°.  For details see Cracknell 1997. 

The CSIRO AVHRR archive is maintained by CSIRO Marine and Atmospheric Research.  
Between 1981 and 1986 the basic data are coarse-resolution (about 8 km at nadir) Global Area 
Coverage (GAC) data Cracknell 1997 provided by NOAA.  These data are also used to 
supplement the limited full resolution data from 1986 until 1992 when the data began to be 
comprehensively archived from direct broadcasts from the NOAA satellites received in Australia.  
Since 1992, the data from a number of Australian reception stations have been combined by 
stitching the different segments from each station to eliminate redundancy and produce a single 
best-quality scene for each overpass (King 2000; Lovell et al. 2003; King 2003).  The daily 
coverage in this archive is an area of approximately 50 million km2, including the entire 
Australian land surface and surrounding regions to at least 2000km from the Australian coast.  
Since 1992, coverage of this area has been obtained four times daily.  

The Australian AVHRR archive is available in two forms, both used in this work.   

1. The "BPAL AVHRR" archive has been compiled from various sources and processed to 
produce complete, cloud-free, calibrated, geolocated, continental coverage of all AVHRR 
channels as seen by the afternoon overpass, at 0.05 degree (about 5 km) spatial resolution, 
covering land only, for 1981 to present.  Compositing (maximum-NDVI), to approximately 
10-day time resolution, was used as a first-order means of removing cloud effects.  Additional 
"BISE" (Best Index Slope Extraction) filtering was used to further reduce cloud 
contamination and the effects of variations in view and sun angles (Lovell and Graetz 2001).  
The "BPAL" terminology arises because this archive extends a series available from NASA 
for the period 1981-1994 called the PAL (Pathfinder AVHRR Land) dataset, using BISE 
filtering.  The BPAL AVHRR archive is used here for analysis of land condition. 
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2. The "CATS" (CSIRO AVHRR Time Series) archive is currently available from 1992 to 
present.  This archive includes all AVHRR channels at a nominal spatial resolution of 1.1 km 
at nadir and temporal resolution of up to four overpasses per day.  The data are calibrated and 
geolocated, with other processing in several versions described in Table B2.  

MODIS:  The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument 
aboard the Terra and Aqua satellites, launched in December 1999 and March 2002, respectively.  
The orbit of Terra around the Earth is timed so that it passes from north to south in the morning 
(about 1030 local solar time), while Aqua passes south to north in the afternoon (about 1330 local 
solar time). Terra MODIS and Aqua MODIS each view the entire Earth surface every day, 
acquiring data in 36 spectral bands ranging from 405 nm to 14.4 µm.  The spatial resolution of 
MODIS data is 250 m for one spectral band in the visible and one in the NIR, 500 m in 5 visible 
to mid-infrared bands and 1000 m in all other bands.  The data used in this study are standard 
global products obtained from NASA by DLT tapes (due to the enormous amount of data) and 
subsequently uploaded to the CSIRO MODIS Data Storage Cluster.  These standard products 
may also be downloaded by FTP from the NASA website. 

SeaWiFS:  The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is carried on the SeaStar 
satellite launched on August 1, 1997 as part of NASA’s "Mission to Planet Earth".  The SeaStar 
maintains a sun-synchronous 705 km altitude orbit, with a north-to-south equatorial crossing at 
12:20 local solar time, covering the Earth’s surface once a day. The SeaWiFS sensor has 8 bands 
in the 402 nm (violet) to 885 nm (NIR) range. It differs from the AVHRR sensor in that it can tilt 
to avoid sunglint on the sea.  SeaWiFS transmits local area coverage (LAC) data in real-time at a 
spatial resolution of 1.1km, with global area coverage (GAC) data archived and transmitted at 4.5 
km resolution.  The data used in this project are the SeaWiFS level 3 monthly NDVI product at 
9 km resolution.  Information about the SeaWiFS project can be obtained from 
http://oceancolor.gsfc.nasa.gov/SeaWiFS/ 

SPOT-VGT:  The "Vegetation" (VGT) instrument is a wide-field sensor carried as part of the 
SPOT 4 and 5 satellite payloads launched on March 24, 1998 and May 4, 2002. The SPOT 4/5 
satellites maintain a sun-synchronous polar orbit at ~830 km altitude. The Vegetation instrument 
has 4 non-contiguous bands in the visible, NIR, and MIR range (430-1750 nm), with a swath 
width of 2250 km at 1.165 km spatial resolution, allowing 90% global coverage in one day.  
Several products are available, including daily and ten-day synthesis products (S10) at full 
resolution as well as 4 km and 8 km reduced resolutions. The VGT images are processed and 
archived by the Belgian research institute VITO. The data used in this project are the SPOT 
VGT-S10 NDVI series at 1 km resolution. 

