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abstract

The statistics of fluid turbulence is described by an infinite hierarchy of cumulant equa-

tions. A major aim of turbulence theory is the development of accurate, tractable clo-

sure models that can replace this hierarchy. In this thesis, numerical and computational

techniques are presented to solve systems of integro-differential closure equations for in-

homogeneous two-dimensional turbulent flow over topography. The closure equations,

representing the first tractable closure theory for inhomogeneous flow over mean (single

realization) topography, are based on a quasi-diagonal direct interaction approximation

(QDIA) derived via renormalization techniques. The equations are computationally chal-

lenging due to the potentially long time history integrals. In order to reduce the computa-

tional cost a formal restart procedure has been implemented for the two- and three-point

cumulant terms. The resulting closure equations with cumulant updates (CUQDIA) are

shown to be in good agreement with the closure without restarts. The primary focus of the

thesis comprises a comparison of the QDIA and CUQDIA closure equations with direct

numerical simulation (DNS) of the primitive equation for barotropic flow over topography

on an f -plane. This study involved the development of a numerical model to enable a

comprehensive investigation of the relative merits of the DNS, QDIA and CUQDIA. A

wide range of topographies have been considered as have inviscid unforced, viscous decay

and viscous forced flows. Initially, the dynamics of the system are studied for severely

truncated flow models at the level of a single wave triad and for C3 resolution (circularly

truncated k = 3 wavenumber space), during which an inherent DNS sampling problem is

identified. Subsequent higher resolution spectral studies at C16, C48 and C64 are found

to demonstrate close agreement between the closure equations and DNS for low Reynolds

i



ABSTRACT ii

number. However, spurious convection effects in the transient fields of the QDIA are

shown to produce an under-estimation of the small-scale amplitudes of the energy and

enstrophy at moderate Reynolds numbers, as is the case with the direct interaction ap-

proximation for homogeneous turbulence. The mean enstrophies on the other hand are

found to be in close agreement with DNS. The closure has been further extended to inho-

mogeneous flow on a generalized β-plane. The generalized β-plane employs a dispersion

relation that incorporates terms for both planetary vorticity and the vorticity associated

with the large-scale flow thereby allowing a one to one correspondence with the spherical

geometry. The β-plane closure model is also compared to DNS at C3 and C16 resolutions

for flow over an isolated Gaussian mountain demonstrating comparable agreement to the

earlier f -plane study. Although previous closure studies have produced important insights

into how random topography determines the spectra of transient vorticity variance this

work comprises the first study of two-dimensional turbulent flow over single realization

topography. As such the numerical and computational methods developed allow the ex-

amination of the effect of the mean topography on the structures of the mean flows with

implications for the problem of resolving the interaction of the subgrid scale eddies with

the mean topography.
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Chapter 1

Introduction

Before the oarsmen of Odysseus

were able to exhaust the wine-dark sea

I can divine the indefinable forms

of that old god whose name was Proteus.

Shepherd of wave-flocks of the waters

and wielder of the gift of prophecy,

he liked to make a secret of his knowledge

and weave a pattern of ambiguous answers.

“Proteus” from The Book of Sand

Jorge Luis Borges

The study of turbulence holds a central place in modern physics, constantly challenging

physicists and fluid dynamicists in a variety of theoretical specialities from scaling theory,

statistical dynamics, renormalized group theory, multifractals etc., through to numerical

fluid dynamics and large scale computing. The study of turbulence is problematic due

to the fact that a continuous range of length scales in the system are excited simultane-

ously. Thus no small parameter exists and expansions must therefore be made in terms

of the complexity of the interactions. The added combination of the coexistence of fluctu-

ations and macroscopic space-time structures place turbulent phenomena squarely in the

1



CHAPTER 1. INTRODUCTION 2

domain of the statistical dynamicist. The complexity of geophysical flows has made under-

standing the processes of the oceans and the atmosphere difficult. This complexity arises

precisely because of the nonlinear coupling across many scales of motion and because of

inhomogeneities such as introduced by topography and land-sea contrasts in heating. Two

dimensional turbulence, despite being non-existent in the natural world in the pure sense,

is nevertheless a paradigm for our understanding of geophysical phenomena as it displays

many of the features observed in both the oceans and the atmosphere. In addition, the

relative thickness of the earth’s troposphere compared with the earth’s diameter, com-

bined with the quasi-geostrophic large-scale motions of the atmosphere, provide further

impetus for our interest in two-dimensional turbulence. The further goal of reliable long

term weather and climate prediction may also require our gaining a deep understanding

of the roles of coherent structures in the ocean and the atmosphere. Before giving an

overview of the work contained in this thesis a brief discussion of some of the features of

two-dimensional turbulent flows is presented.

1.1 Fluid turbulence in 2-Dimensions

Turbulence in two- and three-dimensions are very different phenomena. For example, an

important difference that is of particular relevance to atmospheric flows is the propensity

for coherent structures to form in two-dimensional turbulent flows [1]. In order to develop

a background for the ensuing discussion of geophysical fluid turbulence a brief compari-

son of the fundamentals of turbulence in two- and three-dimensions is in order. Firstly,

in fully developed three-dimensional homogeneous turbulence three distinct wavenumber

regions may be identified 1) an energy injection region at the largest scales 2) an inertial

range at the intermediate scales and 3) a dissipative range at the smallest scales. Three

dimensional turbulence consists of a sea of eddies, varying in sizes, whose total kinetic

energy is conserved in the absence of viscosity and forcing. It happens that the large,

less numerous, eddies may distort the more numerous smaller eddies, whereas the effect

of the many random interactions of the small eddies on the large eddies averages out any

reciprocal distortions. A crucial point is that all eddy-eddy interactions are local, that
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is large eddies interact with small eddies only via eddies of intermediate size. For forced

dissipative flows this process leads to an energy cascade by which energy is transferred to

smaller and smaller scales until eddies of such small size are produced that they are subject

to the effects of viscosity and dissipated away. Kolmogorov [2] showed that a dimensional

analysis of the inertial range gives an energy scaling law proportional to k−5/3.

Turbulence in two-dimensions is somewhat more complicated due to the presence of an

additional quadratic invariant, namely the enstrophy 1. Enstrophy considerations forced

an abandonment of Kolmogorov’s picture of an energy cascade (as this would lead to

energy creation in 2-D) prompting a search for a new interpretation of how energy and

enstrophy are simultaneously distributed among the wavenumbers for forced dissipative 2-

D flows. Fj∅rtoft [3] first demonstrated that the energy cascade hypothesis did not carry

over to two dimensions and that if an intermediate scale is forced then rather than an

energy cascade an enstrophy cascade results. Conversely the energy undergoes an inverse

cascade to the larger scales. The 2-D enstrophy inertial range was later found to have

an inertial range law of k−3 [4, 5, 6]. As discussed in chapter 2 the realization of a fully

self-consistent closure theory that agrees with either the 3-D energy or the 2-D enstrophy

scaling law represents a formidable endeavor.

1.2 The closure problem

The rapid spatial and temporal variation in the solutions of the primitive dynamical equa-

tions of turbulence is one of the principle reasons2 that Navier-Stokes flows are resistant

to direct numerical simulation at high Reynolds number and high resolution. In contrast

statistical closure theory provides descriptions of the average behavior of an ensemble

of turbulent realizations. An ensemble average is an average taken over an ensemble of

turbulent flows with nearly identical external conditions. These flows differ due to the

presence of large fluctuations that typify turbulence as well as uncertainty in the initial

conditions thus forcing a statistical treatment. Each ensemble member is referred to as a

realization. The dynamics of the ensemble averages are considerably smoother than that
1When topography is present the potential enstrophy is conserved.
2The large number of interaction coefficients required is another.
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of the individual realizations of the primitive equations. In order to describe the statis-

tical behavior of a turbulent flow the underlying nonlinear dynamical equations must be

averaged producing an infinite hierarchy of moment equations.

The closure problem can be stated simply: consider a generic equation of motion with

quadratic nonlinearity in the random variable X(t) in Fourier space with components Xi:

∂

∂t
Xi = BijkX−jX−k. (1.1)

Here Bijk are the interaction or mode coupling coefficients. Now the correlation between

the eddies can be represented by an equation for the second moment which is found to

depend on the third order moment

∂

∂t
〈Xi(t)X−i(t́)〉 = Bijk〈X−k(t)X−j(t)X−i(t́)〉 (1.2)

and similarly the third order moment depends on the fourth etc. Statistical turbulence

theory is principally concerned with the methods by which this hierarchy is closed and

the subsequent dynamics of the closure equations. The majority of closure schemes are

derived using perturbation expansions of the nonlinear terms 3 in the primitive dynamical

equations, with the most successful theories utilizing formal renormalization techniques

for strongly nonlinear flows.

1.3 Geophysical flow over topography

In the case of geostrophic turbulence above topography, with random initial conditions,

we find the emergence of a large-scale flow. For barotropic flow over topography it is

the interaction of the eddies with the topography that generates this non-zero mean flow.

Early numerical simulations, as well as studies based on canonical equilibrium theory

[7, 8, 9, 10, 11, 12] led to the development of the dual principles of maximum entropy

and minimum enstrophy. The minimum enstrophy principle argues that the enstrophy,

which must decay faster than the energy due to preferential dissipation at the largest

wavenumbers, is minimized in the system with the resulting streamfunction found to be

parallel to the contours of the topography. It was later demonstrated that the maximum
3In 2-D turbulence theory we are primarily dealing with quadratic nonlinearities
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entropy (canonical equilibrium) and the minimum enstrophy states are the same in the

limit of infinite resolution [13].

The interaction of the eddies with the topography generates topographic stresses which

play a very important role in determining the circulations of the ocean and the atmosphere.

For example, these stresses are responsible for the anticyclonic motion of mean flows over

topographic features [14, 15]. The problem of how to develop subgrid-scale parameteri-

zations of the topographic stress in general circulation models is a difficult one [16, 17].

The basis for any parametrization of these effects would ideally have a solid physical and

mathematical foundation. One of the fundamental goals of statistical closure theory is

the development of a tractable closure scheme that can investigate the effect of the mean

topography of the ocean or the atmosphere on the structures of the mean flow. This thesis

examines the dynamics and spectra of a just such a closure theory, developing numerical

techniques to render the theory computationally tractable, and examining rotating flows

both with and without large-scale zonal flow and differential rotation.

1.4 Thesis overview

An overview of the thesis, in which the various chapters and sections are briefly described,

will now be presented. The thesis begins with a formal review of the methods and im-

portant papers that underpin statistical turbulence theory. The first approach reviewed is

the heuristic Eulerian and Lagrangian formulations of the direct interaction approximation

(DIA) for stationary, isotropic and homogeneous turbulence in two and three-dimensions.

Next an equivalent diagrammatic method similar to the Feynman diagram approach to

quantum electrodynamics is presented. This is followed by the more general functional

operator and functional path integral methods in which no assumptions of isotropy or ho-

mogeneity are made. The next section in the literature review discusses the large body of

work where the Markovian approximation is applied to the closure problem. In closing this

review a heuristic vertex renormalization, proposed by Kraichnan and only very recently

implemented by Frederiksen and Davies, known as the “regularized” DIA is discussed. A

more detailed review of the mathematical aspects of the Eulerian DIA is given in appendix
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I sections I.1 to I.4. This rather detailed appendix is included for completeness and in

order to provide the interested reader with a more mathematically detailed explanation

of the assumptions that comprise the DIA. The DIA is fundamental to the discussions

contained in this thesis. It should be noted however, that this appendix comprises review

material only.

The core of the thesis is contained in the next three chapters. Initially, in chapter

3 a brief discussion of the development of inhomogeneous closure theories for flows with

and without topographic terms incorporated is undertaken before presenting in detail

the quasi-diagonal DIA (QDIA). The QDIA forms the basic tool for our investigation of

geophysical flow over topography; however it unfortunately contains potentially long time-

history integrals that render it computationally intractable for anything but short time

periods even at low spectral resolution. In order to tackle this problem a formal restart

or cumulant update procedure (CUQDIA) has been developed, a discussion of which

comprises the remainder of chapter 3. Appendix II contains a derivation of the required

interaction coefficients for the Fourier transform of the barotropic vorticity equation while

appendix III contains an alternative derivation of the two-point restart terms derived in

section 3.4.2.

Chapter 4 presents the development of the computational and numerical methods

necessary to implement both the CUQDIA and direct numerical simulation (DNS) of

the barotropic vorticity equation for flow over topography. The structure of the code,

discretization of wavenumber space, time-stepping scheme, integral methods as well as the

implementation of the restart procedure are all dealt with in turn. As well a number of

diagnostic tests enabling rigorous testing of the code are developed.

After a brief review of two important previous works dealing with closure theories

for turbulent flow over random topographies with zero mean, the main results of the

thesis are discussed in chapter 5. The first section deals with an inherent problem with

DNS calculations; that is, the sampling error that arises due to an inability to specify

the initial fields exactly. The causes of this error are identified and the dynamics of a

single triad calculation are investigated. The triad calculation represents a case where an

ensemble of initial DNS fields can be constructed such that there is no sampling error
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as far as generating homogeneous statistics is concerned. Alternate methods to minimize

sampling error are discussed for higher resolution studies. A further investigation is next

presented of the dynamics of the modes at circularly truncated k = 3 wavenumber space

(C3) resolution for inviscid unforced, viscous decay and forced dissipative cases where the

topography is chosen such that the magnitudes of the mean and transient enstrophies are

equal at equilibrium. This particular choice of topography ensures a strong mean field

and topography amplitude at the small-scales and therefore a rigorous test of the theory.

The remainder of this chapter compares the discrete closure theory with DNS at res-

olutions from C16 to C64 for a variety of topographies commonly employed in idealized

studies, as well as including that used for the C3 case. Sections 5.5.2 and 5.5.3 primar-

ily investigate viscous decay from canonical equilibrium finding close agreement between

DNS and CUQDIA. However, in section 5.6 it is shown that for moderate Reynolds num-

bers, and when the small-scale topography is very weak, the CUQDIA underestimates the

transient enstrophy due to spurious convection effects arising from the absence of vertex

renormalization terms. This behavior is similar to that of the isotropic direct interaction

approximation in the absence of topographic interaction.

Finally, in chapter 6 both the closure theory and the numerical model are extended

from the f -plane to a β-plane. The “standard” β-plane approximation is problematic

in that it neglects the effects of solid body rotation vorticity in the dispersion relation,

unlike the spherical geometry formulation. As well the QDIA closure is non-symmetric

when formulated on the standard β-plane and therefore is significantly more difficult to

implement than the f -plane QDIA. By incorporating a representation of the solid body

rotation vorticity term into the dispersion relation we are able to show that the resulting

“generalized” β-plane is a better approximation to the spherical geometry. Furthermore,

it allows a symmetric formulation of the QDIA equations whereby the additional terms

due to the β-plane effect may be incorporated into the model through the interaction

coefficients. Sections 6.1-6.4.2 contain the mathematical details of the generalized β-plane

closure. Simulation results (at C3 and C16 resolution) comparing the β-plane closure and

DNS experiments are presented in sections 6.4.2, 6.5 and 6.6.



Chapter 2

The statistical theory of

turbulence

Enmity be between you! Too soon is it for alliance.

Search along separate paths, for that is how truth comes to light.

Freidrich von Schiller

The statistical theories discussed in this chapter are based on the application of the renor-

malization techniques of quantum field theory to the complex study of classical dynamical

fields and in particular to turbulence. Such calculations are difficult due to the fact that

turbulence has no small parameter and we must base our expansion in terms of the com-

plexity of the system. It can easily be demonstrated that a naive perturbative expansion

in powers of the Reynolds number diverges badly for large values while an expansion in

terms of the time of evolution diverges for long evolution times [18].

The direct interaction approximation (DIA) of Kraichnan [19, 20] proved a seminal

breakthrough in the theory of statistical closures for equations with quadratic nonlinear-

ities. The DIA was initially formulated in a heuristic manner but has subsequently been

derived more systematically via techniques based on renormalization methods developed

by Schwinger [21, 22], Dyson [23], and Feynman [24, 25] for quantum electrodynamics. It

remains the most successful of the statistical closure theories for turbulence, being in good

8
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agreement with both experimental wind tunnel measurements [26] at moderate Reynolds

number and yielding a realistic value of the Kolomogorov constant in Lagrangian form

[27]. The Eulerian DIA does however fail to yield the Kolmogorov spectrum in the inertial

range due to spurious convection effects which arise from closing the system at second

order. It is noted that this failure can be overcome via the implementation of a heuristic

vertex renormalization or regularization [28]. This aspect of DIA theory will be discussed

in more detail later in this chapter.

A more systematic application of renormalized perturbation theory to the problem of

hydrodynamic turbulence was undertaken by Wyld [29]. This approach necessitated anal-

ysis of the higher order terms in the series by using a “Feynman” diagram approach. Wyld

was able to correctly consider up to fourth order in the interaction coefficients. However,

it was the subsequent work of Lee [30] which correctly applied vertex renormalization to

extend the method to sixth order for the hydromagnetic case. The DIA is readily obtained

from both the Wyld and Lee formalism by the retention of only the simplest terms at sec-

ond order, that is, the DIA only takes into account directly interacting modes. Indeed,

the reduction to the DIA is the standard test for any higher order renormalized theory.

Navier-Stokes based theories attempt to study the universality of the small scale struc-

ture of turbulence on scales belonging to the inertial range by analytic and numerical

solutions to the equations of fluid mechanics. In order to describe a turbulent fluid flow,

we need to provide a statistical description which is achieved using long time averages of

the fluctuations of the velocity field u(r, t). The physical quantities of interest are the

mean field, the two-point covariance or fluctuation function and the function describing

the response to infinitesimal disturbances.

It is the purpose of this chapter to present a description of the development of DIA-

based statistical theories of turbulence, placing emphasis on the successes, failures and

approximations of each theory. The three formalisms that underpin the DIA are the Eu-

lerian closure of Kraichnan [19], the functional operator approach of Martin, Siggia and

Rose (MSR) [31], and the path integral method [32, 33]. Firstly we review the Eulerian

and Lagrangian formulations of the DIA. Appendix I contains a more detailed math-

ematical review of the seminal aspects of the Eulerian DIA. This appendix presents a
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straight forward heuristic derivation of the DIA (following Kraichnan) from the Navier-

Stokes equation. The MSR approach recasts the problem in terms of closed self consistent

equations in which only the two-point covariance and exact response to infinitesimal dis-

turbances appear. A Heisenberg operator formalism is developed through the ad hoc

introduction of an adjoint field thus allowing “charge” renormalization and providing the

correct vertex terms missing from the Wyld formalism. The origin of the adjoint field was

demonstrated through the derivation of the Schwinger-Dyson equations from path inte-

grals. This approach was elegantly developed by Jensen [32] who extended the method

to consider multiplicative random forces, nonlocal causal interactions and non-Gaussian

initial conditions. It is noted that the MSR results can also be derived using path integrals

and the equivalence of both methods demonstrated. Throughout this thesis the DIA has

been applied both to the 2-D Navier-Stokes equation in velocity u and vorticity ζ forms.

2.1 Eulerian and Lagrangian formulations

The DIA, as developed by Kraichnan [19, 34], was the first fully self consistent analytical

theory of turbulence in fluids, which is remarkable given previous attempts by Heisen-

berg [35, 36] and Chandrasekar [37]. Despite the failure of the DIA to agree with the

experimental results in the inertial range at high Reynolds number, the DIA has led to

great insight into the nature of the cascade of energy from small to large wavenumbers

in 3-D turbulence as well as the associated enstrophy cascade to larger wavenumbers in

2-D turbulence. Kraichnan noted that the failure of the DIA in the inertial range arises

from spurious convection effects in the DIA that is a direct consequence of closure (but

not renormalization) at second order. While renormalization restores some higher order

effects there remain some spurious interactions between the large and smaller scales and

as a consequence the DIA under-represents the kinetic energy in the inertial range [28, 38].

In an attempt to overcome the inertial range problem Kraichnan subsequently devel-

oped the Lagrangian-histories DIA (LHDIA) [39, 40, 41], and the abridged-LHDIA (ALH-

DIA) [40, 42]. The LHDIA was initially derived as heuristic modifications of the Eulerian

DIA [27]. However, the LHDIA can also be derived from the DIA via the substitution
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of generalized Lagrangian history co-ordinates for Eulerian co-ordinates, coupled with the

alteration of the time arguments, in order to create a purely Lagrangian formulation. The

ALHDIA represents a further modification of the LHDIA in which the time arguments

of the convolution integrals are modified for a subset of the LHDIA equations which is

purely Lagrangian. This procedure is described in some detail in section 7.2.4 of McComb

[43]. It was also demonstrated that the LHDIA and ALHDIA lowest order expansion

term for the passive scalar reproduces Taylors [44] exact result for the dispersion of fluid

elements, while the higher order terms govern the deviations of the particle-displacement

distribution from Gaussian form.

The problem of generalizing quasi-Lagrangian closures such as the LHDIA and ALH-

DIA to inhomogeneous flows represents an exceedingly difficult task. Significantly, Fred-

eriksen and Davies [28] have very recently shown that a regularized form of the DIA

(RDIA) and the cumulant update RDIA (RCUDIA) are generally superior to the ALH-

DIA continuous closure results for spectra considered by Herring and Kraichnan (Fig. 8b

[42]). However, the RDIA contains a specified “cut-off” parameter α. In particular, the

ALHDIA was found to over-estimate the enstrophy inertial transfer rate to high wavenum-

bers in 2-D turbulence, which is the direct opposite to that of the DIA. Kraichnan [41]

was subsequently able to develop systematic renormalized perturbation expansions which

were invariant at each order under random Galilean transformations (unlike the DIA) of

which the LHDIA represents a lowest order approximation. A further approach is the

strain-based LHDIA (SBLHDIA) and strain-based ALHDIA (SBALHDIA) whereby the

velocity field is replaced by the rate-of-strain tensor in the primitive perturbation series.

This approach was developed by Kraichnan and Herring [45, 46].

The formal renormalization procedure that forms the basis of the DIA is predicated on

the idea that the nonlinear couplings can, prior to renormalization, be treated as though

they are weak, such as is the case for the quantum electrodynamics problem. However,

renormalized perturbation theory has been shown to enjoy enormous success for highly

nonlinear systems, partially due to the fact that renormalization acts to remove secular

terms, therefore avoiding the so-called infrared and ultraviolet catastrophes associated

with naive perturbative approaches. As stated previously, the DIA is physically realizable
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thus ensuring positive spectra unlike closures based on the quasi-normal hypothesis [47] 1.

Kraichnan [18] also explored a novel approach to the question of the validity of the DIA for

strongly nonlinear systems by first considering a model equation for which the DIA is an

exact solution. The solutions to the model equation thus represent exact descriptions of

possible dynamic systems thereby displaying consistency properties. The model equations

are then modified via the introduction of random couplings into an equation for which the

DIA gives the exact statistical average. The important point is that this modification is not

predicated on the basis that the nonlinear terms are small. Shivamoggi et al [50] discuss the

mathematical aspects of this approach and demonstrate that the application of the DIA

to Kraichnan’s model equation leads to a functional equation. Kraichnan demonstrated

that the model solutions have a representation in the sums of infinite classes in terms of

the formal perturbation expansions to the solutions to the true problem. Further, it was

shown that the corresponding stochastic model can be used as a guide to the validity of

the partial summation of the perturbation series. This approach has obvious relevance to

the quantum mechanical many-body problem [51].

2.2 Diagrammatic methods

Perhaps the most illuminating approach to the problem of approximating the higher order

moments is the use of Feynman diagrams [23, 52, 24, 29, 30]. The first systematic attempt

to deduce a theory of turbulence in an incompressible fluid from first principles using

diagrammatic methods similar to those employed in quantum field theory is due to Wyld

[29] and was subsequently generalized to stationary isotropic hydromagnetic turbulence

by Lee [30] 2. The approach is to find solutions to the velocity field in the form of a

perturbation series and represent the terms in the series by a one-to-one correspondence

with diagrams similar to Feynman diagrams. Wyld showed that these diagrams may

be rearranged and then partially summed, reducing to integral equations governing the

second order correlation functions for the velocity. The equations have the form of infinite
1Exceptions are the eddy damped quasi-normal Markovian closure for isotropic turbulence [48] and the

realizable Markovian closure of Bowman et al [49]
2Hasselmann [53] also developed a set of diagrammatic rules for wave-wave scattering processes.
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power series integral equations from which Wyld was able to derive terms to fourth order

from an analysis of the diagrams. Approximation at lowest order yields Chandrasekars’

equations (Eqs. 36 and 40 [29]), which are essentially the same as the quasi-normal theory

applied to two-time correlations [43], while second order gives Kraichnan’s DIA.

Reviews of the Eulerian diagrammatic method can be found in McComb [43], Phythian

[54] and, L’Vov and Procaccia [33]. We refer the reader to these publications. The di-

agrammatic form of the DIA is shown in Fig. 2.1. Note that the heavy lines represent

the integral equations for the generalized propagator and cumulant functions. The Wyld

resummation is only correct to fourth order in the interaction coefficients due to an incor-

rect vertex renormalization, while Lee [30] derives the correct expansion to sixth order for

the hydromagnetic case. L’vov and Proccacia [33] and Phythian [55], among others, have

confirmed that Wyld’s resummation is indeed correct to fourth order but it was Martin,

Siggia and Rose (MSR) [31] who correctly derived the missing higher order vertex terms

using a functional operator formalism. The MSR operator formalism is discussed in the

following section.

2.3 Functional operator methods

The functional operator formalism of Martin, Siggia and Rose (MSR) [31] employs a

Schwinger [22]-Dyson [23] type functional formalism allowing the calculation of the cor-

rect renormalized expansions to all orders. This approach is completely general, making

no assumptions of isotropy or homogeneity3. The MSR approach recasts the statistical

dynamics of a classical random variable, that satisfies a nonlinear equation of motion, in

terms of a set of closed, self-consistent equations in which only the observable covariances

at pairs of points and the exact response to infinitesimal disturbances appear. Consider

an equation of motion for the operator ψ(1)

∂ψ (1)
∂t1

= U1 (1) + U2(12)ψ(2) + U3(123)ψ(2)ψ(3) (2.1)

where 1 ≡ (t1, x1 . . . xd, n1 . . . nm) = (t1,1) represents the arguments of the field, namely

time (t), space (x), and any additional variables and internal indicies (n) and where the
3We note that the DIA also makes no assumptions of isotropy or homogeneity
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F(k)

Figure 2.1: The DIA in diagrammatic form. Kraichnan’s equations for the velocity

correlation U containing correction terms in the generalized propagator G but excluding

vertex renormalization. Note that dotted lines are used to denote the 0th order propagator,

thick lines represent the generalized propagator and •’s are the bare vertices. Finally the

forcing Fim(k) = 〈fi(k)fm(ḱ)〉.
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forces and interactions Ui(1 . . . i) obey

U1(12) ∝ δ(t1 − t2) (2.2)

U3(123) ∝ δ(t1 − t2)δ(t1 − t3) (2.3)

U3(123) = U3(132). (2.4)

Systems which may be described by such an equation of motion are exemplified by the

damped anharmonic oscillator or alternately by a system of particles interacting via 2-body

forces in a magnetic field [56] and of course the Navier-Stokes equation. A more generalized

path integral approach allows the consideration of Vlasov turbulence [32]. As with the

Heisenberg operator formalism of Quantum Mechanics (QM), a probability distribution

for the initial values of ψ must first be specified. In the QM case, the expectation values

of the field operator ψ and its Hermitian conjugate ψ† describe both the covariances in

the system and its response to external perturbations. However in the classical case, there

is no obvious adjoint field, thus in order to determine the response functions Martin et al

introduced an operator ψ̂ in an ad hoc fashion to be interpreted as an excitation operator

causing small perturbations to ψ.

We further note that the MSR formalism, although resembling the Schwinger [21,

22], Dyson [23] method of Quantum Field Theory (QFT), is formally more complicated

to implement. Although both QFT and the classical statistical dynamical case require

the simultaneous calculation of both the response and two-point covariance functions,

the QFT case simplifies due to the linear relation between these two functions via the

fluctuation-dissipation theorem (FDT). In the classical case, we unfortunately do not in

general have such a relation although Kraichnan [57], Leith [58], Bell [59], Deker and

Haake [60], Carnevale et al [61], Herring [62] and McComb et al [63] have considered cases

where the FDT holds. That is, in QM systems, the operators are Hermitian whereas, in

the classical macroscopic case, they are generally not.

The difficulty with turbulence for perturbative approaches is that, in the limit of large

Reynolds number, there is no external expansion parameter which can be used as a basis

for an expansion technique. At large Reynolds number, using the language of quantum

field theory, it is a problem of an infinitely strong coupling constant requiring that the
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expansion must necessarily be in terms of the internal properties of the system, that is,

in terms of the complexity of the interactions 4. The fact that the system is substantially

random suggests that the generalized phase space equation, or Liouville equation should be

a good approach. However Edwards [64] showed that at best only a DIA like approximation

can be reached via this method. Carnevale and Frederiksen [65] further demonstrated that

the three different formalisms of Kraichnan [66], Leslie [20] and Edwards [64] theory arise

due to differing definitions of the renormalized viscosity with Edwards resulting from an

inconsistent identification of the non-stationary energy-spectrum relaxation rate with the

viscosity.

As with the Wyld resummation approach, the MSR method reduces to the DIA at

second order. Martin et al [31] make the further point that Kraichnan’s DIA equations

would be rigorous but for vertex renormalization effects and further noted that the failure

of Wyld’s resummation was the omission of all 3 vertex terms identified by Martin et al

[31] using the operator formalism 5. The salient point here is that the strong turbulence

problem is mathematically identical to the problem of vertex renormalization. We do not

include the associated diagrammatic operator approach but refer the interested reader to

the original paper of Martin et al [31].

2.4 Functional path integral methods

The path integral formalism of Schwinger [21, 22], with the path integral method of Feyn-

man [24, 25, 67], as elucidated by Dyson [23], were first applied to the Navier-Stokes

equation by Janssen [68], DeDominicis [69], and, DeDominicis and Peliti [70]. This ap-

proach was extended by Phythian [55] to consider the case of multiplicative random forces.

However, the approach that is most readily understood, and the one we will follow, is that

of Jensen [32]. This functional approach, closely related to that of Jouvet and Phythian

[71], generalizes the MSR formalism for deterministic forces and local interactions to the
4The case of inviscid unforced dynamics has no flux through the system and is therefore not the same

as large Reynolds number turbulence where we take the lim ν → 0
5Wyld’s resummation only incorporates the Γ

(1)
3 vertex (see section III [31]).
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whole class of first order stochastic differential equations described by

∂

∂t1

ψ(1) = U1(1) + U2(12)ψ(2) + U3(123)ψ(2)ψ(3)

+ . . . + Un(1 . . . n)ψ(2) . . . ψ(n)

+δ(t1 − t0)ψ(1) (2.5)

where 1 ≡ (t1, x1 . . . xd, n1 . . . nm) = (t1,1) is defined as for Eq. 2.1. Jensen was able

to unify the method of mixed averages employed by Deker and Haake [60] with that of

Phythian’s based on the Novikov Theorem [72] as well as extending these approaches to

consider nonlocal random interactions with arbitrary statistics. Incidentally, Jensen fails

to take into account the correct time ordering of the connected Green’s functions and thus

his results fail to incorporate some dissipative terms.

Jensen extended the results of Krommes and Kleva [73] beyond instantaneous local

interactions to consider nonlocal interactions. Specifically Jensen considered electromag-

netic plasma oscillations using the Vlasov theory. Because of its generality, the functional

integral approach is equally applicable to nonlocal causal interactions as it is to local in-

teractions. The functional equations corresponding to Vlasov turbulence can be written in

the same form as expressions for hydrodynamic turbulence. The strength of the functional

integral formalism is that the problem can be treated in generality where the adjoint field

that was introduced in an ad hoc manner in the MSR theory now arises in a natural way

[33].

2.5 Markovian closures

By far the majority of the statistical closure computations in the literature are based on

a Markovian approximation and thus can only predict equal-time covariance data and

approximate time-history effects. In this section we briefly review the development of

the important Markovian closures and the approximations that underpin them, beginning

with the quasi-normal approximation.

The quasi-normal approximation (QN) is attributed to Millionshtchikov [74] and was

independently formulated by Chou [75]. The QN arose out of the observation that approx-

imation of the turbulence velocity field by a Gaussian random function was problematic
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as this would eliminate energy transfer between wavenumbers which is proportional to

third-order moments in Fourier space. Instead the following approach was taken. The QN

approximation, stated simply, is to assume that the fourth-order cumulants are identically

zero without any assumption made on the third-order moments. This allows the system

to be closed by replacing the fourth-order moment by the Gaussian value taken from its

representation in terms of second-order moments. The resulting spectral equations for

isotropic turbulence are due to Proudman and Reid [76] and Tatsumi [77].

Unfortunately, nonrealizability, the appearance of negative energies in the energy con-

taining eddies range, was subsequently discovered by Ogura [47]. Orszag [78, 48] showed

that this anomalous behavior resulted from a build up of the strength of the third-order

moments. The nonrealizability of the quasi-normal closure arises due to the appearance of

only linear viscous effects in the memory cut-off integral. It is a direct consequence of the

neglect of fourth-order cumulants in the evolution equation for the three-point cumulant

Eq. 2.6, which appears in the evolution equation of the triplet correlation function:

(
∂

∂t
+ 2νk)Ck(t) =

∫ t

0
ds exp[−(νk + νp + νq)(t− s)]

×
∑

k+p+q=0

[B2
kpqCp(s)Cq(s) + 2BkpqBpqkCq(s)Ck(s)] (2.6)

for real νk = νk2, Bkpq, k = (kx, ky), k =
√

k2
x + k2

y, and where νk is the linear damping

and Bkpq the mode coupling coefficient. Here Ck(t) is the single time cumulant. Lesieur

[79] points out that it was shown experimentally that these moments saturate and that

the role of the missing fourth-order cumulants is to provide a damping action required to

facilitate saturation.

Orszag proposed that the damping effect of the neglected fourth-order cumulants could

be compensated for in the QN theory by the addition of a linear damping term µkpq defined

to be the characteristic eddy damping rate of the third order moment associated with the

triad (k,p,q). For isotropic turbulence this eddy damping rate can be approximated as

µkpq = µk + µp + µq (2.7)

and thus the exponential term in Eq. 2.6 is replaced by

exp (−[µkpq + νk + νp + νq](t− s)). (2.8)
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Orszag first introduced eddy-damping [78] as a mechanism to remedy nonrealizability

by replacing the viscous damping νk by the total eddy viscosity via the eddy-damping

parameter µk.

Unfortunately this so-called eddy damped quasi-normal (EDQN) theory still does not

guarantee realizability and led to Orszag [78] subsequently developing the eddy-damped

quasi-normal Markovian closure (EDQNM) via a “best Markovian fit” to the DIA that

is consistent with an underlying Langevin representation [49, 80]. The EDQNM is de-

pendent on a choice of an eddy-damping parameter µk which can be “tuned” to match

the phenomenology of the inertial range. This Markovian approximation assumes that

the rate at which the memory integral decays is significantly faster than the time-scale on

which the covariances evolve6. Thus the characteristic triad interaction time is defined as

Θkpq =
∫ t

0
e−[µkpq+νk+νp+νq ](t−s)ds (2.9)

which, if we neglect the time variation of µkpq [81], takes the form

Θkpq =
1− e−[µkpq+νk+νp+νq ]t

µkpq + νk + νp + νq
. (2.10)

That the EDQNM is realizable for the case of homogeneous isotropic turbulence is easily

established via the properties of the interaction coefficients [48]. However, Bowman et

al [49] pointed out that the EDQNM may not be realizable in cases where linear wave

phenomena such as Rossby waves or gravity waves are present.

Bowman et al. [49] noted that realizability is first violated in the EDQNM at the point

where the FDT is applied ie Ck(t, t′) = Rk(t, t′)Ck(t). Instead, an alternate nonstationary

FDT ansatz (Eqs. 2.11 and 2.12) was proposed that allowed the DIA covariance equation

to be Markovianized. Their FDT is

Ck(t, t′) = C
1/2
k (t)rk(t, t′)C∗

k(t′) (2.11)

where

rk(t, t′) = Rk(t, t′) + R∗
k(t, t

′). (2.12)
6This assumption is valid in the inertial range but is questionable in the energy containing range of

wavenumbers where the respective rates are of the same order.
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Here Rk is determined by the standard EDQNM equation for the response function

∂

∂t
Rk(t, t′) =

∑

k+p+q=0

BkpqB∗
pqkθ∗kpq(t)Cq(t)Rk(t, t′) + δ(t− t′) (2.13)

with θkpq the triad interaction time ie the lifetime of the interaction. Using this modified

FDT Bowman et al. derived the realizable Markovian closure (RMC).

The EDQNM may also be regarded as a simplification of the more general test-field

model (TFM) of Kraichnan [82, 83, 84, 85]. Kraichnan’s TFM arose from an investigation

of stochastic model representations that paralleled his pursuit of a Lagrangian-history DIA

[40]. The TFM derives from an observation that for Navier-Stokes flows, the strength

of the interaction of an eddy with the advecting field can be viewed in terms of the

rate at which the solenoidal and compressive components of a “test” velocity field are

coupled to advection (in the absence of pressure). More simply put, the triad interaction

time Θkpq is evaluated by studying the triple correlation of an auxiliary velocity field

transported by the turbulence itself. As incompressibility is lost the test field has to be

decomposed into solenoidal and compressible components to be tractable. Kraichnan then

removed the nonlinear cross terms coupling the solenoidal and compressive parts of the

test field, applied the FDT and Markovianized the statistical equations for the solenoidal

and compressive components. The resulting nonlinear eddy-turnover rate modifies the

triad interaction time, restoring Galilean invariance, but requiring coupled equations for

the evolution of Θkpq. Herring et al [86] found that this modified triad interaction time

reduces to the EDQNM characteristic time, Eq. 2.10, in the inertial range. More recently

Bowman and Krommes [87] applied their modified FDT ansatz to develop the realizable

test-field model (RTFM) applying it to anisotropic drift-wave dynamics.

2.6 Regularized DIA

Kraichnan [38] noted that the failure of the DIA to be consistent with the Kolmogorov

hypothesis arose due to spurious convection effects of small eddies by large eddies. He

suggested that these effects could be removed by zeroing the interaction coefficient (vertex

function) in the two-time cumulant and response function equations if the triad of inter-
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acting wave vectors satisfy the regularizing 7 approximation p < k
α or q < k

α , where α is a

specified cut-off ratio. Thus, in the regularized DIA, the vertex function is given by

Θ(p− k

α
)Θ(q − k

α
)Bkpq (2.14)

where Θ is the Heavyside step function which vanishes for negative argument and is oth-

erwise unity. Only the two-time cumulants and response function are modified as a result

of applying Eq. 2.14 while the single-time cumulants are unmodified from the DIA. This

approach was called regularization by Frederiksen and Davies [28] as it removes the infra-

red or low wavenumber divergence of the DIA response function for continuous closures

[43, 20]. This approach corresponds to a rather simple heuristic vertex renormalization

depending on the parameter α, and is a one parameter theory like the TFM. Frederiksen

and Davies [28] compared the RDIA with ensemble-averaged direct numerical simulations

(DNS) for decaying two-dimensional turbulence at large-scale Reynolds numbers (up to

4000). They considered discrete wavenumber representations relevant to flows on the dou-

bly periodic plane, focusing on the evolved kinetic energy, enstrophy, palinstrophy, and

enstrophy flux spectra as well as skewness evolution. All diagnostics were shown to com-

pare well with DNS for α = 6 with no apparent under-estimation of the closure kinetic

energy in the small-scales. The RDIA discrete closure was also compared to ALHDIA and

SBALHDIA continuous closures [46] with the RDIA comparing more closely to DNS.

2.7 Summary

We have now reviewed the literature and underlying mathematics for the statistical the-

ories of isotropic, homogeneous turbulence via Eulerian and Lagrangian formulations as

well as Markovian theories and more general functional methods. However, these methods

do not take into account topographic effects such as eddy-topography interactions. In the

next chapter we turn our attention to two-dimensional turbulent flow over topography.

Table 2.1 contains an overview of some of the statistical theories discussed.

7This terminology was coined by Frederiksen and Davies [28]
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Table 2.1: Statistical closure theories

Closure theory Comments

DIA • R.H. Kraichnan 1958 [19, 34]

• reduces correctly to perturbation theory

• self-consistent

• contains no arbitrary parameter

• produces two-time cumulants

• exact stochastic model representation and therefore realizable

• non-Markovian

• In 3-D predicts k−3/2 energy inertial range

• In 2-D predicts k−5/2 enstrophy inertial range

• mistreats higher order coherences

TFM • R.H.Kraichnan 1971 [82, 83]

• employs characteristic triad interaction time θkpq

• depends on an arbitrary parameter

• In 3-D predicts k−5/3 energy inertial range law

• computationally significantly faster than the DIA

• only predicts equal time cumulants

• does not accurately incorporate time-history effects

• assumes fluctuation dissipation theorem (FDT)

• realizable for homogeneous turbulence

• can predict negative energies if waves are present

ie not realizable

EDQNM • S. Orszag 1977 [78, 48]

• realizable for homogeneous isotropic turbulence

• may violate realizability in the presence of linear

continued on next page
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continued from previous page

Closure theory Comments

wave phenomena

• not readily generalized ie there exists no general

multiple field formulation

• depends on the choice of an eddy-damping parameter µk

• assumes that the rate at which the memory integral decays

is much faster than the time-scale on which the covariances

evolve ie Markovian

RMC • J.C. Bowman, J.A. Krommes and M. Ottaviani 1993 [49]

• based on the EDQNM closure

• one parameter theory

• nonstationary FDT ansatz is applied to the DIA

RTFM • J.C. Bowman and J.A. Krommes 1997 [87]

• employs a nonstationary form of the FDT

ie amplitude decorrelation to approximate the

decay of infinitesimal disturbances

• predicts non-negative energies

• has an underlying Langevin equation

• Markovian

• one parameter theory

• both the frequency and damping rates are renormalized

RDIA • Kraichnan 1964 [38] and, Frederiksen and Davies 2002 [28]

• heuristic vertex renormalization

• one parameter theory

• yields correct inertial range energy spectra

• has all the advantageous properties of the DIA



Chapter 3

Flow over topography

“Nobody who has gone deeply into the matter will deny that in practice

the world of phenomena uniquely determines the theoretical system . . .”

“I am convinced that we can discover by means of purely mathematical constructions

the concepts and the laws connecting them with each other,

which furnish the key to the understanding of natural phenomena.”

Albert Einstein

The interaction of eddies with topography can have an enormous influence on oceanic or

atmospheric circulations. Holloway (1992) [17] proposed that for ocean circulations, the

topographic force may be separated into two components, namely the gravity wave drag

and a vortex drag. He further argues that gravity wave drag may not be as significant

as vortex drag in the abyssal ocean. This is due to the relatively small size of the free-

stream velocity (characterizing a mean flow above some boundary layer) resulting in only

a narrow band of topographic variance at a relatively high wavenumber contributing to

the gravity wave drag. Thus the vortex drag or eddy-topographic force may be one of the

stronger driving forces for ocean circulations.