GlobCarbon:  The GlobCarbon project is part of the Global Terrestrial Observing System 
coordinated by the FAO.  GlobCarbon uses data supplied by the European Space Agency to 
produce a range of fully calibrated satellite estimates of global land surface properties (fire, 
albedo, fAPAR, LAI, vegetation growth cycle) which are nearly independent of the original data 
source.  The focus of the project is on the seven years 1997 to 2003, a period of overlap between 
various satellite measurements.  GlobCarbon products and services are managed by VITO and 
various other European agencies, and distributed by VITO at 
http://geofront.vgt.vito.be/geosuccess/. The GlobCarbon data available for this project were 
monthly LAI from 1999 to 2002, generated from SPOT VGT and ATSR data. 
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Sensor Agency 

(Country) 
Platform 
(Launch) 

Swath
(km) 

Revisit time 
(overpass time)

Spectral Bands Nadir spatial 
resolution (m)

AVHRR  NOAA 
(numerous 
satellites) 

2500 1 day 

(nominal: 
 0900, 1400) 

5 bands (visible, 
NIR, thermal) 

1100 

MODIS NASA 

(USA) 

Terra 
(Dec 1999) 

Aqua 
(May 2002) 

2330 1-2 days 

(Terra: 1030)
(Aqua: 1330) 

36 bands (visible, 
NIR, MIR, 
thermal) 

250 to 1000 

SeaWiFS NASA 

(USA) 

SeaStar  

(Aug 1997) 

2801 
(LAC), 
1502 

(GAC) 

1 day 

(1220) 

8 bands (visible, 
NIR) 

1100 (LAC) 

4500 (GAC) 

VGT CNES 

(France) 

SPOT 4 / 5 

(Mar 1998 / May 
2002) 

2250 1-2 days 4 bands (visible, 
NIR, MIR) 

1165 

Table B1:  Details of satellite sensors providing data utilised in this work  

 

CATS 
Version Orbit Time 

Res Calibration Cloud 
Corr 

BRDF 
Corr Compositing Spatial 

Res Time Span 

BPAL pm 8-11 day hybrid BISE  Max NDVI 8km 81/07 - 04/12

1 pm mthly Calwatch  Polder Max NDVI 1km 92/04 - 04/12

2a pm mthly Calwatch CLAVR Polder Max NDVI 1km 92/04 - 04/12

2b pm mthly Calwatch CLAVR  Max NDVI 1km 92/04 - 04/12

4 am mthly Calwatch CLAVR Polder Max NDVI 1km 92/04 - 04/12

5 am mthly Calwatch CLAVR  Max NDVI 1km 92/04 - 04/12

 
Table B2: Versions of the CSIRO AVHRR Time Series. 
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Appendix C: Summary of Water and Leaf Carbon Model 

This Appendix summarises the equations currently used in the WaterDyn dynamic model for soil 
water and green-leaf carbon (October 2005, WaterDyn06M). 

State Variables and Balance Equations 

The model has two state variables, a soil water store W [mol-water m−2] and a green-leaf carbon 
store CL [molC m−2].  Corresponding dimensionless variables are the relative soil water w and 
vegetation cover fraction or green-leaf cover v (both between 0 and 1), respectively related to W 
and CL by 

 ( )W Ww W Z= ρ  (1) 

 ( ) ( )01 exp 1 expExt Ext L Lv c c C C= − − Λ = − −  (2) 

In Equation (1), ρW is the density of liquid water [mol-water m−3] and ZW the depth of the 
extractable soil water [m-liquid-water].  In Equation (2), cExt is the exponential light extinction 
coefficient in the canopy, Λ the leaf area index and CL0 the green-leaf carbon store at Λ = 1, 
given by CL0 = dLρCL, where dL is the leaf thickness and ρCL the density of carbon in green leaf 
[molC m−3]. 