Merryfield and Holloway [16] subsequently examined the physical basis for parameter-

izing topographic stress due to unresolved eddies in a quasi-geostrophic barotropic model,

arguing that the effects of the subgrid-scale eddies are to drag the barotropic component of

24
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the flow toward a local statistical equilibrium state with topographically-correlated mean

currents. A second effect examined was the concentration of potential enstrophy dissipa-

tion at small scales, relative to dissipation of energy for viscous flows. Although Holloway’s

[17] subgrid-scale parameterization seemed to ameliorate the problem of the under rep-

resentation of topographic stress in ocean circulation models [16, 88, 89, 90] arising due

to inadequate resolution of the eddies, it nevertheless lacked a rigorous underlying basis.

Holloway recognized that the principle problem with his theory was that the quantities

describing the local barotropic canonical equilibrium state are free parameters, as is the

viscosity, which must be chosen so that the results are reasonable for ocean circulations.

Frederiksen [91] noted that, as the flow is simply relaxing to a local equilibrium state that

has been “tuned” to the observations, perhaps this is the only reason satisfactory results

are obtained.

Frederiksen [91] was subsequently able to put Holloway’s heuristic argument on a solid

theoretical foundation via his quasi-diagonal DIA (QDIA) which generalizes Kraichnan’s

[92] diagonalising approximation for Boussinesq turbulence. In this chapter, we will con-

sider a detailed presentation of the QDIA and introduce a method for approximating

the time-history integrals which result in what we will call the cumulant update QDIA

(CUQDIA). However, we will first briefly review the development of statistical dynamical

closure theory and canonical equilibrium theory with regard to flow over topography on

an f−plane.

3.1 Nonlinear barotropic flow over irregular topography

Prior to the Frederiksen’s quasi-diagonal DIA (QDIA), the only tractable closure theories

for flow over topography were for the case of ensembles of random topography with zero

mean value, with comparable complexity to homogeneous turbulence closures. The first

such closure is due to Herring [93] and was motivated by the observations of Holloway and

Hendershott [7] and Bretherton and Haidvogel [9] that for two-dimensional rotating tur-

bulence above a random topography (with negligible Rossby number) the vorticity tended

rapidly to be strongly anti-correlated to the topography. This occurred in a time signifi-
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cantly less than the eddy circulation time. Bretherton and Haidvogel further showed that

the system was tending to minimize enstrophy for a fixed total energy. This interpretation

has become known as the “minimum enstrophy principle”. Carnevale and Frederiksen [13]

discuss the nonlinear stability and statistics of minimum enstrophy states, and their cor-

respondence to maximum entropy states, for inviscid barotropic flows. This work built

on previous studies [11, 94] of the relationship between canonical equilibrium solutions

(with zero transients) and nonlinearly stable steady-state solutions for barotropic flows

over topography. In the absence of forcing and viscosity (or where forcing and viscosity

are in balance) it is also possible to examine the effects of mean topography on the climate

of barotropic flows using semianalytic methods from statistical mechanics thus enabling

the derivation of canonical equilibrium solutions for both planar [8] and spherical [95]

geometries. Studies of these maximum entropy states have led to greater understanding

of the behavior of forced dissipative flows [15, 96, 97, 98, 99, 100].

Herring [93] compared both DIA and TFM methods to the problem of 2-D rotating

turbulent flow above a random topography. A Gaussianly and homogeneously distributed

topographic height field was considered where the ensemble averaging extended to include

the topographic field (whose mean is zero). The TFM was extended so as to avoid the

assumption that correlation times are equal to response times in anticipation of the strong

locking of large scales to the topography. In removing the Markovian restriction of the

TFM, Herring found that the Green’s function, resulting from equating the triple moment

dephasing rate to the rate of conversion of solenoidal to compressive components of a test

field with pressure terms removed, was insensitive to random large-scale convection. The

only problem was that the new Green’s functions were not Galilean invariant precisely

because the basic topographic interaction is not invariant. Herring also noted that the

extended TFM exhibited a spurious dependence of the decorrelation time Θk on the large-

scale topography. The DIA and extended TFM were found to qualitatively agree with some

significant quantitative disagreement. Random topographies with topographic amplitudes

squared of the form H0
1+k4 and H0k

1+k3 where H0 = 2, 4, 8, 16, 64 were considered. The primary

finding was that the topography induces in stationary turbulence a static component in

the energy spectrum whose magnitude increases with topography. This was demonstrated
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Homogeneous Turbulence

(no topography)

Homogeneous Turbulence

(with topography)

Herring (1977) (extended TFM, DIA)

Holloway (1978) (hybrid TFMDIA)

Inhomogeneous Turbulence

(no topography)

Kraichnan (1972) (IDIA, TFM)

not computable

Inhomogeneous Turbulence

(with topography)

Frederiksen (1999) (QDIA) 

O’Kane and Frederiksen (2002) (CUQDIA)

DIA, QN, EDQNM, TFM, LHDIA, etc

Figure 3.1: An overview of the development of the inhomogeneous closure theory.

for inviscid, thermal equilibrium, by application of the FDT.

Holloway [101] proposed a hybrid theory by taking the turbulence timescale of the

TFM and the topographic timescale of the DIA. Holloway’s TFM-based theory consid-

ers the time evolution of the energy or vorticity variance spectrum and of the vorticity-

topography correlation spectrum described by a pair of coupled integral equations in terms

of the single-time second moments 〈ζk(t)ζ−k(t)〉 and <(〈ζkh−k)〉. This approach can be

viewed as an ad hoc abridgement of Herring’s extended-TFM theory. Holloway described

the resulting integral equations as “corresponding to the statistical evolution of a stochas-

tic variable governed by a modified Langevin equation in which topography provides a

steady driving force”. It should be noted that the Markov assumption again requires the

estimation of a characteristic triad interaction θkpq, a scalar of proportionality.

The work described above led to great insight into the effect of random topography

in determining spectra of transient vorticity variance, however in order to examine the

effect of mean topography on the structures of the mean flows a closure theory based

on single realization topography must be implemented. The incorporation of topography
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with a nonzero mean would also enable insight into the problem of parameterizing the

subgrid-scale effects of the interaction between the turbulent eddies and the mean topog-

raphy, however, an inhomogeneous closure is required. The most important investigations

of inhomogeneous closures, previous to Frederiksen [91], are due to Kraichnan and are

contained in two important papers where both diagonal [92] and nondiagonal [85] cases

are examined. In Kraichnan’s 1972 paper [85] a generalized version of Orszag’s EDQNM

was compared to the nonstationary inhomogeneous form of the DIA with a mean shearing

velocity. In the discussion it was demonstrated that the general non-diagonal form of

the inhomogeneous DIA was not computationally tractable and that some form of diago-

nalization was required. These issues motivated Frederiksen to formulate his QDIA [91].

Importantly in an earlier version of the quasi-diagonal approximation Kraichnan found

that the resulting equations were not realizable for the case with thermal convection how-

ever, the QDIA of Frederiksen is realizable on the diagonal elements with the question of

whether the off-diagonal elements are realizable remaining open. The salient features of

the relevant theories discussed above are presented in table 3.1.

Table 3.1: Closure theories for geophysical flow

Closure theory Comments

extended TFM, DIA • Herring 1977 [93]

• Random topography with zero mean

• homogeneous theory

• non-Markovian

• good qualitative agreement with some

quantitative differences between TFM and DIA

• not Galilean invariant

hybrid TFM-DIA • Holloway 1978 [101]

• Random topography with zero mean

• homogeneous theory

continued on next page
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continued from previous page

Closure theory Comments

• Markovian

• much simpler theory than Herring’s extended TFM

• close agreement with the extended TFM

• employs a characteristic triad interaction time θkpq

QDIA, CUQDIA • J.S. Frederiksen 1999 (QDIA) [91],

T.J. O’Kane and J.S. Frederiksen 2002 (CUQDIA) [102]

• incorporates topography with non-zero mean

• quasi-diagonal approximation

• generalization of Kraichnan’s approach to Boussinesq turbulence [92]

• very complex set of integro-differential equations

with large numbers of interaction coefficients

• requires formal restart procedure to render

computationally tractable

IDIA • R.H. Kraichnan 1972 [85]

• inhomogeneous theory

• no assumptions of quasi-diagonality

• computationally intractable

3.2 2-D flow on an f-plane

The evolution equation for two dimensional flow over a fixed topography on a periodic

f -plane (0 ≤ x ≤ 2π), (0 ≤ y ≤ 2π) is simply the nondimensional barotropic vorticity

equation which takes the form

∂ζ

∂t
= −J(ψ, ζ + h) + ν0O2ζ + f0 (3.1)

where f0 is the bare forcing and ν0 the bare viscosity. The Jacobian is defined as

J(ψ, ζ) =
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
. (3.2)
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The vorticity is the Laplacian of the streamfunction

ζ = 52ψ. (3.3)

We make the assumption that the variation in the topography, 4H, is small, and define

h to be the spatial variation of the height of the topography relative to the total depth,

D, in units of the Coriolis parameter f .

We may write Eq. 3.1 in spectral form via

ζ(x, t) =
∑

k

ζk(t) exp ik · x (3.4)

where

ζk(t) =
1

(2π)2

∫ 2π

0
d2x ζ(x, t) exp−ik · x (3.5)

and x = (x, y),k = (kx, ky). The spectral vorticity equation with a more general dissipa-

tion where ν0 → ν0(k) is

(
∂

∂t
+ ν0(k)k2)ζk(t) =

∑
p

∑
q

δ(k + p + q)

× [K(k,p,q)ζ−pζ−q + A(k,p,q)ζ−ph−q] + f0
k (3.6)

where k = (k2
x + k2

y)
1/2 and ζ−k is conjugate to ζk.

The interaction coefficients, derived in Appendix II, are governed by the following

relationships

A(k,p,q) = −(pxqy − pyqx)/p2, (3.7)

K(k,p,q) =
1
2

[A(k,p,q) + A(k,q,p)]

=
1
2
(pxqy − pyqx)(p2 − q2)/p2q2 (3.8)

where

δ(k + p + q) =





1 if k+p+q=0,

0 otherwise
(3.9)

and

K(k,p,q) + K(p,q,k) + K(q,k,p) = 0. (3.10)
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For an ensemble of flows satisfying Eq. 3.6, we may express the vorticity ζk in terms

of the ensemble mean 〈ζk〉 and the deviation from the ensemble mean ζ̂k

ζk = 〈ζk〉+ ζ̂k. (3.11)

Hence we may write equations for the ensemble mean

(
∂

∂t
+ ν0(k)k2)〈ζk〉 =

∑
p

∑
q

δ(k + p + q)K(k,p,q) [〈ζ−p〉〈ζ−q〉+ C−p−q(t, t)]

+
∑
p

∑
q

δ(k + p + q)A(k,p,q)〈ζ−p〉h−q + 〈f0
k〉 (3.12)

and the deviation

(
∂

∂t
+ ν0(k)k2)ζ̂k =

∑
p

∑
q

δ(k + p + q)K(k,p,q)
[
〈ζ−p〉ζ̂−q + ζ̂−p〈ζ−q〉+ ζ̂−pζ̂−q − C−p−q(t, t)

]

+
∑
p

∑
q

δ(k + p + q)A(k,p,q)ζ̂−ph−q + f̂0
k (3.13)

with f0
k = 〈f0

k〉+ f̂0
k and the two-point cumulant in Eqs. 3.12 and 3.13 determined by

C−p−q(t, s) = 〈ζ̂−p(t)ζ̂−q(s)〉 (3.14)

3.3 Quasi-diagonal DIA closure equations

The derivation of the closure equations (without restart terms) can be found in Frederiksen

[91] and we only present an outline here. In order to obtain the closure equations, the

vorticity is expanded in a perturbation series to find the zeroth order and first order terms.

We write the solution to the first order equation for ζ̂
(1)
k in terms of the response or Green’s

function R
(0)
k (t, s), and express the two-time cumulant to first order.

The initial ζ̂k(t0) are assumed to have a multivariate Gaussian distribution1, implying

〈ζ̂k(t0)ζ̂−l(t0)〉 = δkl〈ζ̂k(t0)ζ̂−k(t0)〉. (3.15)
1The important point is that the QDIA is diagonal to first order in contrast to the nondiagonal IDIA

[85].
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We now apply a quasi-diagonal approximation such that

〈ζ̂0
k(t)ζ̂0

−l(t́)〉 = δkl〈ζ̂0
k(t)ζ̂0

−k(t́)〉. (3.16)

Thus, to zeroth order, Ck−l(t, t́) is diagonal with the nondiagonal contribution contained

in the first-order terms. We may now determine C1
k−l(t, t́) after which we renormalize by

setting the expansion parameter λ → 1, and setting R0
kk → Rkk, C0

k−k → Ck−k, and

C1
k−l → Ck−l.

After renormalization [91] we find that we may write the off-diagonal two-point cumu-

lant in terms of diagonal cumulant and response functions

Ck−l(t, t́) =
∫ t

t0

ds Rkk(t, s)Cl−l(s, t́)

×[A(k,−l, l− k)h(k−l) + 2K(k,−l, l− k)〈ζ(k−l)(s)〉]

+
∫ t́

t0

ds R−l−l(t́, s)Ck−k(t, s)

×[A(−l,k, l− k)h(k−l) + 2K(−l,k, l− k)〈ζ(k−l)(s)〉]. (3.17)

In a similar way, the off-diagonal response function

Rkl(t, t́) = 〈∂ζ̂k(t)

∂f̂l(t́)
〉 (3.18)

can also be represented in the form

Rkl(t, t́) =
∫ t

t́
ds Rkk(t, s)Rll(s, t́)

×[A(k,−l, l− k)h(k−l) + 2K(k,−l, l− k)〈ζ(k−l)(s)〉]. (3.19)

The end result of this procedure is the determination of the two-point cumulant and

the diagonal two-time and single-time cumulants. Hence we may write

(
∂

∂t
+ ν0(k)k2)〈ζk〉 =

∑
p

∑
q

δ(k + p + q)K(k,p,q)〈ζ−p(t)〉〈ζ−q(t)〉+

∑
p

∑
q

δ(k + p + q)A(k,p,q)〈ζ−p(t)〉h−q

−
∫ t

t0

ds ηk(t, s)〈ζk(s)〉+ hk

∫ t

t0

ds χk(t, s) + 〈f0
k(t)〉 (3.20)
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where

ηk(t, s) = −4
∑
p

∑
q

δ(k + p + q)K(k,p,q)

×K(−p,−q,−k)R−p(t, s)C−q(t, s) (3.21)

and

χk(t, s) = 2
∑
p

∑
q

δ(k + p + q)K(k,p,q)

×A(−p,−q,−k)R−p(t, s)C−q(t, s). (3.22)

Here we have employed the abbreviation

Rk(t, t′) ≡ Rkk(t, t′) (3.23)

Ck(t, t′) ≡ Ck−k(t, t′). (3.24)

The two-point cumulant takes the form

∑
p

∑
q

δ(k + p + q)K(k,p,q)C−p−q(t, t)

= −
∫ t

t0

ds ηk(t, s)〈ζk(s)〉+ hk

∫ t

t0

ds χk(t, s) (3.25)

with the two-time cumulant given as

(
∂

∂t
+ ν0(k)k2)Ck(t, t́)

=
∑
p

∑
q

δ(k + p + q)A(k,p,q)C−p−k(t, t́)h−q

+
∑
p

∑
q

δ(k + p + q)K(k,p,q)
[
2〈ζ−q(t)〉C−p−k(t, t́)

+ 〈ζ̂−q(t)ζ̂−p(t)ζ̂−k(t́)〉
]

+
∫ t́

t0

ds F 0
k(t, s)R−k(t́, s). (3.26)

The non-diagonal elements of the two-time cumulant expressed in terms of the diagonal

elements in the quasi-diagonal approximation gives

(
∂

∂t
+ ν0(k)k2)Ck(t, t́)

=
∫ t́

t0

ds
[
Sk(t, s) + Pk(t, s) + F 0

k(t, s)
]
R−k(t́, s)

−
∫ t

t0

ds [ηk(t, s) + πk(t, s)]C−k(t́, s) (3.27)
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where

F 0
k(t, s) = 〈f̂0

k(t)f̂0∗
k (s)〉, (3.28)

Sk(t, s) = 2
∑
p

∑
q

δ(k + p + q)K(k,p,q)

×K(−k,−p,−q)C−p(t, s)C−q(t, s), (3.29)

Pk(t, s) =
∑
p

∑
q

δ(k + p + q)C−p(t, s)

× [2K(k,p,q)〈ζ−q(t)〉+ A(k,p,q)h−q]

× [2K(−k,−p,−q)〈ζq(s)〉+ A(−k,−p,−q)hq] , (3.30)

and

πk(t, s) = −
∑
p

∑
q

δ(k + p + q)R−p(t, s)

× [2K(k,p,q)〈ζ−q(t)〉+ A(k,p,q)h−q]

× [2K(−p,−k,−q)〈ζq(s)〉+ A(−p,−k,−q)hq] . (3.31)

The equation for the response function takes a similar form.

(
∂

∂t
+ ν0(k)k2)Rk(t, t́)

= −
∫ t

t́
ds [ηk(t, s) + πk(t, s)]Rk(s, t́) (3.32)

with Rk(t, t) = 1.

Finally the single-time cumulant takes the form:

(
∂

∂t
+ 2ν0(k)k2)Ck(t, t)

= 2Re

∫ t

t0

ds
[
Sk(t, s) + Pk(t, s) + F 0

k(t, s)
]
R−k(t, s)

−2Re

∫ t

t0

ds [ηk(t, s) + πk(t, s)]C−k(t, s) (3.33)
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3.4 Non-Gaussian cumulants and cumulant updates

The QDIA, like other non-Markovian closure theories, may be computationally expensive

for long time integrations because of the time-history integrals which need to be evaluated

between the initial and final times. The cumulant update restart procedure consists of

integrating the QDIA forward for a time, calculating the two- and three-point terms at this

time and then using these in the new initial conditions for further integration. In principle,

knowledge of all higher order cumulants should be available, but to be consistent with

the approximations of the QDIA, only the two- and three-point cumulants are needed.

The crucial information contained in the three-point term is that of the non-Gaussian

covariances accumulated in the time-history integrals.

The three-point cumulant is effectively the homogeneous component of the closure

equations while the two-point terms arise due to the inhomogeneity produced by the

presence of topography and mean field. If we follow the argument of Rose [103] and suppose

that the initial two- and three-point cumulants are non-zero then we are confronted with

the in principle non-vanishing of other higher order cumulants (≥ 3). These higher order

cumulants arise due to the nonlinearity in the expansion parameter λ. To see this, let us

consider the inhomogeneous QDIA two-time cumulant equation

(
∂

∂t
+ ν0(k)k2)Ck(t, t́) =

∫ t́

t0

ds
[
Sk(t, s) + Pk(t, s) + F 0

k(t, s)
]
R−k(t́, s)

−
∫ t

t0

ds [ηk(t, s) + πk(t, s)]C−k(t́, s). (3.34)

When ζk(0) is Gaussian, we may write the nonlinear noise Sk, nonlinear damping ηk and

inhomogeneous contributions, Pk and πk as a power series2 in λ ie

S = αnλn, η = βnλn P = γnλn π = σnλn n = 2, 3, . . . , (3.35)

where αn, βn, γn and σn consist of finite products of R and C. It is the dependence of

these terms on the exact R and C that constitutes a propagator renormalized expansion3.
2As the P and π terms are composed of ηp, ηq, χp and χq terms, and the evolution equation for 〈ζk〉

consists of ηk, χk components then in essence only the S, η and χ terms involve the power series.
3The DIA is truncated at O(λ2).
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We can now clearly see that for non-vanishing two- and three-point cumulants Eqs.

3.35 convert to multiple power series in λ and all non-vanishing initial cumulants. Hence

in order to be consistent with the approximations of the DIA we need only consider the

two- and three-point cumulants. In the following two sections we will explicitly derive the

restart terms.

3.4.1 Derivation of the three-point restart terms

The three-point restart terms are of the same form as found in Rose [103] and discussed

in detail by Frederiksen, Davies and Bell [104]. A short derivation of these terms has been

included here for completeness. Consider the barotropic vorticity equation in the following

form

∂ζi

∂t
= Dijζj +

1
2
λijkζjζk + f0

i (3.36)

where Dij is a dissipation operator, f0
i the bare forcing and where the coefficient λ de-

termines the nonlinear interactions. For f0
i and ζ(t0) Gaussian we may now write the

statistics of Eq. 3.36 as

(δij
∂

∂t
−Dij)Rjk(t, t́) = −

∫ t

t́
ds η̃ij(t, s)Rjk(s, t́) (3.37)

where Rjk(t, t) = δjk with δjk the Kronecker delta function, and

(δij
∂

∂t
−Dij)Cjk(t, t́) = −

∫ t

t0

ds η̃ij(t, s)Cjk(t́, s)

+
∫ t́

t0

ds [F 0
ij(t, s) + S̃ij(t, s)]Rkj(t́, s) (3.38)

with Cjk(t0, t0) specified. The cumulant and response functions are defined as Cij(t, t́) =

〈ζ̂i(t)ζ̂j(t́〉 and Rij = 〈 ∂ζ̂i(t)

∂f̂j(t́)
〉. The tilde over the η and S terms denotes these as exact

quantities. The DIA truncates the expansion in η̃ and S̃ at O(λ2) such that from Eq. 3.37

we have

(δij
∂

∂t
−Dij)Rjk(t, t́) =

∫ t

t́
ds [λiklRkm(t, s)Cln(t, s)λmnj ]Rjk(s, t́) (3.39)
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and from Eq. 3.38

(δij
∂

∂t
−Dij)Cjk(t, t́) =

∫ t

t0

ds [λiklRkm(t, s)Cln(t, s)λmnj ]Cjk(t́, s)

+
∫ t́

t0

ds [
1
2
λiklCkm(t0, t0)Cln(t0, t0)λjmn +

1
2
λiklCkm(t, s)Cln(t, s)λjmn]Rkj(t́, s). (3.40)

For clarity we use the following notation

− ηDIA
jk (t, t́) = λjlmRln(t, t́)Cmo(t, t́))λnok (3.41)

SDIA
jk (t, t́) =

1
2
λjlmCln(t, t́)Cmo(t, t́)λkno. (3.42)

The three-point and higher cumulants arise due to the nonlinearity λ; thus, in order to be

consistent with the DIA approximation we need only the three-point term as it has order

O(λ). Thus to O(λ2)

ηjk = ηDIA
jk (3.43)

Sjk(t, t́) = SDIA
jk (t, t́) +

1
2
λjlmRln(t, t0)Rmo(t, t0)C3

nok(t0, t0, t0)δ(t́)

+
1
2
δ(t)C3

jlm(t0, t0, t0)Rln(t́, t0)Rmo(t́, t0)λkno (3.44)

with the last term in Eq. 3.44 making no contribution by causality and where

C3
ijk(t0, t0, t0) = 〈ζ̂i(t0)ζ̂j(t0)ζ̂k(t0)〉. (3.45)

The final result is that

(δij
∂

∂t
−Dij)Cjk(t, t́) = −

∫ t

t0

ds ηDIA
ij (t, s)Cjk(s, t́)

+
∫ t́

t0

ds [F 0
ij(t, s) + SDIA

ij (t, s)]Rkj(t́, s)

+
1
2
λilmRln(t, t0)Rmo(t, t0)Rjk(t́, t0)C3

noj(t0, t0, t0) (3.46)

where for t = t́ = T

C3
klm(T, T, T ) = Rkn(T, t0)Rlo(T, t0)Rmp(T, t0)C3

nop(t0, t0, t0)

+
∫ T

t0

ds Rkn(T, s)Clo(T, s)Cmp(T, s)λnop

+
∫ T

t0

ds Ckn(T, s)Rlo(T, s)Cmp(T, s)λopn

+
∫ T

t0

ds Ckn(T, s)Clo(T, s)Rmp(T, s)λpno. (3.47)
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In the notation of the preceding section Eqs. 3.46 and 3.47 become

(
∂

∂t
+ ν0(k)k2)Ck(t, t́) =

∫ t́

t0

ds [F 0
k (t, s) + Sk(t, s)]Rk(t́, s)−

∫ t

t0

ds ηk(t, s)Ck(t́, s)

+
∑
p

∑
q

δ(k + p + q)K(k,p,q)K̃3
−q,−p,−k(t0, t0, t0)Rp(t, t0)Rq(t, t0)Rk(t́, t0)(3.48)

and

K̃3
−q,−p,−k(T, T, T ) = K3Dyn

−q,−p,−k(T, T, T )

+K̃3
−q,−p,−k(t0, t0, t0)Rp(T, t0)Rq(T, t0)Rk(T, t0) (3.49)

with

∑
p

∑
q

δ(k + p + q)K(k,p,q)K3Dyn
−q,−p,−k(t, t, t́)

= −
∫ t

t0

ds ηDIA
k (t, s)Ck(t́, s) +

∫ t́

t0

ds SDIA
k (t, s)Rk(t́, s) (3.50)

3.4.2 Perturbative derivation of two-point restart terms

Let us now derive in detail the two-point restart terms using a perturbative approach.

Suppose we expand ζ̂k in a perturbation series

ζ̂k(t) = ζ̂0
k(t) + λζ̂1

k(t) + . . . (3.51)

To zero order we have from Eq. 3.6

(
∂

∂t
+ ν0(k)k2)ζ̂0

k(t) = f̂0
k(t) + δ(t− t0)ζ̂0

k(t0) (3.52)

with solution

ζ̂0
k(t) = Rk(t, t0)ζ̂0

k(t0) +
∫ t

t0

dsR0
k(t, s)f̂0

k(s). (3.53)

To order λ we have

(
∂

∂t
+ ν0(k)k2)ζ̂1

k(t) =
∑
p

∑
q

δ(k + p + q)A(k,p,q)ζ̂0
−ph−q

+
∑
p

∑
q

δ(k + p + q)K(k,p,q)

×[〈ζ−p〉ζ̂0
−q + 〈ζ−q〉ζ̂0

−p + ζ̂0
−pζ̂0

−q − 〈ζ̂0
−pζ̂0

−q〉] + δ(t− t0)ζ̂1
k(t0) (3.54)
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Thus

ζ̂1
k(t) = ζ̂

1(Dyn)
k (t) + R0

k(t, t0)ζ̂1
k(t0) (3.55)

where

ζ̂
1(Dyn)
k (t) =

∫ t

t0

dsR0
k(t, s)

[∑
p

∑
q

δ(k + p + q)A(k,p,q)ζ̂0
−p(s)h−q

+
∑
p

∑
q

δ(k + p + q)K(k,p,q)

×[〈ζ−p(s)〉ζ̂0
−q(s) + 〈ζ−q(s)〉ζ̂0

−p(s) + ζ̂0
−p(s)ζ̂0

−q(s)− 〈ζ̂0
−p(s)ζ̂0

−q(s)〉]
]

(3.56)

Finally

C1
k−l(t, t́) = 〈ζ̂1(Dyn)

k (t)ζ̂0
−l(t́)〉+ 〈ζ̂0

k(t)ζ̂1(Dyn)
−l (t́)〉

+R0
k(t, t0)〈ζ̂1

k(t0)ζ̂0
−l(t́)〉+ R0

−l(t́, t0)〈ζ̂0
k(t)ζ̂1

−l(t0)〉

= 〈ζ̂1(Dyn)
k (t)ζ̂0

−l(t́)〉+ 〈ζ̂0
k(t)ζ̂1(Dyn)

−l (t́)〉

+R0
k(t, t0)R0

−l(t́, t0)〈ζ̂1
k(t0)ζ̂0

−l(t0)〉

+R0
k(t, t0)R0

−l(t́, t0)〈ζ̂0
k(t0)ζ̂1

−l(t0)〉

= 〈ζ̂1(Dyn)
k (t)ζ̂0

−l(t́)〉+ 〈ζ̂0
k(t)ζ̂1(Dyn)

−l (t́)〉

+R0
k(t, t0)R0

−l(t́, t0)Ck−l(t0, t0). (3.57)

Thus, after renormalizing Eq. 3.57 we have for t ≥ t́ ≥ T

Ck−l(t, t́) =
∫ t

T
ds Rk(t, s)C−l(t́, s)[A(k,−l, l− k)hk−l

+2K(k,−l, l− k)〈ζk−l(s)〉]

+
∫ t́

T
ds Ck(t, s)R−l(t́, s)[A(−l,k, l− k)hk−l

2K(−l,k, l− k)〈ζk−l(s)〉]

+Rk(t, T )R−l(t́, T )Ck−l(T, T ). (3.58)

We note that these terms have an equivalent derivation via the fluctuation-dissipation

theorem which has been included in appendix III.
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3.5 Cumulant update quasi-diagonal DIA closure equations

Incorporating the results of the preceding sections we may write the full set of cumulant

update quasi-diagonal DIA closure equations (CUQDIA). Hence we may write equations

for the mean-field

(
∂

∂t
+ ν0(k)k2)〈ζk〉 =

∑
p

∑
q

δ(k + p + q)

×[K(k,p,q)〈ζ−p(t)〉〈ζ−q(t)〉+ A(k,p,q)〈ζ−p(t)〉h−q

+K(k,p,q)K̃(2)
−p,−q(0, 0)R−p(t, 0)R−q(t, 0)]

−
∫ t

t0

ds ηk(t, s)〈ζk(s)〉+ hk

∫ t

t0

ds χk(t, s) + 〈f0
k(t)〉. (3.59)

We find that the two-time cumulant satisfies

(
∂

∂t
+ ν0(k)k2)Ck(t, t́)

=
∫ t́

t0

ds
[
Sk(t, s) + Pk(t, s) + F 0

k(t, s)
]
R−k(t́, s)

−
∫ t

t0

ds [ηk(t, s) + πk(t, s)]C−k(t́, s)

+
∑
p

∑
q

δ(k + p + q)

×
[
K(k,p,q)K̃(3)

−q,−p,−k(0, 0, 0)R−q(t, 0)R−p(t, 0)R−k(t́, 0)

+ [2K(k,p,q)〈ζ−q(t)〉+ A(k,p,q)h−q]

×K̃
(2)
−p,−k(0, 0)R−p(t, 0)R−k(t́, 0)

]
. (3.60)

Here the bare noise is assumed to be white:

F 0
k(t, s) = 〈f̂0

k(t)f̂0∗
k (s)〉 = F 0

k(t)δ(t− s) (3.61)

where δ is the Dirac delta function. The restart terms are calculated at time t = t́ = T

through the relationships

K̃
(2)
−p,−k(T, T ) = K

(2)Dyn
−p,−k (T, T )

+K̃
(2)
−p,−k(0, 0)R−p(T, 0)R−k(T, 0), (3.62)

K̃
(3)
−q,−p,−k(T, T, T ) = K

(3)Dyn
−q,−p,−k(T, T, T )

+K̃
(3)
−q,−p,−k(0, 0, 0)R−q(T, 0)R−p(T, 0)R−k(T, 0) (3.63)
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where

K
(2)Dyn
−p,−k (t, t́) =

∫ t

t0

ds R−p(t, s)C−k(t́, s)

× [A(−p,−k,−q)hq + 2K(−p,−k,−q)〈ζq(s)〉]

+
∫ t́

t0

ds R−k(t́, s)C−p(t, s)

× [A(−k,−p,−q)hq + 2K(−k,−p,−q)〈ζq(s)〉] , (3.64)

∑
p

∑
q

δ(k + p + q)K(k,p,q)K(2)Dyn
−p,−q (t, t)

= −
∫ t

t0

ds ηk(t, s)〈ζk(s)〉+ hk

∫ t

t0

ds χk(t, s). (3.65)

and
∑
p

∑
q

δ(k + p + q)K(k,p,q)K(3)Dyn
−q,−p,−k(t, t, t́)

=
∫ t́

t0

ds Sk(t, s)R−k(t́, s)−
∫ t

t0

ds ηk(t, s)C−k(t́, s). (3.66)

The single time cumulant is obtained from the fact that

∂Ck(t, t)
∂t

= lim
t́→t

(
∂Ck(t, t́)

∂t
+

∂Ck(t, t́)
∂t́

)
(3.67)

and Ck(t, t́) = Ck(t́, t). Thus the single-time cumulant satisfies the equation

(
∂

∂t
+ 2ν0(k)k2)Ck(t, t)

= 2Re

∫ t

t0

ds
[
Sk(t, s) + Pk(t, s) + F 0

k(t, s)
]
R−k(t, s)

−2Re

∫ t

t0

ds [ηk(t, s) + πk(t, s)]C−k(t, s)

+2Re
∑
p

∑
q

δ(k + p + q)

×
[
K(k,p,q)K̃(3)

−q,−p,−k(0, 0, 0)R−q(t, 0)R−p(t, 0)R−k(t, 0)

+ [2K(k,p,q)〈ζ−q(t)〉+ A(k,p,q)h−q]

×K̃
(2)
−p,−k(0, 0)R−p(t, 0)R−k(t, 0)

]
(3.68)

The equation for the response function takes the form:

(
∂

∂t
+ ν0(k)k2)Rk(t, t́)

= −
∫ t

t́
ds [ηk(t, s) + πk(t, s)]Rk(s, t́) (3.69)
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with Rk(t, t) = 1 and where for t < t́ we have Rk(t, t́) = 0. Thus the inhomogeneous

cumulant update QDIA equations require that we integrate up to some time t = t́ = T and

calculate the two- and three-point cumulants through the relations Eqs. 3.62 to 3.66. The

procedure may now be performed as often as required by simply replacing K̃2
−p,−k(0, 0),

K̃2−p,−q(0, 0) and K̃3
−q,−p,−k(0, 0, 0) with the quantities K̃2

−p,−k(T, T ), K̃2−p,−q(T, T ) and

K̃3
−q,−p,−k(T, T, T ).

3.5.1 Integral conservation laws

As we have assumed that the variation in the topography, 4H, is small, the potential

vorticity may be written as

q = 52ψ + h (3.70)

The evolution equation, which again describes the flow over a fixed topography on an

f -plane in terms of the enstrophy, is simply

dq

dt
+ J(ψ, q) = 0 (3.71)

with J the Jacobian. The evolution equation represents the advection of potential vorticity

which implies the conservation of all integrals of the form
∫ ∫

F (q) dx dy (3.72)

with F (q) any arbitrary function of q. This results holds for periodic boundary conditions

by Eq. 3.71 and the periodicity of q.

The most important integral invariants are those that are quadratic in ψ [105, 9, 13]

namely i) the total kinetic energy

E =
1
2

∫ ∫
(5ψ)2 dx dy

=
1
2

∑

k

k2〈|ψk|2〉

=
1
2

∑

k

(Ck(t, t́)/k2 + 〈ζk(t)〉〈ζ∗k(t́)〉/k2) (3.73)
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and ii) the potential enstrophy

Q =
1
2

∫ ∫
(ζ + h)2 dx dy

=
1
2

∑

k

〈|ζk + hk|2〉

= 〈|ζk − 〈ζk〉|2〉+ |〈ζk〉+ hk|2

=
1
2

∑

k

[
(〈ζk(t)〉+ hk)(〈ζk(t́)〉+ hk)∗

+Ck(t, t́)
]
. (3.74)

The existence of these quadratic invariants implies stability for the stationary state

µψ = q (3.75)

as demonstrated by Arnold [106], with µ a constant of proportionality.

3.6 Summary

Having briefly reviewed the historical development of the theories that precede Fred-

eriksen’s QDIA [91] we proceeded to formulate the cumulant update QDIA deriving the

three-point restart terms in an analogous manner to Rose [103] and the two-point terms via

both a perturbative method and a method based on the fluctuation-dissipation theorem.

In the next chapter we will develop numerical and computational methods to implement

the QDIA, CUQDIA and also a model for the direct numerical simulation of the barotropic

vorticity equation.



Chapter 4

Computational methodology

In this chapter, the numerical methodology developed to implement the CUQDIA equa-

tions of the preceding chapter is presented. This work represents a generalization of the

homogeneous codes developed by Frederiksen and Davies [107, 108, 28] and was developed

using the homogeneous closure code (without topography) of Frederiksen, Davies and Bell

[104] as a starting point. As well the DNS code for flow over topography is an extension

of DNS code (without topography) developed by the same authors. Initially the basic

structure of the code is outlined. Section 4.2 deals with the generation of the circularly

truncated wave number space and the required interaction coefficients and their selection

rules. The DNS, closures and mean-field calculations use a predictor-corrector scheme

which is derived in section 4.3. This is followed by a brief discussion about estimating

errors (section 4.3.1). In the CUQDIA, the subsequent restarts in the closure and mean-

field equations use non-Gaussian initial conditions, represented by three-point terms, and

as well restarts of two-point terms (involving the topographic forcing and mean-fields).

The time-history integrals in the closure and mean-field equations are discretized via the

trapezoidal rule. The implementation of the restart procedure and method of evaluation

of the integrals is described in section 4.4.

As shown in the previous chapter, the CUQDIA represents a large and complex sys-

tem of integro-differential equations that pose a significant computational challenge. As

an initial test of the numerical model, diagnostic tests, based primarily on analysis at

canonical equilibrium are discussed in section 4.5. In section 4.6, the model used in the

44
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direct numerical simulation of the barotropic vorticity equation (Eq. 3.6) in discrete space

is presented. The use of closure calculations formulated for continuous wavenumbers [38]

is generally employed to enable high wavenumber calculations via logarithmic discretiza-

tion of wavenumber space. In the present discussion discrete closures are used in order

to avoid any discrepancies arising from the use of differing wavenumber formulations and

discretizations and to incorporate the mean-field equation which is naturally represented

in discrete wavenumber space. As noted by Frederiksen et al [104], the use of discrete

spectra in closures allows not only the incorporation of all interactions, both local and

nonlocal, but also enables the detection of systematic errors in the closures. There is as

a consequence no ambiguity due to different formulations involving discrete or continuous

spectra. Finally, in section 4.7, the conversion routine for transforming the results from

spectral to physical space is discussed.

4.1 Structure of the CUQDIA code

In this section the structure of the main program di2ens2.f, which is used to calculate

the CUQDIA closure equations, is discussed. Throughout, the following discussion Fig.

4.1, in which a flow diagram of the code is depicted, will be refered to. The initial

sections of the code simply read in the required parameters, logical statements, forcing

and viscosity constants etc, which are then used to generate the initial fields. These are in

turn sent to subroutines eqout1.f, ensedgns.f, enseqout1.f, dgns0.f, etc where

the diagnostic quantities, viz., energy, enstrophy, streamfunction etc, are calculated. The

most important of the input parameters is the information about the circularly truncated

wavenumber space that are set up by the planar1.f program.

Once this is completed, the outer do loop is entered into, which runs through the

specified number of restarts followed by the inner do loop which runs through the time

steps. The transient field Ck(t, t́) predictor step is now implemented. The integral terms

in Eq. 3.27 and Eq. 3.20 are calculated in subroutine deriv.f. If any restart terms are

present these are added on at this point. Next, the non-integral terms on the righthand side

of Eq. 3.20 are calculated in the subroutine enserhs.f followed by the implementation of
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initial Ck, forcing, and viscosity

read parameters

calculate initial diagnostics

ie until maximun number of restarts

do until jt = jtmax

ie until t = max number of steps

E(k), Q(k), (x,t)

planar1.f

param0.inc

di2ens2.dat.02

data files

init.f

eqout1.f, ensedgns.f, enseqout1.f, dgns0.f, etc

enserhs.f ζ<deriv.f 

deriv.f

ζ<

Calculate diagnostics 

E(k), Q(k), ψ (x,t) eqout1.f, ensedgns.f, enseqout1.f, dgns0.f, etc

add on restart terms if jtmax > 1

interaction coefficients

enserhs.f

planar2.f

if rstrt .eq. true and it=itime then calculate the restart term

if jt = jtmax then print diagnostic data

and it = 2

do it = 2, itime

read kx k k

 >
k

ζ<
k

h    

> predictor step
k

C    predictor step
k

two-time  C    corrector step
k

   > corrector step
k

y z

ψ

single-time  C    corrector step
k

return

program di2ens2.f

Figure 4.1: Flow diagram of the structure of the main program di2ens2.f which imple-

ments the CUQDIA closure equations.
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the mean-field predictor step. A similar procedure is followed at the corrector step. The

next step is to decide if a restart is to take place at t = t́ = T and if so the restart terms

are calculated in deriv.f. Finally the diagnostics are calculated and printed.

4.2 Discrete k-space interaction coefficients

The interaction coefficients and their wavenumber triad selectors are generated on the

circularly truncated half-space in the subroutine planar1.f by first running over the

righthand plane and then backwards over the lefthand plane. The wave number triad

selectors mslct and lslct are then generated with the appropriate skip out implemented,

for example when pxqy = pyqx, in order to minimize the number of interaction coeffi-

cients required. These minimized triad selectors and the discrete space parameters are

then passed to the subroutine planar2.f where the required interaction coefficients are

generated. The code uses the following equivalences:

r4(nmb4) = K(k,p,q)

b4(nmb4) = K(−p,−q,−k)

tr4(nmb4) = A(k,p,q)

tb4(nmb4) = A(−p,−q,−k)

t24(nmb4) = A(−p,−k,−q).

(4.1)

The half-space coefficients may then be used to generate the whole space via the conjugacy

property of the mean-field, cumulant and response functions. The number of interaction

coefficients increases rapidly as resolution increases and are therefore stored on tape and

read into the main subroutine di2ens2.f as needed in order to reduce memory require-

ments. Although these subroutines are not included in the thesis examples of the output

are included below for the C3 truncated case. The subroutine planar1.f generates the

discrete k-space where k1= kx, k2= ky, k =
√

k2
x + k2

y.
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Table 4.1: C3 discrete k-halfspace

nk(k1,k2) k1 k2 k

1 0 1 1.000E+00

2 0 2 2.000E+00

3 0 3 3.000E+00

4 1 -2 2.236E+00

5 1 -1 1.414E+00

6 1 0 1.000E+00

7 1 1 1.414E+00

8 1 2 2.236E+00

9 2 -2 2.828E+00

10 2 -1 2.236E+00

11 2 0 2.000E+00

12 2 1 2.236E+00

13 2 2 2.828E+00

14 3 0 3.000E+00

The routine planar2.f generates the triad selectors and interaction coefficients in the

following form where n1= kx, m1= px, l1= qx, n2= ky, etc.

Table 4.2: Triad selectors and b4 coefficients

nm n1 n2 m l m1 m2 l1 l2 b4(nsn)

1 0 1 4 19 -1 2 1 -1 -0.25

2 0 1 5 20 -1 1 1 0 0.E+0

3 0 1 6 21 -1 0 1 1 -0.25

4 0 1 7 22 -1 -1 1 2 -0.4
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5 0 1 9 24 -2 2 2 -1 -0.8

6 0 1 10 25 -2 1 2 0 -0.75

etc etc etc

4.3 Predictor-corrector scheme

In this section, the predictor-corrector algorithm used to evolve Ck, Rk and 〈ζk〉 is de-

scribed. This algorithm was first developed by Kraichnan[109] and has become the stan-

dard for DIA-type calculations. Important features of the scheme are that it conserves

energy exactly at equilibrium, demonstrates good stability properties for large timesteps

and as well handles linear terms exactly. The error associated with the predictor-corrector

scheme is O((4t))3.