The water and carbon balance equations governing W and CL are 

 
Precipitation Transpiration Soil Runoff Deep

Evaporation Drainage

W W WP WT WS WR WD
dW dwZ F F F F F
dt dt

= ρ = − − − −  (3) 

 N N
LeafNPP
decay

L
L CP L L

dC a F k C
dt

= −  (4) 

In Equation (3), all water fluxes (FW) are in metres of water per day [mWater day−1].  In Equation 
(4), FCP is the plant carbon production flux or net primary productivity [molC m−2 day−1], aL the 
allocation coefficient for growth carbon to leaf, and kL the decay rate for leaf carbon [day−1]. 

The model uses standard MKS units, but with time in days rather than seconds. 
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Phenomenological Equations for Water Fluxes 

The phenomenological equations governing the water fluxes in Equation (3) are as follows.   

(1) Precipitation (FWP) is an external input.   

(2) Transpiration (FWT) is the lesser of an energy-limited and a water-limited transpiration rate: 

 

( ) ( )( )
( ) ( )

( )

min energy-lim , water-lim

energy-lim PT

water-lim

WT WT WT

WT W

WT E W E
W

F F F

F vF
WF vk Z w vk

=

=

= =
ρ

 (5) 

Here FW(PT) is the Priestley-Taylor evaporation rate [mWater day−1], and kE is a rate [day−1] for 
the decay of water extraction by roots from a drying soil under water-limited transpiration.   

Priestley-Taylor evaporation is a thermodynamic estimate of the energy-limited evaporation rate 
for the whole surface (vegetation plus soil).  From Raupach 2000 and Raupach 2001, it is 

 ( )PT PT Eq
W

W W

c
F

Φ
=

ρ λ
 (6) 

where ρW is the density of liquid water [molWater m−3], λW is the latent heat of vaporisation of 
water [J mol-water−1], ΦEq is the thermodynamic equilibrium latent heat flux [J m−2 day−1], and 
cPT is the Priestley-Taylor coefficient, a number which is well constrained at about 1.26 Priestley 
and Taylor 1972; Raupach 2001.  The equilibrium latent heat flux is given by 

 
*

1
A

Eq
p
p
εΦ

Φ =
ε +

 (7) 

where ΦA
* is the isothermal available energy flux [J m−2 day−1], ε is the ratio of latent to sensible 

heat content of saturated air (2.2 at 20 deg C, roughly doubling with each 13 deg C temperature 
increase) and p is a number slightly less than 1 accounting for radiative coupling, defined in the 
next equation.  The isothermal available energy flux ΦA

* is given by  

 ( ) ( )* 41 ; a
A aS L

a r

Ga e T p
G G↓ ↓Φ = − Φ + Φ −σ =

+
 (8) 

ΦS↓ and ΦL↓ are the downward shortwave and longwave irradiances; a and e are whole-surface 
albedo and emissivity, respectively; σ is the Stefan-Boltzmann constant; Ta [degK] is the air 
temperature at a reference height; Ga is the aerodynamic conductance; Gr = 4eσTa

3/(ρAcPA) is the 
radiative conductance; ρA is the density of air cPA is the specific heat of air at constant pressure. 

In actual model coding, the energy fluxes (denoted Φ above) and mass fluxes (denoted F) are 
calculated separately for the day (sunlit) and night parts of each 24-hour day, and then summed. 
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(3) Soil evaporation (FWS) is given by 

 ( ) ( )1 PTWS WF v w Fβ= −  (9) 

where β is an exponent specifying the rate of decrease of soil evaporation with decreasing relative 
soil water w.   

(4) Runoff (FWR) is given by 

 ( )Step 1WR WPF F w= −  (10) 

so that FWR = FWP (all precipitation runs off) when the soil is saturated (w = 1), and there is no 
runoff otherwise.   

(5) Deep drainage (FWD) is given by 

 WD D WF k Z wγ=  (11) 

where γ is an exponent specifying the rate of decrease of deep drainage with decreasing relative 
soil water w, and kD is a rate [day−1] for the depletion of soil water by deep drainage. 