In order to derive this method let equations 3.20, 3.27, and 3.32 be written in the form

(
d

dt
+ νn)〈ζn(t)〉 = Mn(t) (4.2)

(
d

dt
+ νn)Cn(t, t́) = Sn(t, t́) (4.3)

(
d

dt
+ νn)Rn(t, t́) = Hn(t, t́) (4.4)

where n = kn and Mn(t), Sn(t, t́) and Hn(t, t́) represent the righthand side of equations

3.20, 3.27, and 3.32 respectively. Alternately, one can consider Mn, Sn and Hn to be

source terms that are functionals of the statistical variables. The first step is to discretize

the time-history integrals in Mn, Sn and Hn using the trapezoidal rule. We next discretize

the time interval t ∈ [t0, tf ] into intervals 4ti(i = 1, . . . , N) which for our purposes are

uniform, and where t0 is the initial time and tf is the time at the end of the interval.

Let us derive the scheme for the response function as the argument that follows applies

equally to Cn, and 〈ζn〉. Now from Eq. 4.4 we have

exp(−νnt)
d

dt
[Rn(t, t́) exp(νnt)]

= exp(−νnt)[
d

dt
Rn(t, t́) + νnRn(t, t́)] exp(νnt) (4.5)

∴ d

dt
[Rn(t, t́) exp(νnt)] = exp(νnt)Hn(t, t́). (4.6)
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We now replace Hn(t, t́) by the approximate value

Hn(t́) =
1
2
[Hn(ti, t́) + Hn(ti−1, t́)] (4.7)

over the interval 4ti so that

d

dt
[Rn(t, t́) exp(νnt)] + exp(νnt)Hn(t́). (4.8)

Then we integrate over 4ti and find
∫ ti

ti−1

dt
d

dt
[Rn(t, t́) exp(νnt)] =

∫ ti

ti−1

dt exp(νnt)Hn(t́) (4.9)

= Hn(ti, tj)
[exp(νnti)− exp(νnti−1)]

νn
(4.10)

and consequently

Rn(ti, tj) exp(νnti)−Rn(ti−1, tj) exp(νnti−1)

= Hn(ti, tj)
[exp(νnti)− exp(νnti−1)]

νn
. (4.11)

We also note that
∫ ti

ti−1

d(Rn(t, t́) exp(νnt)) = Rn(ti, tj) exp(νnti)

−Rn(ti−1, tj) exp(νnti−1) (4.12)

and hence

Rn(ti, tj) = Rn(ti−1, tj) exp(−νn4ti) +
Hn(ti, tj)

νn
[1− exp(−νn4ti)] (4.13)

where 4ti = ti − ti−1. Finally we have

Rn(ti, tj) = Rn(ti−1, tj) exp(−νn4ti)

+
1

2νn
[1− exp(−νn4ti)][Hn(ti, tj) + Hn(ti−1, tj)] (4.14)

with initial values R(ti, ti) = 1.

Similarly, we find

Cn(ti, tj) = Cn(ti−1, tj) exp(−νn4ti)

+
1

2νn
[1− exp(−νn4ti)][Sn(ti, tj) + Sn(ti−1, tj)] (4.15)
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for (i > j) and initial conditions Cn(t0, t0) = Cn(0, 0). The diagonal values Cn(ti, ti)(i > 0)

are similarly obtained using the single-time cumulant equation 3.33 where

(
d

dt
+ 2νn)Cn(t, t́) = 2Re(Sn(t, t́)). (4.16)

This gives

Cn(ti, tj) = Cn(ti−1, tj) exp(−2νn4ti)

+
1

2νn
[1− exp(−2νn4ti)][Sn(ti, tj) + Sn(ti−1, tj)]. (4.17)

Finally, the terms for the mean-field complete the implicit integration scheme

〈ζn(ti)〉 = 〈ζn(ti−1)〉 exp(−νn4ti)

+
1

2νn
[1− exp(−νn4ti)][Mn(ti) + Mn(ti−1)]. (4.18)

We implement this scheme in the normal way generating “predictor” values for Cn(ti, tj),

Rn(ti, tj) and 〈ζn(ti)〉 (j < i) at the ith step by replacing Sn(ti, tj), Sn(ti, ti), Hn(ti, tj)

and Mn(ti) on the righthand side of equations 4.14, 4.15, 4.17 and 4.18 with Sn(ti−1, tj),

Sn(ti−1, ti−1), Hn(ti−1, tj) and Mn(ti−1). The “corrector” values are generated by eval-

uating Sn(ti, tj), Sn(ti, ti), Hn(ti, tj) and Mn(ti) with the replacement of all “predictor”

values for R, C and 〈ζ〉 with an argument ti appearing in the sums of the trapezoidal rule.

The (i + 1)th step is then begun using the “corrector” values of R, C and 〈ζ〉 to compute

Sn, Hn and Mn. At canonical equilibrium the off-diagonal elements of the covariance ma-

trix vanish (as the time-history integrals cancel) and the system becomes diagonal with

Sn(ti, tj) = 0 and Mn(ti) = 0.

4.3.1 Error estimates

Kraichnan[109] noted that the DIA equations for isotropic turbulence were sufficiently

complex that the only feasible error estimate was to compare calculations with various

truncation limits and finite-difference intervals. He also noted that errors originated from

three primary sources i) truncation to a finite k range, ii) discretizing of k and iii) dis-

cretizing of t. Our system is significantly more complex than the isotropic case and has

a further source of possible error arising from the use of a formal restart procedure. It
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is possible to disregard the discretizing of k as a source of possible error as the model

has been developed using a discrete wavenumber space for both the DNS and CUQDIA

code. This avoids the error source arising due to the use of logarithmic discretization of

continuous k space (an approach commonly used to reach high wavenumbers). As stated

before, discrete wavenumber space allows the incorporation of all interactions both local

and nonlocal (which are not included when using logarithmic discretization) while also

allowing unambiguous comparison of the DNS and CUQDIA results with differences at-

tributable to systematic errors in the closures. Frederiksen et al. [104] noted that nonlocal

interactions may be particularly important in the case of two-dimensional turbulence and

that differences between discrete DNS and continuous closures may be significant in cases

where the larger scales contain a significant amount of energy. Thus truncation to a finite

k range and the discretizing of t emerge as the main sources of error.

4.4 Implementing the restart procedure

In this section, the implementation of the restart routine and integro-differential equations,

as evaluated in the subroutine deriv.f, is discussed. As this subroutine represents a

crucial portion of the numerical implementation, it will be considered in some detail. The

overall structure of this subroutine is given in figures 4.2, 4.3 and 4.4.

The initial restart values are either zeroed or read in from disk if a previous calculation

is to be continued. If t = t́ = T the calculation of the restart terms is carried out. Also, it

is possible to simply zero the offdiagonal elements of the covariance matrix and begin the

calculation again with the diagonal terms as the new initial conditions. The interaction

coefficients and restart values which are numerous, are stored on tape in order to reduce

memory requirements and are read in as needed. If it is decided to calculate the cumulant

updates the logical parameter rstrt is set to true and preparation is made to read the

interaction coefficients and previous restart values. In order to select the nonzero triads

the triad selection rules must be used, so that an appropriate p and q is selected for each

k, which are read in via the mslct(n) and lslct(n) functions. The nonzero initial restart

values are also read in at this point.
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if rstrt then

calculate the restart terms

read the interaction coefficients and triad selectors planar2.f

read the restart files if needed ztot data files

run over k

ie do n=1,maxn

run over p and q

ie do ms=1, nofms(n)

run over time

ie do is=1,iu

calculate K
(2)

-p -q K,
(2)

-p -k , K
(3) 

-q -p -k

DynDynDyn

end do

sum via trapezoidal rules

calculate K -p -q

(2)

, K
(2)

-p -k , K
(3) 

-q -p -k

~ ~ ~

end do

write restart terms to output files ztot data files

else return

subroutine deriv.f

Figure 4.2: Flow diagram of the structure of the initial section of the subroutine deriv.f

which calculates the restart equations.
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else calculate 0 to t’ integral

run over time

ie do is=1,iu

run over parameters k

ie do n=1,maxn

run over p and q

ie do ms=1, nofms(n)

ζ

end do

end do

end do

add the restart terms

run over parameters

ie do n=1,maxn

read the triad selectors planar2.f

run over p and q

ie do ms=1, nofms(n)

-p -q , K -p -k , K -q -p -k

~~~ (2)

end do

end do

if t=t’ return

add on      K
(2) (3)

ztot data files

else

calculate C  and <  > integral terms
kk

Figure 4.3: Flow diagram of the structure of the middle section of the subroutine deriv.f.
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calculate t’ to t integral

run over time

ie do is =iu, it

run over 

integral terms

end do

end do

end do

end if

return

pand  q

ζ

ie do ms=1, nofms(n)

do n=1,maxn

run over k

read interaction coefficients and triad selectors planar2.f

sum via trapezoidal rules

>k kcalculate C    , R    and <k

Figure 4.4: Flow diagram of the structure of the final section of the subroutine deriv.f.
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The next step is to loop through the triads and integrate from
∫ t́
t0

ds using the trape-

zoidal method. Now the terms comprising the three-point homogeneous contributions Sk

and ηk, the two-point inhomogeneous contributions Pk and πk, and the mean-field terms

ηk and χk are calculated separately. Finally the restart term is updated before returning

from the last call at this timestep. This completes the calculation of the elements of the

two-time covariance matrix which is repeated at each successive timestep. It remains to

evaluate the
∫ t́
t0

integral. This operation essentially takes the same form as the restart

integrals; however the order of the integration do loops must be changed to run through

the temporal arguments first and then through the triads. It is now possible to calculate

Ck(t, t́) and the integrals
∫ t́
t0

ds ηk(t, s)〈ζk(s)〉+ hk

∫ t́
t0

ds χk(t, s) .

As the model is running over the half space, the whole space values are generated via

conjugacy and finally summed using the trapezoidal rule.

The final step in the restart calculation involves adding on the restart sums to the
∫ t́
t0

ds

integrals. That is, once again loop through the parameters and triads and simply add the

restart terms, after which conjugacy is invoked and the results scaled by the timestep

del. The last section of the subroutine deriv.f is the calculation of the
∫ t
t́ ds integrals,

including the response function Rk. The approach is to proceed as for the
∫ t́
t0

ds integration

with s running from t́ to t. Also, it is only required to integrate over terms containing

ηk(t, s) and πk(t, s) in the cumulant equation. The integration is again carried out using

the trapezoidal rule. Finally the results of the integrations, that is the values for Rk(t, t́),

Ck(t, t́) and the integral terms in 〈ζk(t)〉 namely
∫ t
t0

ds ηk(t, s)〈ζk(s)〉+hk

∫ t
t0

ds χk(t, s)

are then passed to the predictor-corrector scheme contained in the main body of the

program.

4.5 Diagnostic tests

As stated in the introduction to this chapter, the implementation of the CUQDIA equa-

tions represents a computational and numerical challenge. Canonical equilibrium does,

however, offer the opportunity to “debug” the numerical routines via the wealth of ana-
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lytic tests that may be derived for this special case. The crucial point is that, at canon-

ical equilibrium (but not in general), we have the fluctuation-dissipation theorem (FDT)

[57, 58, 60, 65]. Thus we can replace the equation for the second-order two-time cumulant

(or the response function equation) with the FDT. To see this, we restate the equilibrium

solution for the two-time cumulant (which is unchanged from the homogeneous case) as

Ck(t, t́) = Ceq
k =

k2

a + bk2
(4.19)

and note the mean field expression is given by

〈ζk(t)〉 = 〈ζeq
k 〉 = −bhkCeq

k . (4.20)

Now, using the FDT, we can write

Ck(t, t́)θ(t− t́) = Rk(t, t́)Ck(t́, t́)

= Rk(t, t́)Ceq
k (4.21)

with θ(t − t́) the Heavyside step function, which is identically zero for t < t́ and unity

otherwise. The point to be made is that after the formal renormalization the off-diagonal

two point cumulant in the QDIA closure is now expressed in terms of diagonal cumulant

and response functions. That is,

Ck−l(t, t́) =
∫ t

t0

ds Rkk(t, s)Cl−l(s, t́)[A(k,−l, l− k)h(k−l)

+2K(k,−l, l− k)〈ζ(k−l)(s)〉]

+
∫ t́

t0

ds R−l−l(t́, s)Ck−k(t, s)[A(−l,k, l− k)h(k−l)

+2K(−l,k, l− k)〈ζ(k−l)(s)〉]. (4.22)

Substitution of the FDT result (Eq. 4.21) into Eq. 4.22 gives

Ceq
−l[A(k,−l, l− k)h(k−l) + 2K(k,−l, l− k)〈ζeq

(k−l)(s)〉]

+Ceq
k [A(−l,k, l− k)h(k−l) + 2K(−l,k, l− k)〈ζeq

(k−l)(s)〉] = 0. (4.23)

It then follows that the off-diagonal elements of the equal-time cumulants vanish (Ck−l(t, t) =

0) for l 6= k resulting in the exact cancellation of the homogeneous and inhomogeneous

integral terms in Eq. 3.27 as well as the mean-field integrals in Eq. 3.20.
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Thus, with canonical equilibrium initial values, the system must remain stationary

regardless of the strength of the topographic and mean-field terms. Figure 4.5 represents

an equilibrium calculation (inviscid unforced) demonstrating that the QDIA closure model

successfully maintains the canonical equilibrium as a stationary solution. The contours of

the mean-field in physical space for a system that has evolved to equilibrium were found to

be parallel to those of the topography in accordance with the minimum enstrophy principle

[9] (not shown). We note that for white, bare random noise forcing, the equilibrium forcing

conditions are given by

F eq = 2ν0(k)k2Ceq
k (4.24)

〈feq
k 〉 = ν0(k)k2〈ζeq

k 〉 (4.25)

where Ceq
k and 〈ζeq

k 〉 are defined in Eqs. 4.19 and 4.20 respectively and where the model

displays comparable results to those in Fig. 4.5. Another important test is that at equi-

librium the restart terms become exact; that is, the time history integral are identically

zero. As a further test we have also verified the interaction coefficients by “hard wiring”

the FDT into the code for equilibrium initial conditions.
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Figure 4.5: Spectral equilibrium calculation. The system has been initialized with the

following canonical equilibrium conditions:

topographic amplitude squared |hk|2 = 0.01× Ceq
k ,

mean vorticity 〈ζk(0)〉 = −bhkCeq
k ,

twice enstrophies Ck(0, 0) = Ceq
k = k2

a+bk2 ,

a = −5.969× 105,

b = 7.444× 105,

4t = 1/8 days,

and displays a stationary solution for all time. Due to degeneracy only the first 6 modes

need be displayed.
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4.6 Direct numerical simulation

The calculation of the spectral form of the barotropic vorticity equation eqn 3.6 is straight

forward with the structure of the main program ens2.f depicted in Fig. 4.6. The DNS

code, including topographic terms, was developed from the DNS code, without topography,

of Frederiksen, Davies and Bell [104]. The input parameters are read in and an ensemble

of realizations (a Gaussian distribution) with the required mean is generated. The next

step is to loop through the time steps implementing the predictor-corrector scheme via the

subroutine etstep.f. The right-hand side of the equation is calculated in erhs.f where

the interaction coefficients are read in as needed. The final step is to then average over

the realizations, calculate and save the diagnostic data and print the output.

4.7 Physical space conversion routine

The conversion of the mean-field spectral solutions of the CUQDIA equations to physical

space is performed by a discrete 2-D Fourier transform that has been nested in the main

body of the code (di2ens2.f). This function is used extensively in the chapters dealing

with the Rossby wave experiments. In order to make the transformation from spectral to

physical space a grid is generated (a grid of 50×50 has been used although 2n grid-points

for n spectral terms are sufficient for an exact representation). Lastly the topography and

the initial streamfunction ψk = −ζk/k2 are generated on the same grid. The output is

then written to a file to be processed as plots using IDL. For the doubly periodic plane

the physical space fields take the form

ζ(x, t) =
∑

k

ζk exp(ik · x) (4.26)

with

ζk(t) =
1

2π2

∫ 2π

0
d2xζ(x, t) exp(−ik · x) (4.27)

where x = (x, y) and k = (kx, ky) and the integrals over space may be replaced by sums.
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read in parameters

forcing, viscosity, etc

and transient field forcings

and the topography

generate/read the initial mean 

generate the initial  ζ

ζand mean field amplitudes< 

^

k
>

k

calculate the initial values of the rhs

call erhs.f

return

read and print the diagnostic data

end do

do n=1,maxsteps

run through the number of timesteps

call etstep.f

implement the predictor corrector scheme

call erhs.f

calculate the rhs

planar2.f

planar1.f

call edgns.f

and average the realizations

calculate and save the diagnostic data

realizations

program ens2.f

Figure 4.6: Flow diagram of program ens2.f for the direct calculation of the spectral

form of the barotropic vorticity equation, eqn 3.6.
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4.8 Summary

In this chapter the numerical models developed to examine the relative merits of the

QDIA inhomogeneous closure equations as compared to DNS have been described. As

well the stationarity of initial canonical equilibrium solutions within the closure has been

established. In the following chapter the closure and DNS models will be used to investi-

gate both the dynamics and spectra of geophysical flow over topography for a variety of

topographies and resolutions from low to medium Reynolds number.



Chapter 5

Numerical experiments

Behold the heaven, the earth, the sea;

all that is bright in them or above them;. . .

all have form because all have number.

Take away number and they will be nothing. . .

St Augustine

In this chapter we describe detailed comparisons of the QDIA and CUQDIA closure

with DNS for inviscid unforced, viscous decay and forced dissipative flows over a wide

variety of topographies and resolutions. First the DNS sampling problem will be described

in detail with the specific case of the evolution of a single triad in wavenumber space

developed to unambiguously compare the closure to DNS. Next calculations for circular

truncation at k = 3 (C3) are presented in order to detail the evolution of the modes. This

is followed by a comprehensive study of the parameter space at C16 allowing investigation

of the performance of the closure in the energy containing range of wavenumbers. The

bulk of this chapter concerns studies at resolutions from C16 to C64 at very low, low

and moderate Reynolds number. Very low Reynolds number studies allow testing of the

accuracy of the closure when strong topographic and mean-field amplitudes are present but

without the added complication of strong turbulence effects. The higher Reynolds number

studies are then used in order to investigate the presence of spurious convection effects in

63
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the closure transient-field at the smaller scales. As previously mentioned the use of discrete

rather than continuous spectra, discussed below, allows the unambiguous attribution of

errors and allows us to avoid the problem of the omission of nonlocal interactions that

occurs for logarithmic discretization; however, the computational task required to reach

high wavenumbers is significantly increased [109, 81, 84]. We follow the approach of

Frederiksen, Davies and Bell [104] and formulate the closure and DNS on the doubly

periodic domain so that comparison of the closures to DNS means that any differences

are solely due to systematic errors in the closures. Thus we avoid any ambiguity arising

from different formulations between discrete and continuous spectra. Also Herring and

McWilliams [110] found that when the large scales contain an appreciable amount of

energy the differences between discrete DNS integrations and continuous closures may be

significant.

Before proceeding with the numerical comparison of the closure to DNS, and in order

to provide some context for the numerical experiments contained in this chapter, let us

first undertake a more detailed discussion of the two most important previous studies in

this area. In chapter 3 we briefly discussed the studies of Herring [93] and Holloway [101].

As these works motivate this current study let us consider each in more detail. As stated

previously, Holloway’s free decay closure employed a modified test-field model where the

decorrelation time, θ, of the triplet moment is given approximately as

(3θkpq)−2 w νkµ(k) +
∫ k

0
Z(p)dp +

∫ k

0
p2H(p)dp−

∫ k

0
(1− p2

k2
)R(p)dp (5.1)

for k & k0. As usual νk is the linear viscosity with µ(k) the deformation rate; the strain

rate at k due to larger eddies is described via the term containing the single-time second

moments of the vorticity Z(k). The term containing the topographic variance H(k) gives

the decorrelation effect of topographic Rossby waves, while the final term describes the

reduction in wavelike restoring forces, which occur when the flow lies near the contours of

constant potential enstrophy, via the vorticity-topography correlation R(k) (note this is

not the response function of previous chapters).
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Holloway’s disequilibrium theory resulted in a pair of equations for the coupled evolu-

tion of Zk(t) = 〈ζk(t)ζ−k(t)〉, Rk(t) = 〈ζk(t)h−k〉 and H(k) = 〈hkh−k〉, ie.,

(
∂

∂t
+ 2νk)〈ζkζ−k〉 = Fk − 2ηk〈ζkζ−k〉+ 2σk〈ζkh−k〉 (5.2)

(
∂

∂t
+ 2νk)〈ζkh−k〉 = −ηk〈ζkh−k〉+ σk〈hkh−k〉 (5.3)

where Fk, ηk and σk include any external forcings and involve expressions for the weighted

sums over spectra of ζ and h.

Holloway considered ensembles of random topography with zero mean value as well

as ensemble averages over realizations of the flow. As seen in Eqs. 5.2 and 5.3 this

approach results in a closure with approximately the same level of complexity as that

for homogeneous turbulence. Holloway compared the total vorticity variance Z and the

vorticity-topography correlation R to numerical simulations of geostrophic eddies for a va-

riety of topographic interactions and dissipative mechanisms, as well as differing strengths

of eddy-fields. The theory also predicts spectra of variance Z(k) for the steady part of the

flow field, however this was not compared to DNS. The squared topographies considered

by Holloway were of the form k2/(1+k3), k2/(1+k4) and k3e−2/3k, with an initial vorticity

variance of the form k5e−k.

Although overall quantitative agreement was found, the Holloway closure tended to

underpredict vorticity variance Z(k) in higher wavenumbers, an effect ascribed to the

choice of the triad interaction time, θ, chosen so that realizable statistics were observed.

As well there was an underprediction of the correlation R(k) at small wavenumbers which

was unexplained. Holloway [14] subsequently extended this theory to incorporate large-

scale zonal flow and the β-effect in order to investigate topographic stress on large-scale

mean flows.

Herring [93] studied the complimentary problem of two-dimensional rotating turbulent

flow above random topography driven by stationary random forcing. Using an extended

non-Markovian test-field model Herring undertook a qualitative look at the influence of

topography on the statistics of the flow and also investigated a static component in the

energy spectrum of stationary turbulence induced by topographic effects. Two topographic

spectra were employed with amplitudes squared of H0/(1 + k4) and H0k/(1 + k3) for
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resolution 0 6 k 6 64. In his study the extended-TFM was compared to the standard DIA,

finding qualitative agreement. These idealized problems were crucial to the development

of an understanding of the manner by which random topography determines the spectra

of transient vorticity variance and hold a central place in homogeneous closure theory.

In order that the effect of the mean topography on the structures of the mean flows be

examined single realization topography is required and that is the focus of the numerical

studies that follow.

5.1 The sampling problem for DNS

As we can specify exactly the initial state of the mean and transient fields in the CUQDIA

experiment we must also have corresponding initial fields for the DNS. The simplest non-

trivial case that we will consider is that where the initial-transient field is nonzero and the

initial mean-field is zero. In the presence of topography the generated mean-field arises

due to the interaction of the field with the topography. For such initial conditions an exact

calculation requires that the system must satisfy homogeneity in the first instance, which

in turn requires a specific number of realizations with specific symmetry properties in the

discrete case.

Consider the homogeneous case in the absence of topography:

〈ζ−pζ−q〉 = δp,q〈ζpζ−p〉 (5.4)

therefore

d

dt
〈ζk〉 =

∑
p

∑
q

δ(k + p + q)K(k,p,q)〈ζ−pζ−q〉 = 0. (5.5)

The homogeneous field requires the satisfaction of reflection symmetries for both real and

imaginary components (as well as conjugacy). Consider a 2-component field comprising

ζp and ζq. In order to satisfy the reflection symmetries we require 4 symmetries for each

component, that is (1, i,−1,−i)ζp and (1, i,−1,−i)ζq, so that the field must be averaged
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over 16 realizations if the ensemble average is to vanish exactly. Thus

〈ζpζq〉 =
1
16

[ζpζq + iζpζq − ζpζq − iζpζq

+ζpiζq + iζpiζq − ζpiζq − iζpiζq

−ζpζq + iζp(−i)ζq + (−1)ζp(−1)ζq + (−i)ζp(−1)ζq

+ζp(−i)ζq + iζp(−i)ζq + (−1)ζp(−i)ζq + (−i)ζp(−i)ζq]

= 0 (5.6)

It is then easy to see that the total number of realizations needed to generate a truly

homogeneous field is 4 to the power of the number points in the domain of wavenumbers.

Therefore for k = 3 and circular truncation there are 28 parameters so we require an

ensemble of 428 realizations. We can however halve the number of points in wavenumber

space by running over the half space and employing conjugacy to map to the rest of

the field, thus halving the number of interaction coefficients and dramatically reducing

the required number of realizations to 414 = 268, 435, 456. Unfortunately 414 represents

an insurmountable computational challenge. An alternate is to consider k = 2 with a

requirement of 4096 realizations. k = 2 unfortunately has no nontrivial interactions [111]

which is immediately evident from the interaction coefficients which only have two nonzero

components of equal magnitude but opposite sign for any given triad.

In order to rigorously test our model we finally chose to run a single triad calcula-

tion requiring 43 realizations, to compare the CUQDIA to DNS. We note that alternate

strategies to the sampling problem are required for higher resolution studies and these are

addressed in subsequent sections.

5.2 Triad calculation

Figure 5.2 describes the evolution of the absolute mean 〈ζk(t)〉〈ζ−k(t)〉 and transient

〈ζ̂k(t)ζ̂−k(t)〉 fields for a single triad (see Fig. 5.1 and table 5.1) for a forced viscid calcu-

lation. Rather than use the more general form of the viscosity, ν0(k)k2, as employed in

the theoretical development, instead the form of the viscosity used in all numeric studies
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	 truncation	    interaction coefficients	  total points

	 

	  C3	               180 x 5 sets                      14        	  

  

	  C16                 183384 x 5 sets 	             398



            C64                 48383760 x 5 sets            12852 	  	 

f-plane C3 half-space

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Kx

Ky

Figure 5.1: Diagram depicting circular truncation of k=3 wavenumber space and sepa-

ration into halfspace partitions (black and white). Grey denotes the triad used in the

calculations depicted in Figs. 5.2, and 5.3.
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will be ν0(k) = ν̂, where ν̂ is the nondimensional viscosity. The initial fields are chosen

such that 〈ζk(t0)〉 = 0. This choice of initial conditions allows the explicit construction

of a homogeneous initial field ζk. For a single triad 64 realizations (43) are needed with

the symmetry properties specified in section 5.1. The system was forced from an initial

nonequilibrium state, in which most of the enstrophy was contained in the ζ(−2,−1) mode,

toward the canonical equilibrium state via forcings given in table 5.2. It is quite evident

from Fig. 5.2 that the modes of the respective fields appear to behave in a similar manner

for both DNS and CUQDIA. Figure 5.3 shows clearly that this is indeed the case, includ-

ing in the early period of the evolution from timesteps 0-50, where one might reasonably

expect to see some deviation. As well the CUQDIA closely matches with the time aver-

aged DNS results from timesteps 160-320. The obvious difference between the DNS and

closure triad calculations arise due to the sampling of the forcing. The strong stochastic

noise in the DNS can be eliminated via a time average, as evident in Fig. 5.3, although it

should also be possible to eliminate these fluctuations by choosing the random forcings to

obey similar relationships to the initial conditions.

Table 5.1: Triad calculation initial conditions.

C(1,0) C(1,1) C(−2,−1) total

1.9634E-7 3.7424E-7 2.6722E-4 2.6779E-4

〈ζk(1,0)
〉 〈ζk(1,1)

〉 〈ζk(−2,−1)
〉 total

0.0 0.0 0.0 0.0

Table 5.2: Triad calculation parameters.

4 t ν̂ a b |hk|2 Fk 〈fk〉
1.1136 1.8579E-2 -5.969E+5 7.444E+5 a+bk2

k2b2
2ν̂k2Ceq

k −1
2bhkFk

The purpose of the triad calculation was not so much to undertake a rigorous com-

parison of DNS to closure, although the comparison is favorable, but rather to show the

origin of the DNS sampling error and demonstrate one approach that can be taken in
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Figure 5.2: The evolution of the mean (solid) and transient (dashed) twice enstrophies

for a single triad with forcing and dissipation are depicted for the CUQDIA closure (top).

The results shown are for an initially zero mean field with topography chosen such that

at equilibrium the mean and transient fields are of equal magnitude. Results represent

an ensemble average of 64 realizations where the ensemble is initially homogeneous. The

CUQDIA results are with cumulant updates every 10 timesteps. (bottom) The DNS

results are displayed for the same parameters and initial conditions. Parameters are given

in tables 5.1 and 5.2.
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Figure 5.3: Total fields for DNS and CUQDIA: The total fields for both CUQDIA (dashed)

and DNS (solid) are compared with a time average of the DNS (dot dashed) taken after sta-

ble behavior (equilibrium) has been attained. A time average of the modes from timesteps

160-320, is then taken in order to average out the stochastic noise due to strong ran-

dom forcing. The CUQDIA results are shown to be in excellent agreement with the time

average.



CHAPTER 5. NUMERICAL EXPERIMENTS 72

order to eliminate it. As noted this involves the explicit construction of the initial DNS

field at a resolution where it is reasonable to do so. In the following section we examine

the evolution of the closure modes in more detail for inviscid, viscous decay and forced

dissipative cases at C3 resolution.

5.3 C3 experiments

In this section we examine the dynamics of the CUQDIA and QDIA closure compared

to DNS at resolution C3. As Kells and Orszag [111] noted C3 has sufficient degrees of

freedom such that the systems are mixing. Table 5.3 shows the initial transient (twice)

enstrophies Ck(0, 0) and mean (twice) enstrophies 〈ζk(0)〉〈ζ−k(0)〉 hereafter refered to as

the transient and mean field enstrophies. At C3 resolution the system has 28 components

with degeneracy (the number of system components with the same enstrophy) given in

table 5.5. The labels given to the components in table 5.5 refer to Figs. 5.5 (bottom)

and 5.7. The nondimensional DNS and closure equations have been scaled by typical

meteorological time and space scales, namely, a length scale of half the earth’s radius,

3.185610× 106m, and a time scale of (
√

2Ω)−1 where Ω = 7.292× 10−5s−1 is the earth’s

angular velocity. Throughout, the closure equations are initialized using Gaussian initial

conditions. The cumulant update procedure uses the non-Gaussian terms which build up

with time in the new initial conditions for subsequent restarts steps as detailed in sections

3.4 and 3.5. All C3 DNS calculations represent an ensemble average over 5000 realizations

with the real and imaginary parts of ζk(0) having a joint Gaussian distribution.

Table 5.3: Initial conditions for C3 calculations.

C(1,0) C(2,0) C(3,0) C(1,−2) C(1,−1) C(2,−2) total

1.9634E-7 6.8372E-7 1.2664E-6 2.6716E-4 3.7414E-7 1.1677E-6 2.1523E-3

〈ζ〉〈ζ∗〉(1,0) 〈ζ〉〈ζ∗〉(2,0) 〈ζ〉〈ζ∗〉(3,0) 〈ζ〉〈ζ∗〉(1,−2) 〈ζ〉〈ζ∗〉(1,−1) 〈ζ〉〈ζ∗〉(2,−2) total

1.1663E-11 4.5713E-10 8.9954E-10 5.4295E-8 1.0050E-10 7.8884E-12 2.6094E-7
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Table 5.4: Figure 5.4, 5.5 and 5.6 parameters.

4 t ν̂ a b |hk|2 Fk 〈fk〉
2.2272 1.8579E-2 -5.969E+5 7.444E+5 a+bk2

k2b2
2ν̂k2Ceq

k −bν̂k2hkCeq
k

Table 5.5: ζ(kx, ky)label
degeneracy

ζ(1, 0)14 ζ(2, 0)24 ζ(3, 0)34 ζ(1,−2)48 ζ(1,−1)54 ζ(2,−2)64

Table 5.6: C3 inviscid unforced parameters.

4 t ν̂ a b |hk|2 Fk 〈fk〉
8.9088 0 -5.969E+5 7.444E+5 a+bk2

k2b2
0 0

Table 5.7: C3 viscid unforced parameters.

4 t ν̂ a b |hk|2 Fk 〈fk〉
2.2272 1.8579E-4 -5.969E+5 7.444E+5 a+bk2

k2b2
0 0

The first case we consider is for forced dissipative flow. The random forcing is deter-

mined by

Fk = 2ν̂k2Ceq
k (5.7)

with the mean forcing determined by

〈fk〉 = ν̂k2〈ζeq
k 〉 = −1

2
bhkFk (5.8)

such that the system is forced to canonical equilibrium, as was done in the triad calculation.

The nondimensional viscosity used is 1.8579× 10−2. A comparison of the early evolution

of the fields between DNS and CUQDIA is given in Fig. 5.4 in which two particular

initialization schemes are considered as follows. The first (top) is for the particular case
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where the initial CUQDIA fields are exact so that the slight initial differences between

the closure and DNS mean fields are a result of the DNS sampling error 1, specifically

in the earliest period (0-15 timesteps) when the mean field is being generated via eddy-

topography interactions. Figure 5.4 (bottom) shows the same case now with the closure

initialized with the sampled DNS fields. We are now able to observe very close agreement

in even the earliest time periods. In Fig. 5.5 we show the dynamics over a 20 day

period for both the mean and transient (twice) enstrophy components (top) and the total

(twice) enstrophies (bottom) (1 day has a nondimensional value equal to 8.9088). Close

agreement is shown at all time periods as the system evolves from a nonequilibrium state

toward canonical equilibrium under the effects of forcing and viscosity. A comparison of the

QDIA and CUQDIA (Fig. 5.6) with the CUQDIA employing restarts at every 20 timesteps

shows close agreement. The QDIA and CUQDIA results have not been superimposed as

the agreement is very close (up to 6 significant figures). The CUQDIA was found to

dramatically reduce computation times. We also note that an ensemble average of 5000

realizations in the DNS calculation cannot ensure isotropy in the 28 components of the C3

truncation resulting in a maximum relative error in the twice enstrophies of approximately

3 percent [104].

The closures were found to perform very well when both forcing and dissipation are

present. However, a more stringent test is to consider the performance of the closure for

inviscid unforced or purely viscid flows. These cases are considered in Fig. 5.7 with param-

eters given in tables 5.6 and 5.7. The inviscid unforced calculation, Fig. 5.7 (top), is again

started with the same disequilibrium state as that used in the viscid forced calculations

and is evolved over an 80 day period with timesteps of 1 day. The closure calculation is

without cumulant updates (QDIA), in order that the dynamics may be compared directly

to the DNS without the possibility of information being lost at the restart step. The clo-