Phenomenological Equations for Carbon Fluxes 

In Equation (4), the phenomenological equation for the plant carbon production flux or net 
primary productivity (FCP) is 

 ( ) ( )
11 1

CP Q Q W W WTF vF F
−− −⎡ ⎤= α + α ρ⎢ ⎥⎣ ⎦

 (12) 

where FQ is the incident quantum flux of photosynthetically active radiation (PAR) on the surface 
[mol-quanta m−2 day−1], and αQ and αW are respectively a PAR use efficiency [molC mol-
quanta−1] and a transpired-water use efficiency [molC mol-water−1].  The leaf allocation 
coefficient responds to soil water through 

 
0

L
wa

w w
=

+
 (13) 

where w0 is the relative soil water at which aL = 0.5.  Equations (12) and (13) are taken from a 
new analysis of carbon allocation using ecological optimality principles (Raupach 2005). 
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Appendix D:  Initial Observation Model 

This Appendix summarises the equations currently used in the WaterDyn observation model 
(March 2006, WaterrDyn07M).   

(1) Normalised Difference Vegetation Index (NDVI):  The NDVI (N) is assumed to be linearly 
related to the green-leaf cover fraction (v), through 

 0
0

1 0

N N
N N v

N N
−

= +
−

 (14) 

where N0 and N1 are NDVI values for bare soil and full canopy cover, respectively. 

(2) Land Surface Temperature (LST):  The observation model for LST (Ts) needs to take into 
account the difference between conditions at time of satellite overpass (tp) and the average 
diurnal conditions described by the dynamic model (Appendix B).  We first relate Ts at time tp to 
the air temperature and sensible heat flux (ΦH) at that time: 

 ( ) ( ) ( )
( )

H p
s p a p

a p a p

t
T t T t

c G t

Φ
= +

ρ
 (15) 

The instantaneous (tp) values of Ta and ΦH can be related to model (diurnally averaged values 
through the following simple, empirical assumptions: 

 ( ) ( ) ( )
( )max

max min max min

2
0.5 0.5 cos p Ta

a p a a a a
day

t t
T t T T T T

t

⎛ ⎞π −
⎜ ⎟= + + −
⎜ ⎟
⎝ ⎠

 (16) 

 ( ) ( )
( )2cos diurnal averagep noon

H p H
daylight day

t t
t

f T

⎛ ⎞π −
⎜ ⎟Φ = Φ
⎜ ⎟
⎝ ⎠

 (17) 

where tamax is the time of maximum temperature in the day, Tday the 24-hour day duration and 
fDaylight  the daylight fraction of the 24-hour day.  (Note: these simple expressions represent 
starting assumptions only, and may be improved and made more complicated if necessary). 

Finally, the (diurnally averaged) sensible heat flux is related to the other energy fluxes in the 
surface energy balance, as 

 * H
A E p

Φ
Φ = Φ +  (18) 

where notation follows Appendix B.  Thus Ta(tp) is expressible in terms of the latent heat flux, 
and thence the total evaporation, since  



 29

 ( )E W W WT WSF FΦ = ρ λ +  (19) 

The end result is an expression for Ts(tp) in terms of meteorological forcing variables, diurnally 
averaged fluxes and state variables available to the dynamic model. 

(2) Catchment outflow at monthly scale:  Initially, this is described as the sum over a month and a 
catchment area of the surface runoff and drainage from each land element in the catchment: 

 ( )
catchmentmonth

Catchment Outflow WR WLdt F F= +∑∫  (20) 

To avoid difficulties with water extractions from rivers (farm dams, irrigation, offtakes etc) we 
use only data from nominally unimpaired catchments as identified by Francis Chiew (e-Water 
CRC).  These are small catchments for which lags between elemental-area water fluxes and 
catchment outflow can initially be assumed to be not significant at monthly time scale. 

Some of the assumptions in this simple model may be violated in some catchments.  Where 
significant parameterisation problems appear to be attributable to this cause, a more sophisticated 
observation model for catchment outflow will be sought through interactions with colleagues in 
CSIRO Land and Water and elsewhere.  
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Figures 

 

 

Figure 1: Evolution of 3-day, 5-day and 7-day weather forecast skills for northern (NH) and 
southern (SH) hemispheres, 1981-2002.  The upper and lower lines bounding each coloured 
region are the skills for the NH and SH, respectively.  The overall improvement over the period 
1981 to 2001 is due to (1) better weather models; (2) better data, largely from remote sensing; 
and (3) continuous assimilation of data into models.  The importance of remotely sensed data is 
made clear by the convergence of the NH and SH skills by 2001, since remote sensing adds 
relatively more information in the SH than in the NH because of the sparseness of SH in-situ 
observations.  (Courtesy A. Hollingsworth, ECMWF; from a presentation "Goals of GEMS" at 
the Integrated Global Carbon Observation (IGCO) Implementation Workshop, Frascati, Italy, 3-5 
November 2004). 
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Figure 2: Schematic representation of components of a hydrological and terrestrial-biosphere data 
assimilation system (HTBDAS). 
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Figure 3:   Mean and standard deviation of NDVI from BPAL AVHRR (1982-2002 excluding 
1994).  See Appendix B for details of BPAL AVHRR series. 
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Figure 4:  Time series of continentally averaged measures of vegetation greenness (NDVI 
vegetation fraction cover) from several data sources described in Appendix B. 
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Figure 5:  Comparison of several datasets for continentally and annually averaged Australian 
rainfall (top), daily maximum temperature (middle) and daily minimum temperature (bottom).  
The "SILO gridded" and "BoM gridded" series are from the SILO and BoM gridded (daily, 5 km) 
weather archives.  The "BoM climate" series are from the continentally averaged data from the 
National Climate Centre (http://www.bom.gov.au/cgi-bin/silo/reg/cli_chg/timeseries.cgi) at the 
Bureau of Meteorology.  Also shown are published continentally and annually averaged series for 
temperature Torok and Nicholls 1996 and rainfall Lavery et al. 1997  
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Figure 6:  The spatial domain for this work, consisting of the Murray-Darling Basin and South-
East Coast Drainage Division in South Eastern Australia.  Major rivers and towns are shown.  
Olive borders and numbers identify NLWRA Drainage Basins (NLWRA 2001a; NLWRA 
2001b).   
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Figure 7:  Location of unimpaired catchments in South Eastern Australia (hatched red areas), 
superimposed on the spatial domain map (Figure 6). The Murrumbidgee basin (410) is stippled in 
black.  

 



 37

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

XX
(1

)

0

50

100

150

200

250

XX
(2

)

WRel
CLea

-10
-5
0
5

10
15
20
25
30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

So
la

r, 
Te

m
p,

 V
ap

Pm
b

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Pr
ec

ip
[m

/d
ay

]

SolarMJ
TempMax
TempMin
Precip

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

W
at

er
 fl

ux
 [m

/d
]

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01FWTra
FWSoil
FWLch
FWPrec
FWRun

 