sure clearly captures the initial growth and decay phase of the total twice enstrophies. This

is also the period in which the mean field is being generated (0-20 days). The erroneous

oscillations evident between days 20 and 40 are very similar to those reported in the study

of closure theories for severely truncated two-dimensional homogeneous turbulence with-
1For 5000 realizations the DNS sampling error is approximately at the level of 0.01 percent
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out mean-fields or topography by Frederiksen, Davies and Bell [104]. These oscillations

result in the QDIA under-predicting the crossover time for the decaying twice enstrophy

component (1,-2) and the two strongest increasing twice enstrophy components (3,0) and

(2,-2). In general it was found that the QDIA oscillations were somewhat reduced in am-

plitude relative to those present in the DIA indicating that the presence of topography, and

consequently a mean-field, acts to damp erroneous oscillations observed in the dynamics

of the eddies. Since such oscillations are a feature of the DIA it is reasonable to assume

that they arise due to the treatment of the triple cumulant term. The viscid calculation in

Fig. 5.7 (bottom), was run with a reduced timestep (1/4 days) in order to ensure stability

and displays similar dynamics to the inviscid unforced experiment. Both cases are in close

agreement with DNS in the early (0-15 days) and later (40-80 days) periods with most

divergence due to the oscillatory phase in the closure occurring between 15 and 40 days.
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Figure 5.4: (top) Detailed comparison of the early evolution of the fields corresponding to

the regime where the transients dominate. The error in the DNS mean field arising from

an inexact initial homogeneous field are obvious. The initial DNS field is given in table

5.3 with the relevant parameters are found in table 5.4. (bottom) Comparison of the early

evolution of the fields where the CUQDIA fields are initialized with the generated DNS

fields.
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Figure 5.5: (top) Evolution over 20 days with parameters as for Fig. 5.4. (bottom)

Comparison of C3 results for the CUQDIA and QDIA calculations for the viscid forced

case considered in the preceding Fig. 5.4. The CUQDIA employs restarts at every 20

timesteps demonstrating excellent agreement with the QDIA results.
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Figure 5.6: Comparison of C3 results for the CUQDIA and QDIA calculations for the

viscid forced case considered in the preceding Figs. 5.4 and 5.5. The CUQDIA employs

restarts at every 20 timesteps demonstrating excellent agreement with the QDIA results.
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Figure 5.7: (top) Comparison of the total fields for DNS and QDIA in the absence of

forcing and viscosity. Parameters are given in table 5.6. (bottom) Comparison of the total

fields for DNS and QDIA for the viscid case with parameters as for tables 5.3 and 5.7.
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5.4 C16 experiments

In this section a comprehensive study of CUQDIA and DNS results for a variety of to-

pographies are considered for inviscid unforced, viscous decay and forced dissipative cases.

The form of the topographies studied are similar to those considered by Herring [93] and

Holloway [101], namely

|hk|2 =
4

1 + k4
,

4
1 + k3

,
4k

1 + k3
,

4k2

1 + k3
. (5.9)

The difference between the studies presented in this thesis and the previous studies of

Herring [93] and Holloway [101] is that whereas they employed ensemble averaging over

different realizations of the topography this current study utilizes a mean or single real-

ization topography. In this section single realization random topographies are used where

hk is defined as

hk = |hk| × (cosφ + i sinφ) (5.10)

with φ the random argument. Various types of random phases have been investigated with

no significant quantitative differences found. As well the topography studied previously for

the C3 and the triad cases, namely |hk|2 = a+bk2

k2b2
, is included. A variety of initial conditions

are also investigated including viscous decay from an initial canonical equilibrium state,

inviscid unforced evolution from an initial disequilibrium state and, forced dissipative

evolution to canonical equilibrium in which the initial mean-field is zero and the evolved

mean field is “spun up” as a result of the interaction of the topography with the transient-

field. These low-resolution studies form a basis for a more rigorous study of the effects of

topography, resolution and Reynolds number on the evolution of the spectra of the mean

and transient fields presented in sections 5.5 and 5.6.

Prognostic DNS and CUQDIA equations are analyzed via the following diagnostics for

the i) kinetic energy

E(t) =
1
2

∑

k

[Ck(t, t) + 〈ζk(t)〉〈ζ−k(t)〉] /k2, (5.11)

ii) potential enstrophy

Q(t) =
1
2

[∑

k

Ck(t, t) +
∑

k

(〈ζk(t)〉+ hk)(〈ζ−k(t)〉+ h−k)

]
, (5.12)
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iii) enstrophy

F (t) =
1
2

[∑

k

Ck(t, t) +
∑

k

〈ζk(t)〉〈ζ−k(t)〉
]

, (5.13)

and iv) palinstrophy

P (t) =
1
2

∑

k

[Ck(t, t) + 〈ζk(t)〉〈ζ−k(t)〉] k2. (5.14)

These diagnostic terms are used to calculate band averaged spectra defined as

E(ki, t) =
1
2

∑

k∈S

[Ck(t, t) + 〈ζk(t)〉〈ζ−k(t)〉] /k2,

Q(ki, t) =
1
2

[∑

k∈S

Ck(t, t) +
∑

k∈S

(〈ζk(t)〉+ hk)(〈ζ−k(t)〉+ h−k)

]
,

F (ki, t) =
1
2

[∑

k∈S

Ck(t, t) +
∑

k∈S

〈ζk(t)〉〈ζ−k(t)〉
]

,

P (ki, t) =
1
2

∑

k∈S

[Ck(t, t) + 〈ζk(t)〉〈ζ−k(t)〉] k2. (5.15)

The set S is defined as

S =
[
k|ki = Int.[k +

1
2
]
]

(5.16)

where the subscript i indicates that the integer part is taken in Eq. 5.16 so that all k

that lie within a given radius band of unit width are summed over. Recall that the DNS

results are averaged over a large number of realizations in which the initial conditions are

sampled from a Gaussian distribution with specified spectrum and specified mean. All

DNS results in the remainder of this chapter are an ensemble average of 100 realizations

calculated on the CSIRO Cray-YMP (at resolutions C16 to C48) and CSIRO NEC SX-5

(at resolutions C48 to C64) computers. Only the CUQDIA results up to resolutions C16

were performed on the Cray-YMP with the higher resolution experiments requiring the

NEC SX-5.

Before detailing the C16 experiments we will briefly outline the approach taken to

sampling the initial DNS fields for subsequent calculations at resolutions C16, C48 and

C64. Figure 5.8 depicts an initial energy spectrum with a peak at wavenumber k = 2. The

initial mean field is specified to be zero in both the closure and DNS. However, the fact
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that the DNS represents an ensemble average of 100 realizations with zero mean results

in the sampling error manifesting as a nonzero DNS mean field. The transient fields show

excellent agreement between DNS and closure however the DNS sampling error is at the

level of approximately one percent for 100 realizations. The difference in the initial fields

can be compensated for by initializing the CUQDIA with the generated DNS initial fields.

However, this approach is only valid for cases where the evolving field is above the level

of the DNS sampling error. Higher resolution spectral studies with limited number of

realizations require a different line of attack. The approach that works is quite simple;

if for every DNS field ζi we also include its negative −ζi for ∀i = 1, . . . N (where N is

the number of realizations) then the sampling problem can be minimized. This method

is employed in all subsequent calculations. In all Figs. detailing spectra the following

convention will be followed:

Total field diagrams; DNS (solid lines), CUQDIA (dotted lines), initial fields (dashed

lines)

Component field diagrams: mean field; DNS (dashed lines), CUQDIA (dotted lines),

:transient field; DNS (solid lines), CUQDIA (dot dashed).

Figures 5.9 and 5.10 show the evolved total kinetic energy and potential enstrophy for

inviscid and viscid cases respectively starting from the initial non-equilibrium spectrum

given in Fig. 5.8 and with parameters detailed in tables 5.8 and 5.9. As in the previous

low resolution studies, the topography was chosen such that at canonical equilibrium the

transient and mean fields were of the equal amplitude. This choice of topography is not

very realistic as it is almost flat across all scales. However, it does result in a strong

topographic amplitude at the smallest scales thereby ensuring a rigorously test of the

closure theory. Once again the initial mean-field is zero. As the closures are started

from Gaussian initial conditions the initial three-point cumulants are zero. Subsequent

cumulant updates are calculated at every 20 timesteps. The large computational resources

required to evaluate the closures for discrete spectra meant that only the more efficient

CUQDIA and not the QDIA closures were considered.
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Figure 5.8: The initial energy spectra used in Figs. 5.13 to 5.10 (solid). The (dot dashed)

lines represents the initial DNS sampling error when a naive sampling is used rather

using positive and negative realizations. The error is approximately 1 percent for 100

realizations.



CHAPTER 5. NUMERICAL EXPERIMENTS 84

Table 5.8: C16 parameters for Fig. 5.9.

4 t ν̂ a b |hk|2 Fk 〈fk〉
0.11136 0 -5.969E+5 7.444E+5 a+bk2

k2b2
0 0

Table 5.9: C16 parameters for Fig. 5.10.

4 t ν̂ a b |hk|2 Fk 〈fk〉
0.11136 1.879E-2 -5.969E+5 7.444E+5 a+bk2

k2b2
0 0

The CUQDIA and DNS were integrated forward for 300 nondimensional timesteps of

4t = 0.11136, corresponding to a final time t = 33.408, and compared to the statistics

of 100 realizations of DNS. The DNS and CUQDIA displayed the same computational

stability properties in contrast to the homogeneous CUDIA calculations of Frederiksen

and Davies [108] where the closure allowed a far larger time step and was shown to be

more stable than DNS. However, the relative stability of the CUQDIA was found to

improve as resolution was increased. The total energy and potential enstrophy spectra

displayed in Figs. 5.9 and 5.10 demonstrate good agreement with DNS with a slight over-

prediction of energy at k = 4 for the inviscid calculation (Fig. 5.9). A more systematic

over estimation at k = 3 − 14 was found for the viscous decay case (Fig. 5.10) but in

general the discrepancies are minor given the length of the integration.

Figure 5.11 depicts evolved kinetic energy and potential enstrophy spectra from an

initial nonequilibrium state (see table 5.10). The initial spectrum is purely transient, with

a large amount of the kinetic energy in the small scales, which decays rapidly due to viscous

effects, but also as transient energy is converted into mean energy. The mean field is once

again initially zero and is “spun up” as the system evolves. The nondimensional viscosity,

ν̂, is chosen in order to guarantee significant decay in the small scales. The spectra are

calculated at t = 0.8 with cumulant updates at t = t́ = 204t. The initial large-scale

Reynolds number is 67.34. The total transient field energy spectra (Fig. 5.11 (bottom))

are in close agreement. As well as being dissipated from the system, energy has been
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Figure 5.9: (top) Energy spectra after 300 timesteps with restarts at T = T́ = 20 where

4t = 0.11136 for the inviscid unforced case with DNS (solid) and CUQDIA (dotted).

(bottom) Potential-enstrophy spectra for t = 300 timesteps.
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Figure 5.10: (top) Total energy spectra after 300 timesteps with restarts at T = T́ = 20

where4t = 0.11136 for the viscid unforced case with topography of the form |hk|2 = a+bk2

k2b2

where DNS (solid) and CUQDIA (dotted). (bottom) Total potential enstrophy spectra

after 300 timesteps corresponding to a nondimensional time of t = 33.408. The respective

total potential enstrophy spectra are indistinguishable.
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transferred from the transient to the generated mean field via the topographic interaction

(Eqs. 3.13 and 3.17). The final Reynolds numbers are found to be 41.00 for DNS and

40.00 for the closure. The topography chosen here is typical of those chosen for idealized

studies of oceanographic flows [93], Holloway [101]. Similar behavior is displayed in Fig.

5.12, where the amplitude squared of the topography is of the form 4/(1 + k4). Again the

initial large-scale Reynolds number is found to be 67.34 and the evolved Reynolds number

at t = 0.8 calculated to be 45.86 for DNS and 44.83 for the CUQDIA. A more detailed

investigation of the effect of increasing Reynolds number is contained in sections 5.5 and

5.6.

Table 5.10: Figure 5.11 parameters

4 t ν̂ Ck(0, 0) |hk|2 〈ζk(0)〉
0.004 0.025 0.18× k2 4k2

1+k4 0

A topography whose amplitude squared is of the form 4k/(1+k3) (not shown) has also

been found to behave in a similar manner to the 4k2/(1 + k4) case, as is to be expected.

Various experiments were conducted with squared topographies of the form 4/(1 + k3)

with a variety of initial conditions and viscosities with the overall result that the closure

showed close agreement with DNS in all cases.

Table 5.11: Figure 5.12 parameters

4 t ν̂ Ck(0, 0) |hk|2 〈ζk(0)〉
0.004 0.025 0.18× k2 4

1+k4 0

Figures 5.13, 5.14 and 5.15 demonstrate spectra for a forced dissipative study that

evolved from the initial conditions given in Fig. 5.8 and table 5.12. The system is being

forced to an equilibrium state where the mean and transient fields are of equal magnitude.

The results for all fields agree except for some slight underestimation of the CUQDIA

transient-field at wavenumbers 9 6 k 6 16 (Fig. 5.14).
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Figure 5.11: (top) Total energy spectra after 200 timesteps with restarts at T = T́ = 20

where 4t = 0.004 for the viscid unforced case where the respective spectra are DNS

(solid), CUQDIA (dotted) and the initial spectrum (dashed). The nondimensional viscos-

ity is given by ν̂ = 0.025 and the topography (squared) is |hk|2 = 4k2

1+k4 . (bottom) Total

potential-enstrophy spectra after 200 timesteps.
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Figure 5.12: (top) Energy spectra after 200 timesteps with restarts at T = T́ = 20 where

4t = 0.004 for the viscid unforced case where the respective spectra are DNS (solid),

CUQDIA (dotted) and the initial spectrum (dashed). The nondimensional viscosity is

given by ν̂ = 0.025 and the topography squared is |hk|2 = 4
1+k4 . (bottom) Total Potential-

enstrophy spectra after 200 timesteps.
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Table 5.12: C16 parameters for Figs. 5.13 - 5.15.

4 t ν̂ a b |hk|2 Fk 〈fk〉
0.11136 1.879E-2 -5.969E+5 7.444E+5 a+bk2

k2b2
2ν(k)Ceq

k −1
2bhkF eq

k

Figure 5.15 details the evolution of the total potential enstrophy spectra, where again

excellent agreement is demonstrated between DNS and CUQDIA. This particular case

was also run with restarts at T = T́ = 5 and 10. Systematic under-representation of

the cumulants was evident with cumulant updates at every 5 timesteps due to insufficient

information about the non-Gaussian cumulants, but overall qualitative agreement with

DNS was observed. For restarts at every 10 timesteps results comparable to Figs. 5.13,

5.14 and 5.15 were produced. The obvious conclusion to be drawn here is that as resolu-

tion is increased, then the number of timesteps required for a sufficiently representative

calculation of those off-diagonal coherences decreases. As will be shown in section 5.5 for

C48 and C64 resolution calculations cumulant updates at every 10 timesteps were more

than sufficient for reasonable quantitative agreement with DNS in the cases examined.
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Figure 5.13: Energy spectra after 160 timesteps with restarts at T = T́ = 20 where

4t = 0.11136. Transient energy for DNS (solid) and CUQDIA (short dashed); Mean

energy for DNS (dot dashed) and CUQDIA (dotted); Total energy for DNS (long dashed)

and CUQDIA (dot dot dot dashed)
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Figure 5.14: Energy spectra after 320 timesteps with restarts at T = T́ = 20 where

4t = 0.11136. Transient energy for DNS (solid) and CUQDIA (short dashed); Mean

energy for DNS (dot dashed) and CUQDIA (dotted); Total energy for DNS (long dashed)

and CUQDIA (dot dot dot dashed)
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Figure 5.15: Potential-enstrophy spectra for timesteps 0, 160 and 320 with restarts at

T = T́ = 20 where 4t = 0.11136 for DNS (solid) and CUQDIA (dashed). Very close

agreement is evident.
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5.5 Very low Reynolds number turbulence

In this section, we consider viscous decay for cases at or near equilibrium for very low

Reynolds number (typically < 1) and for resolutions ranging from C16 to C64. The square

of the topographic amplitudes considered in this section are |hk|2 = 16k2

(1+k3)2
and |hk|2 =

a+bk2

k2b2
. The purpose of these experiments is to ascertain the validity of the quasi-diagonal

closure approach for the incorporation of topography and mean-field in a setting devoid

of the effects of strong turbulence. These studies will underpin our later investigations as

we progressively incorporate the effects of stronger turbulence. The topographies chosen

are markedly different thus providing a strong test of the effect of topography on the

accuracy of the model. Throughout this section the restart time will be 20 timesteps and

parameters a = −5.969× 105 and b = 7.444× 105.

5.5.1 C16 resolution

Figures 5.16 and 5.17 display viscous decay from canonical equilibrium. The parameters

are given in table 5.13. This case was chosen in order to compare and contrast the

closure with DNS in a situation where the initial mean and transient fields have the same

magnitude. The step size employed was 4t = 0.004 which is of the same order as that

used by Frederiksen and Davies [107, 108], and is small enough to ensure absolute stability

and to minimize any error due to timestepping considerations. Restarts are employed at

every 20 timesteps.

Table 5.13: Figures 5.16-5.17 parameters

4 t ν̂ Ck(0, 0) |hk|2 〈ζk(0)〉
0.004 0.005 Ceq

k
a+bk2

b2k2 〈ζk〉eq

Figure 5.16 reveals excellent agreement between the CUQDIA and DNS total energy

spectra at all stages of the evolution for both the total energy and the component fields.

It is observed that both the mean and transient fields are decaying at the same rate.

Thus the mean field always remains the same strength as the transient field. The agree-
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Figure 5.16: (top) Comparison of the total energy for the DNS (solid) and CUQDIA

(dotted) calculations after 200 timesteps (tf = 0.8). The initial field is the dashed line.

(bottom) Comparison of the component fields at times t = 0, 0.4 and 0.8. Transient energy:

DNS (solid) CUQDIA (dot dashed), Mean energy: DNS (dashed) CUQDIA (dotted). Note

that the respective DNS and CUQDIA closure fields are almost in exact agreement.
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Figure 5.17: (top) Total potential enstrophy for the DNS (solid) and CUQDIA (dotted)

calculations at t = 0.8. The initial field is the dashed line. (Middle) Initial Mean and

Transient potential enstrophy fields. (bottom) t=0.8 Mean and Transient potential en-

strophy fields. Transient enstrophy: DNS (solid), CUQDIA (dot dashed). Mean potential

enstrophy (〈ζk(t)〉 + hk)(〈ζ−k(t)〉 + h−k): DNS (dashed), CUQDIA (dotted). Note that

the respective DNS and CUQDIA closure fields are almost in exact agreement.
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ment is so close that the respective DNS and CUQDIA mean and transient spectra are

indistinguishable. In Fig. 5.17 the total potential enstrophy (top) also shows very close

agreement as does the mean and transient fields (bottom). The increase in the mean po-

tential enstrophy at the small scales can be readily explained by considering the canonical

equilibrium expression for the mean-vorticity 〈ζk〉eq = −bhkCeq
k and the expression for the

mean potential enstrophy (〈ζk(t)〉 + hk)(〈ζ−k(t)〉 + h−k). As the mean-vorticity decays

at the smallest scales via the enstrophy cascade the mean potential enstrophy becomes

dominated by the topographic contribution, which for this particular case is flat across

all scales. Thus we see a marked increase in the mean potential enstrophy at the very

smallest scales.

Table 5.14: Figures 5.18-5.19 parameters

4 t ν̂ Ck(0, 0) |hk|2 〈ζk(0)〉
0.004 0.005 Ceq

k
a+bk2

b2k2 0.1× 〈ζk〉eq

If we now consider the same set of parameters and initial conditions, but with a

significantly weaker mean-field 〈ζk(0)〉 = 0.1× 〈ζk〉eq (see table 5.14), we see again (Figs.

5.18 and 5.19) that the agreement between closure and DNS is so close that the respective

spectra are indistinguishable. Again, the mean and transient energy spectra relax at about

the same rate, with the transient and mean potential enstrophy spectra also exhibiting

similar behavior to Fig. 5.17.
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Figure 5.18: (top) Total energy for the DNS (solid) and CUQDIA (dotted) calculations

at t = 0.8. The initial field is the dashed line. (Middle) Initial Mean and Transient

kinetic energy fields. (bottom) Mean and Transient energy fields at t = 0.8. Note that all

CUQDIA energy fields are indistinguishable from DNS. Component field diagrams: mean

field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines),

CUQDIA (dot dashed). Note that the respective DNS and CUQDIA closure fields are

almost in exact agreement and are consequently indistinguishable.
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Figure 5.19: (top) Total potential-enstrophy for the DNS (solid) and CUQDIA (dotted)

calculations at t = 0.8. The initial field is the dashed line. (Middle) Initial Mean and Tran-

sient potential enstrophy fields. (bottom) t = 0.8 Mean and Transient potential enstrophy

fields. Component field diagrams: mean field; DNS (dashed lines), CUQDIA (dotted

lines), :transient field; DNS (solid lines), CUQDIA (dot dashed). Note that the respec-

tive DNS and CUQDIA closure fields are almost in exact agreement and are consequently

indistinguishable.
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5.5.2 C48 resolution

In this subsection the same experiments as in Figs. 5.18 and 5.19 are repeated at the

higher C48 resolution in order to ascertain if increased resolution will adversely effect the

model comparisons or to see if the theory breaks down with increased resolution. The

experiments were conducted with restart times of 104t and 204t with no observable

difference in the results. The close agreement between the results of the closure with

these two different restart times is not surprising given that it is expected that for very

low Reynolds number the significance of the non-Gaussian cumulants should be greatly

reduced. Throughout this subsection the results shown are for cumulant updates at every

104t.

In Figs. 5.20 and 5.21 the total field spectra show very close agreement at all scales

with only slight underestimation in the closure at the smallest scales evident in the total

energy, enstrophy and palinstrophy spectra. Excellent agreement in the mean-field po-

tential enstrophy can be seen in Fig. 5.23 while the transient-field calculation reveals the

source of the closure underestimation at wavenumbers 40 6 k 6 48 in the total field spec-

tra. The small disagreement between DNS and the closure in the transient-fields is again

evident at the smallest scales in transient energy spectra (Fig. 5.22), with the transient

enstrophy spectra (Fig. 5.24) revealing similar behavior. Even the palinstrophy spectra

(Fig. 5.25), which is a much more sensitive test of the smaller scales, demonstrates very

close agreement with DNS. Further experiments at this resolution were run for a range

of topographies with similar initial conditions again demonstrating extremely close agree-

ment. No obvious defects in the comparisons due to increased resolution were observed

apart from some underestimation of closure amplitudes at the smallest scales.
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Figure 5.20: (top) Total energy for the DNS (solid) and CUQDIA (dotted) calculations at

t = 0.4. The initial field is the dashed line. The parameters are as for table 5.14 however

we now implement the restart procedure at every 10 timesteps. (bottom) Total potential-

enstrophy for the DNS (solid) and CUQDIA (dotted) calculations at t= 0.4. The initial

field is the dashed line.
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Figure 5.21: (top) As in Fig. 5.20 but for total enstrophy at t = 0.4. (bottom) Total

palinstrophy at timestep 100. Total field diagrams; DNS (solid lines), CUQDIA (dotted

lines), initial fields (dashed lines).
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Figure 5.22: (top) Initial mean and transient energy fields. (bottom) Mean and Transient

energy fields at t = 0.4. Component field diagrams: mean field; DNS (dashed lines),

CUQDIA (dotted lines), :transient field; DNS (solid lines), CUQDIA (dot dashed).
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Figure 5.23: (top) Initial mean and transient potential enstrophy spectra. (bottom) Mean

and transient enstrophy spectra at t = 0.4. Component field diagrams: mean field; DNS

(dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines), CUQDIA (dot

dashed).



CHAPTER 5. NUMERICAL EXPERIMENTS 104

1 10
k

10
-10

10
-8

10
-6

10
-4

10
-2

F
(k

)

1 10
k

10
-10

10
-8

10
-6

10
-4

10
-2

F
(k

)

Figure 5.24: (top) Initial Mean and Transient enstrophy spectra. (bottom) t = 0.4 mean

and transient enstrophy spectra. Component field diagrams: mean field; DNS (dashed

lines), CUQDIA (dotted lines), :transient field; DNS (solid lines), CUQDIA (dot dashed).
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Figure 5.25: (top) Initial mean and transient palinstrophy spectra. (bottom) t = 0.4 mean

and transient palinstrophy spectra. Component field diagrams: mean field; DNS (dashed

lines), CUQDIA (dotted lines), :transient field; DNS (solid lines), CUQDIA (dot dashed).
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5.5.3 C64 experiments

In this section the results of numerical experiments conducted at C64 resolution are pre-

sented. These calculations without cumulant updates would represent a very significant

computational task due to the long time-history integrals and large memory requirements

arising from the large number of points in the domain of discrete wavenumbers as well as

the large number of interaction coefficients to be summed over. We consider two particular

cases at this resolution. Firstly, in Figs. 5.26 to 5.31 we repeat the case of viscous decay

from an initial canonical equilibrium state considered previously at C16 resolution in Figs.

5.16, 5.17 and table 5.13, but now with enstrophy and palinstrophy calculations included

in order to gain more detailed comparison with DNS at the smallest scales. Due to the

significant evolution observed for inhomogeneous flow over topography, in both the DNS

and CUQDIA experiments, we only required relatively short integrations in comparison

to previous homogeneous studies. That said, the C64 calculation still takes considerably

longer to run (v5 times) than for C48. In Fig. 5.32 the palinstrophy spectra for the same

case as Figs. 5.26 to 5.31 is shown for C48 resolution run out to t = 0.4. This Fig. is

included in order to demonstrate the likely behavior of the C64 resolution run at longer

time periods. The second case we present is again for viscid relaxation from equilibrium

but with a topography whose amplitude squared is given by |hk|2 = 16k2/(1 + k3)2. For

this topography the energy in the mean-field at equilibrium is mostly contained in the