Figure 8:  Spatially averaged (Murrumbidgee Basin) monthly time series for a 25-year run of the 
forward model:  meteorological forcing (top panel);  model output of water balance terms 
(middle panel); model output of state variables (XX(1) = relative soil moisture w, XX(2) = green-
leaf carbon store CL (molC m−2) (bottom panel).  Model version: WaterDyn09Ma. 
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Figure 9:  25-year time series of monthly rainfall over Southeast Australia.  
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Figure 10:  25-year time series of monthly rainfall anomaly over Southeast Australia.  
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Figure 11:  25-year time series of monthly relative soil moisture content over Southeast Australia.  
Model version: WaterDyn10Mb. 
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Figure 12:  25-year time series of monthly relative soil moisture anomaly over Southeast 
Australia.  Model version: WaterDyn10Mb. 
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Figure 13:  Time series for 1950 to 2006 of three indicators of the ENSO (El Nino-Southern 
Oscillation) climate phenomenon in the equatorial Pacific Ocean.  SOI (Southern Oscillation 
Index) is the difference between standardised pressure series at Tahiti and Darwin, where 
standardisation implies transformation to a series with mean zero and variance one.  Nino4 is the 
standardised sea surface temperature (SST) in a rectangular region in the Central Tropical Pacific 
(5N to 5S, 160E to 150W).  MEI is the Multivariate ENSO Index (Wolter and Timlin 1993; Wolter 
and Timlin 1998), based on a combination of six observed variables over the tropical Pacific 
(sea-level pressure, zonal and meridional components of the surface wind, sea surface 
temperature, surface air temperature, and total cloudiness fraction of the sky).  The MEI is the 
first unrotated Principal Component (PC) of all six observed fields combined.  All series have 
been smoothed with an 11-month running mean.  Positive values of all indices are correlated with 
drought in eastern Australia.  Note that SOI defined here is −0.1 SOIBoM, where SOIBoM is the 
SOI used by the Australian Bureau of Meteorology, which is correlates positively with increased 
rainfall and takes values of ±10 at ±1 standard deviation.  Data source: 
http://www.cdc.noaa.gov/ClimateIndices/List/. 
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Figure 14:  25-year time series of monthly total evaporation (plant+soil) over Southeast Australia.  
Model version: WaterDyn10Mb. 
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Figure 15:  25-year time series of anomaly in monthly total evaporation (plant+soil) over 
Southeast Australia.  Model version: WaterDyn10Mb. 
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Figure 16:  25-year time series of monthly net primary production (NPP, in gC m−2 d−1) over 
Southeast Australia.  Model version: WaterDyn10Mb. 
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Figure 17:  25-year time series of anomaly in monthly net primary production (NPP, in 
gC m−2 d−1) over Southeast Australia.  Model version: WaterDyn10Mb. 
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Figure 18:  Comparison of annual means from 1981 to 2005 of rainfall, relative soil moisture, 
total evaporation and NPP.  Model version: WaterDyn10Mb. 
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Catchment  Name    Area(km2) Rainfall(mm/y) Runoff(mm/y) 
410044 MuttamaCreek@Coolac 1025 633.3  51.2 
410038 AdjungbillyCreek@Darbalara 411 1172.3  225.3 
410047 TarcuttaCreek@OldBorambola 1660 810.1  98.1 
410048 KyeambaCreek@Ladysmith 530 661.5  68.6 
410057 GoobarragandraRiver@Lacmalac 673 1339.4  462.3 
410061 AdelongCreek@BatlowRoad 155 1141.2  274.1 
410059 GilmoreCreek@Gilmore 233 1217.6  388.1 
410097 BillabongCreek@Aberfeldy 331 730.8  77.7 
410033 MurrumbidgeeRiver@MittagangCrossing 1891 882  154.4 
410141 MicaligoCreek@Michelago 190 745.4  50.4 
222007 WullwyeRiver@Woolway 520 585.8  51.8 

 

Figure 19:  Comparison of observed versus predicted discharge at the outflow points of 11 
unimpaired catchments within the Murrumbidgee basin. Mean rainfall values in the table are 
catchment area averages from the SILO weather archive.  Mean runoff values are observed.  
Model version: WaterDyn09Ma. 
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Figure 20:  Predicted and observed discharge for 11 unimpaired catchments in the Murrumbidgee 
basin for a 25-year time series: Jan 1981 to December 2005. Model version: WaterDyn09Ma. 
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Figure 21:  Comparison of observed versus predicted discharge at the outflow points of 153 
unimpaired catchments in the spatial domain (see Figure 7).  Model version: WaterDyn10Mb. 



 51

 

 

Figure 22:  Sequential estimates of five parameters for the Adelong catchment, by assimilation of 
observed monthly discharge using the EnKF, with the WaterDyn model in assimilation mode and 
an ensemble of 100 members. 
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Figure 23:  Comparison of observed (blue points) and predicted (black line) discharge (m/month) 
for the Adelong catchment, for the same 25-year run as in Figure 22. 

 

 

 

Figure 24:  Innovation (= observation − prediction) in monthly mean discharge (m/month) for the 
Adelong catchment, for the 25-year run shown in Figures 22 and 23.   
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Figure 25:  Sequential estimates of five parameters for a spatial region consisting of 9 catchments 
in the Murrumbidgee Basin, where identical parameter values are applied across all catchments.  
The parameters are estimated by applying the EnKF with 100 ensemble members and the 
WaterDyn model in assimilation mode to assimilate observed monthly discharge from each 
catchment.  The spatial domain consists of the union of all 9 catchments, and the time domain 
runs from 1990 to 1997. 
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Figure 26:  Comparison of observed (points) and predicted (line) discharge (m/month) for 9 
catchments in the Murrumbidgee Basin, where identical parameter values are applied across all 
catchments.  The parameters are estimated by applying the EnKF with 100 ensemble members 
and the WaterDyn model in assimilation mode to assimilate observed monthly discharge from 
each catchment.  The spatial domain consists of the union of all 9 catchments, and the time 
domain runs from 1990 to 1997. 
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