larger scales and falls away rapidly in the smaller scales whereas the transient-field energy

has a initially flat spectrum (Fig. 5.35). The fields are calculated at a final time oft = 0.2.

In the calculations restarts at every 10 timesteps were used.

Figures 5.26 and 5.27 depict the total energy, potential enstrophy, enstrophy and palin-

strophy for DNS (solid lines) and CUQDIA (dotted lines) respectively. For clarity we

restate that the topography has been chosen such that at the initial equilibrium the mean

and transient (twice) enstrophies are of equal magnitude. It is apparent from the total field

comparisons that the DNS and closure spectra are indistinguishable as are the mean and

transient-fields as seen in Figs. 5.28, 5.30 and 5.31. However, we see in Fig. 5.29 (bottom)

that, as the total fields decay under dissipation, the DNS and closure mean-fields begin to

exhibit increase in the small scales. This is due to the fact that at equilibrium the mean
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field and topographies obey the relationship 〈ζk〉eq = −bhkCeq
k . Thus as the mean-field

decays from the equilibrium state the mean component of the potential enstrophy; that

is, (〈ζk(t)〉+ hk)(〈ζ−k(t)〉+ h−k), approaches hkh−k at the smallest scales.

Figure 5.32 reveals the palinstrophy spectra at a final time t = 0.4 for C48 resolution.

Here we see complete agreement between DNS and CUQDIA for the mean-field calculation

and slight underestimation of the transient-field palinstrophy at wavenumbers 40 to 48 in

the CUQDIA closure. It is expected that the C64 resolution study would begin to show

some of this behavior given longer run times.

Figures 5.33 to 5.38 are for the same parameters as the preceding case but with a

topographic amplitude (squared) that goes like 1/k4. The spectra are calculated at a

final time of t = 0.2 with the DNS an ensemble average over 100 realizations; the closure

cumulant updates occur at every 10 timesteps. The total fields concur very well as do the

mean and transient-fields in Figs. 5.35, 5.37 and 5.38. Figure 5.36 also demonstrates close

agreement in the potential enstrophy spectra.
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Figure 5.26: (top) Total energy for the DNS (solid) and CUQDIA (dotted) calculations

after 45 timesteps. The initial field is the dashed line. The parameters are as for table

5.13 and we again implement the restart procedure at every 10 timesteps. (bottom)

Total potential-enstrophy for the DNS (solid) and CUQDIA (dotted) calculations after 45

timesteps. The initial field is the dashed line. Note that the respective DNS and CUQDIA

closure fields are almost in exact agreement and are consequently indistinguishable.
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Figure 5.27: (top) Total enstrophy at t=0.18. (bottom) Total palinstrophy at t=0.18.

Total field diagrams; DNS (solid lines), CUQDIA (dotted lines), initial fields (dashed

lines). Note that the respective DNS and CUQDIA closure fields are almost in exact

agreement and are consequently indistinguishable.



CHAPTER 5. NUMERICAL EXPERIMENTS 110

1 10
k

10
-12

10
-10

10
-8

10
-6

10
-4

E
(k

)

1 10
k

10
-12

10
-10

10
-8

10
-6

10
-4

E
(k

)

Figure 5.28: (top) Initial Mean and Transient energy fields. (bottom) Mean and Transient

energy spectra at t=0.18. Component field diagrams: mean field; DNS (dashed lines),

CUQDIA (dotted lines), :transient field; DNS (solid lines), CUQDIA (dot dashed). Note

that the respective DNS and CUQDIA closure fields are almost in exact agreement and

are consequently indistinguishable.
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Figure 5.29: (top) Initial Mean and Transient potential enstrophy spectra. (bottom) Mean

and Transient potential enstrophy spectra at t=0.18. Component field diagrams: mean

field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines),

CUQDIA (dot dashed). Note that the respective DNS and CUQDIA closure fields are

almost in exact agreement and are consequently indistinguishable.
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Figure 5.30: (top) Initial Mean and Transient enstrophy spectra. (bottom) Mean and

Transient enstrophy spectra at t=0.18. Component field diagrams: mean field; DNS

(dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines), CUQDIA (dot

dashed). Note that the respective DNS and CUQDIA closure fields are almost in exact

agreement and are consequently indistinguishable.
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Figure 5.31: (top) Initial Mean and Transient palinstrophy spectra. (bottom) Mean and

Transient palinstrophy spectra at t=0.18. The DNS transient palinstrophy spectrum

(solid) has been reduced by a factor of 1 × 10−3, the DNS mean (dashed) reduced by

a factor of 1× 10−2, the CUQDIA mean (dotted) reduced by a factor of 1× 10−1 with the

CUQDIA transient palinstrophy spectra (dot dashed) is unchanged.
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Figure 5.32: The same case as for the preceding figure ie Fig. 5.31 at resolution C48 evolved

for 100 timesteps. Note that the CUQDIA transient-field palinstrophy is demonstrating

slight spurious convection effects in the smallest scales. Component field diagrams: mean

field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines),

CUQDIA (dot dashed).
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Figure 5.33: (top) Total energy for the DNS (solid) and CUQDIA (dotted) calculations

after 50 timesteps. The initial field is the dashed line. The parameters are as for table 5.13

however the amplitude squared of the topography has been modified to 16k2

(1+k3)2
. Restarts

occur at every 10 timesteps. (bottom) Total potential-enstrophy for the DNS (solid) and

CUQDIA (dotted) calculations after 50 timesteps. The initial field is the dashed line.

Note that the respective DNS and CUQDIA closure fields are almost in exact agreement

and are consequently indistinguishable.
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Figure 5.34: (top) Total enstrophy at t=0.2. (bottom) Total palinstrophy at t=0.2. Total

field diagrams; DNS (solid lines), CUQDIA (dotted lines), initial fields (dashed lines).

Note that the respective DNS and CUQDIA closure fields are almost in exact agreement

and are consequently indistinguishable.
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Figure 5.35: (top) Initial Mean and Transient energy fields. (bottom) Mean and Transient

energy spectra after 50 timesteps. Component field diagrams: mean field; DNS (dashed

lines), CUQDIA (dotted lines), :transient field; DNS (solid lines), CUQDIA (dot dashed).

Note that the respective DNS and CUQDIA closure fields are almost in exact agreement

and are consequently indistinguishable.
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Figure 5.36: (top) Initial Mean and Transient potential enstrophy spectra. (bottom) Mean

and Transient potential enstrophy spectra at t=0.2. Component field diagrams: mean

field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines),

CUQDIA (dot dashed). Note that the respective DNS and CUQDIA closure fields are

almost in exact agreement and are consequently indistinguishable.
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Figure 5.37: (top) Initial Mean and Transient enstrophy spectra. (bottom) Mean and

Transient enstrophy spectra at t=0.2. Component field diagrams: mean field; DNS

(dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines), CUQDIA (dot

dashed). Note that the respective DNS and CUQDIA closure fields are almost in exact

agreement and are consequently almost indistinguishable.
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Figure 5.38: (top) Initial Mean and Transient palinstrophy spectra. (bottom) Mean and

Transient palinstrophy spectra after 50 timesteps. Component field diagrams: mean field;

DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines), CUQDIA

(dot dashed). Note that the respective DNS and CUQDIA closure fields are almost in

exact agreement and are consequently almost indistinguishable.
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5.6 Low to Moderate Reynolds number turbulence

In the experiments of the previous section the Reynolds number was purposely kept low

in order to test the closure performance in the absence of strong turbulence effects. In this

section we will consider low and moderate Reynolds number turbulence making direct

comparisons with the previous isotropic turbulence studies of Herring et al. [112] and

Frederiksen and Davies [108]. Our initial transient enstrophy spectra correspond closely

to spectra I and II of the Herring et al. [112] paper and exactly to spectra A and B

of Frederiksen and Davies [108]. The initial mean enstrophy spectra correspond to an

equilibrium mean vorticity field 〈ζk(0)〉 = −bhk
k2

a+bk2 for topography of the form hk and

parameters a and b as given in table 5.15. The DNS and closure use nondimesional

timesteps of 0.004 or 0.003 and are integrated for 100 timesteps at C48 and 45 timesteps

at C64 resolution respectively. Cumulant updates are at every 20 timesteps for the C48

calculation and 10 timesteps for the C64 case. The DNS spectra represent an ensemble

average of 100 realizations with standard deviations comparable to those in Figs. 1, 3 and

4 of Frederiksen and Davies [108]. Nondimensional viscosities of ν̂ = 0.005 and ν̂ = 0.0025

give initial Reynolds number of 61.4 and 304.83 for spectra A and B respectively.

If we denote the right-hand side of the two-time cumulant Eq. 3.60 to be Nk(t, t́) then

we have that

(
∂

∂t
+ ν(k))Ck(t, t́) = Nk(t, t́). (5.17)

It is now possible to define the palinstrophy production and enstrophy dissipation as

K(t) =
∑

k

k2Nk(t, t) (5.18)

η(t) =
∑

k

ν̂k2Ck(t, t). (5.19)

Following [108] and [112] we define the large-scale Reynolds number RL(t) and the skew-

ness SK(t) by

RL(t) = Ê/(ν̂η1/3) (5.20)

SK(t) = 2K/(P̂ F̂ 1/2). (5.21)
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Here, the transient energy, enstrophy, and palinstrophy are given by

Ê(t) =
1
2

∑

k

Ck(t, t)/k2, (5.22)

F̂ (t) =
1
2

∑

k

Ck(t, t), (5.23)

P̂ (t) =
1
2

∑

k

Ck(t, t)k2. (5.24)

(5.25)

These additional diagnostics will be used to compare the DNS and CUQDIA closure

and, as well, a closure where the cumulant updates are zeroed at each successive restart

step which will be called the ZCUQDIA. The low Reynolds number study starting from

spectrum A is performed at C48 resolution. In section 5.6.2 we compare two cases with

nearly identical initial conditions but with respective topographies for which |hk|2 = 4k
(1+k3)

and |hk|2 = 16k2

(1+k3)2
. These two cases are intended to identify the effect of the strength of

the topography at the small scales on the spectra of the mean and transient fields. Both

cases are run at C48 resolution with the |hk|2 = 16k2

(1+k3)2
experiment compared to a higher

resolution C64 calculation.

5.6.1 Spectrum A

Table 5.15: Parameters for Figs. 5.39-5.42

4 t ν̂ a b |hk|2 Fk 〈fk〉
0.004 0.005 4.824× 104 2.511× 103 16k2/(1 + k3)2 0 0

In the following study of low Reynolds number turbulence the initial transient (twice)

enstrophies spectrum used closely corresponds to spectrum I of Herring et al. [112] and

exactly to spectrum A of Frederiksen and Davies [108]. This choice of spectrum and vis-

cosity yields an initial large-scale Reynolds number of RL(0) = 61.4. The initial transient
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spectrum (Eq. 5.26) is coupled to an initial mean vorticity given in Eq. 5.27:

Ck(0, 0) = 1.33× 10−4k5 exp−k2/32, (5.26)

〈ζk(0)〉 = −bhk
k2

a + bk2
. (5.27)

This study is carried out at C48 resolution where we compare the evolved kinetic energy,

palinstrophy, skewness and large-scale Reynolds number. The choice of parameters a and

b is the same as Frederiksen and Sawford [95] used to fit the large scales of meteorological

flows. These parameters are also the same as those used in a previous study of severely

truncated (C3) homogeneous isotropic turbulence without topography or mean flow [104].

The parameters used are given in table 5.15. The choice of nondimensional viscosity is

ν̂ = 0.005 which again corresponds to that used previously [112, 108].

In Fig. 5.39 we compare the DNS and CUQDIA evolved total energy (top) and total

palinstrophy (bottom) at t = 0.4, corresponding to 100 timesteps with a nondimensional

timestep of 4t = 0.004. Although only half the time period considered in the earlier

studies, the system has been shown to undergo very significant evolution. The rapid

evolution of the flow fields can only be attributed to the presence of both topography

and a mean-field. The CUQDIA total energy shows excellent agreement with DNS up to

k < 32 after which the closure slightly under-represents the total energy. A similar picture

is evident in the total palinstrophy with some slight over-estimation at wavenumbers 10-20

and underestimation again evident for k > 32.

A comparison (Fig. 5.39) with Fig. 1 of Frederiksen and Davies [108] and Figs. 18

and 19 of Herring et al [112] reveals a much more dramatic and rapid increase in the total

energy and palinstrophy at the smallest scales when topography and a mean-vorticity are

present. This would seem to be due to the relatively large amplitude 〈ζk(t)〉 and hk at the

small scales forcing the tendency of the transients at the small scales rather rapidly via the

Pk and πk terms in the equations for the cumulants (Eqs. 3.27 and 3.33). In Figs. 5.40

and 5.41 we see that this indeed the case. In both the evolved mean and transient energy

and palinstrophy spectra it is the transient fields that have undergone rapid increase at

the small scales whereas the mean energy and palinstrophy fields have evolved much less

significantly. We see very close agreement between the CUQDIA and DNS transient fields
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except at the smallest scales and some slight but systematic underestimation of the closure

mean fields.

In Fig. 5.42 the DNS and CUQDIA skewness (top) and Reynolds number (bottom)

are compared. In Fig. 2c of Frederiksen and Davies [108] it was shown that the discrete

closure resulted in a very much improved estimation of the skewness in comparison to the

continuous DIA closure (Fig. 12 [112]). For inhomogeneous flow over topography we see

that the CUQDIA skewness is under-estimated with final values of SCUQDIA
K (0.4) = 0.25

as compared to SDNS
K (0.4) = 0.41. This not surprising given that the energy error in the

closure for Fig. 5.40 is O(10−4) and only O(10−7) in Fig. 1a of Frederiksen and Davies

[108]. A further comparison of the Reynolds number (Fig. 5.42 bottom) reveals fairly

good agreement throughout the evolution to t = 0.4.
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Figure 5.39: C48 resolution spectra. (top) Initial and final (t = 0.4) total kinetic energy

spectra. (bottom) Initial and final (t = 0.4) total palinstrophy spectra. The respective

spectra are DNS (solid), CUQDIA (dotted) and the initial spectrum (dashed). Cumulant

updates occur at every 20 timesteps.
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Figure 5.40: C48 resolution spectra. (top) Initial Mean and Transient energy spectra.

(bottom) Mean and Transient energy fields at t=0.4. Component field diagrams: mean

field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines),

CUQDIA (dot dashed).
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Figure 5.41: C48 resolution spectra. (top) Initial Mean and Transient palinstrophy spec-

tra. (bottom) Mean and Transient palinstrophy spectra at t=0.4. Component field di-

agrams: mean field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS

(solid lines), CUQDIA (dot dashed).
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Figure 5.42: (top) Skewness calculated at each successive timestep for C48 resolution. DNS

(solid) and CUQDIA (dotted), with restarts calculated at every 20 timesteps. (bottom)

RL(t)/RL(0) evaluated at times t.
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5.6.2 Spectrum B

The next study is at moderate Reynolds number RL(0) = 304.8 and uses the same initial

spectrum for the transient enstrophy as spectrum B of Frederiksen and Davies [108] (Eq.

5.28) and is also similar to spectrum II of Herring et al. [112]. The choice of initial

mean vorticity (Eq. 5.29) is the same as used in the previous low resolution study with

the nondimensional viscosity now set as ν̂ = 0.0025. The C48 experiments employ the

cumulant update procedure at every 20 timesteps with the C64 calculation using restarts

every 10 timesteps. In all experiments in this section we will start with an initial (twice)

enstrophy spectrum of

Ck(0, 0) = 1.8× 10−1k2 exp−2
3
k, (5.28)

and an initial mean field

〈ζk(0)〉 = −bhk
k2

a + bk2
. (5.29)

Two topographies will be considered, firstly a topography whose amplitude squared goes

like 1/k2 and secondly a topographic amplitude squared that falls away much faster at

the small scales (≈ 1/k4). These choices of topography provide a test of the accuracy

of the closure with markedly different topographic amplitudes at the small-scales, and

consequently differing small-scale eddy-topographic interaction strengths.

In Fig. 5.43 (top) the initial mean and transient spectra are displayed with initial

conditions specifying the mean fields given in table 5.16. After a nondimensional evolution

period of t = 0.3 the evolved mean and transient kinetic energy spectra (Fig. 5.43 bottom)

are shown to be in close agreement but for some slight under-estimation of the closure

transient field between wavenumbers 20 ≤ k ≤ 48, which is also accompanied by some

over-estimation for wavenumbers between 7 ≤ k ≤ 16.

Table 5.16: Parameters for Figs. 5.43-5.45

4 t ν̂ a b |hk|2 Fk 〈fk〉
0.003 0.0025 4.824× 104 2.511× 103 4k/(1 + k3) 0 0
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The mean and transient palinstrophy spectra (Fig. 5.44) show comparable agreement

between DNS and the closure transient fields and highlight the very close agreement in

the respective mean fields. In Fig. 5.45 it is evident that the closure skewness factor

systematically under-estimates the skewness as compared to DNS. The final evolved values

are SDNS
K (0.3) = 1.379 and SCUQDIA

K (0.3) = 1.070 respectively. The temporary increase

in the closure skewness factor at the beginning of each update cycle quickly relaxes as the

response functions decay. The behavior of the skewness factor for isotropic closures with

cumulant updates has been investigated in some detail by Frederiksen and Davies [108].

The CUQDIA closure skewness factor (Fig. 5.45 top) also enables a diagnostic by which

the efficiency of the particular choice of restart time t = t́ = T may be judged. That

is, by simply observing whether sufficient decay time for the response functions has been

allowed over each successive update cycle in order that the skewness return to a value

close to that of the closure had cumulant updates not been used. It is clearly evident in

Fig. 5.45 (top) that apart from the initial period of rapid increase (t ∈ [0, 0.12]) that a

period of t = t́ = T = 204t is sufficient. In Fig. 5.45 (bottom) the closure is shown to

give a reasonable estimate of the evolved Reynolds number with RDNS
L (0.3) = 164.47 and

RCUQDIA
L (0.3) = 159.11.
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Figure 5.43: C48 resolution spectra. (top) Initial Mean and Transient energy spectra.

(bottom) Mean and Transient energy fields at t=0.3. Component field diagrams: mean

field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines),

CUQDIA (dot dashed).
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Figure 5.44: C48 resolution spectra. (top) Initial Mean and Transient palinstrophy spec-

tra. (bottom) Mean and Transient palinstrophy spectra at t=0.3. Component field di-

agrams: mean field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS

(solid lines), CUQDIA (dot dashed).



CHAPTER 5. NUMERICAL EXPERIMENTS 133

0 0.06 0.12 0.18 0.24 0.3
       t

0

1

2

3
S

(t
)

0 0.06 0.12 0.18 0.24 0.3
      t

0.4

0.6

0.8

1.0

1.2

R
 (

t)
/R

 (
0

)

Figure 5.45: (top) Skewness calculated at each successive timestep for C48 resolution. DNS

(solid) and CUQDIA (dotted), with restarts calculated at every 20 timesteps. (bottom)

RL(t)/RL(0) evaluated at times t.
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In the second study at C48 resolution the same initial conditions and parameters

(but with 4t = 0.004) are used; however, the topography (squared) now takes the form

|hk|2 = 16k2/(1 + k3)2. This choice of topography falls away much more rapidly at the

small scales than that used in the previous experiment thus resulting in a significantly

reduced initial mean field kinetic energy in the small-scales, as seen in Fig. 5.46 (top).

An additional feature of a more rapidly decreasing topographic amplitude is a reduction

in the strength of the eddy-topography interaction at the small-scales.

Table 5.17: Parameters for Figs. 5.46-5.51

4 t ν̂ a b |hk|2 Fk 〈fk〉
0.004 0.0025 4.824× 104 2.511× 103 16k2/(1 + k3)2 0 0

For |hk|2 = 16k2/(1+k3)2 both the evolved (tf = 0.4) closure mean kinetic energy (Fig.

5.46 bottom) and mean palinstrophy (Fig. 5.47 bottom) spectra show close agreement

with DNS, as was the case when the topography (squared) was of the form 1/k2. The

transient energy spectra however, have undergone significant increases for 20 < k < 48

after a period of evolution to tf = 0.4 as compared to the initial spectra; it is also evident

that the CUQDIA again underestimates the evolved transient energy for k > 20. This

is more clearly illustrated in the palinstrophy spectra shown in Fig. 5.47. The failure

of the closure to accurately predict the small-scale transient kinetic energy and transient

palinstrophy is not surprising given that we know spurious convection effects are inherent

in the direct interaction approximation, due to the inaccurate treatment of the three-

point cumulant term. These effects were found to be pronounced for this initial transient

spectrum in the previous studies of Herring et al [112] and Frederiksen and Davies [108].

As with the low Reynolds study, the most interesting result is that the transient energy

and palinstrophy spectra have evolved much more rapidly with a topography and mean

vorticity field present in comparison to the previous studies (see Fig. 4 [108] and Figs. 22

and 23 [112]) where they are absent.

It was shown in Figs. 5.43 and 5.44 that the evolved DNS small-scale transient fields

remained significantly weaker than the mean-fields; this is an obvious difference to Figs.
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5.46 and 5.47 where the evolved small-scale transient fields dominate. The CUQDIA

closure was shown to perform significantly better in predicting the evolved transient fields

for the case where |hk|2 = 4k
(1+k3)

than for the case where |hk|2 = 16k2

(1+k3)2
. Thus it appears

that an increased topographic amplitude, combined with an increased initial mean field,

in the small-scales mitigates the tendency of the CUQDIA to generate spurious convection

effects. In Fig. 5.48 the evolved DNS and CUQDIA closure large-scale Reynolds number

and skewness factor are displayed. We note the close agreement between the DNS and

CUQDIA evolved Reynolds numbers and the significant under-estimation of the skewness

with the CUQDIA closure. A discussion of these results will be included later but first

higher resolution C64 calculations will be presented for the same initial conditions and

parameters as for the case that has just been discussed.
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Figure 5.46: C48 resolution spectra. (top) Initial Mean and Transient energy spectra.

(bottom) Mean and Transient energy fields at t=0.4. Component field diagrams: mean

field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines),

CUQDIA (dot dashed).
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Figure 5.47: (top) C48 resolution. Initial Mean and Transient palinstrophy spectra. (bot-

tom) Mean and Transient palinstrophy spectra at t=0.4. Component field diagrams: mean

field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines), CUQ-

DIA (dot dashed).
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Figure 5.48: (top) Skewness as a function of time for C48 resolution. Shown are results

for DNS (solid) and CUQDIA (dotted), with restarts calculated at every 20 timesteps.

(bottom) RL(t)/RL(0) evaluated at timestep t.
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In Figs. 5.49 and 5.50 comparisons are shown between the closure and DNS spectra for

times t0 = 0 and tf = 0.18 at C64 resolution. At tf = 0.18 (and after 4 restarts) the evolved

DNS and closure mean energy and palinstrophy spectra are still in very close agreement.

However, the CUQDIA transient fields at tf = 0.18 show a marked underestimation at

scales k > 20 which again arises due to spurious convection effects inherent in the direct

interaction approximation. The inhomogeneous closure transient energy and palinstrophy

spectra at tf = 0.18 are found have comparable magnitudes to those in the isotropic case

(Fig. 4 [108]), which were evolved with the same parameters. The obvious difference is

that the inhomogeneous case has a nonzero mean vorticity from which enstrophy can be

transferred to the transients as the system evolves. This is in contrast to our previous

studies (see Figs. 5.28 and 5.31) of viscous decay where both mean and transient fields

were seen to decay at approximately similar rates with no preferential transfer of enstrophy

from one field to the other. Also of interest is the pronounced ”hump” in the DNS spectra

at 50 < k < 64. This phenomena is also observed in Figs. 1, 3 and 4 of [108] however

it is much more pronounced in the C64 inhomogeneous DNS calculations (Figs. 5.49 and

5.50) whereas it is significantly reduced at C48 resolution (see Figs. 5.46 and 5.47).

The differences between the transient energy and palinstrophy spectra for the CUQ-

DIA and DNS are comparable to those of the isotropic study of Frederiksen and Davies

[108] (Fig. 4) where it was found that the discrete closure was in closer agreement with

DNS than the continuous DIA of Herring et al. (Figs. 22 and 23 [112]). The time

evolution of the skewness (Fig. 5.51) shows the effect of the cumulant updates at times

t = 0.04, 0.08, 0.12, 0.16 for the CUQDIA and also (more pronounced) for the ZCUQDIA

closure, where the cumulants are zeroed at each restart step. This dramatically illustrates

the large amount of information about the non-Gaussian cumulants captured by the cu-

mulant update method. The DNS on the other-hand exactly represents the three-point

cumulant.
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Figure 5.49: C64 resolution spectra. (top) Initial Mean and Transient energy spectra.

(bottom) Mean and Transient energy fields at t=0.18. Component field diagrams: mean

field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines),

CUQDIA (dot dashed).
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Figure 5.50: C64 resolution spectra. (top) Initial Mean and Transient palinstrophy spec-

tra. (bottom) Mean and Transient palinstrophy spectra at t=0.18. Component field

diagrams: mean field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS

(solid lines), CUQDIA (dot dashed).
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Figure 5.51: C64 resolution skewness calculated as a function of time. Shown are results

for DNS (solid) and the CUQDIA (dotted), with restarts calculated at every 10 timesteps.

The DNS and CUQDIA closure skewness are also compared with the case where the third

order cumulants are zeroed (ZCUQDIA) at each restart step (dashed).
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As was observed in the spectrum A study, Frederiksen and Davies [108] (Figs. 3 and

5) found that the discrete DIA and CUDIA closures were very much more accurate in

representing of skewness than the continuous DIA ([112] Fig. 16). In the case of the

discrete inhomogeneous CUQDIA the skewness has been found to agree with DNS with

approximately the same level of confidence (Fig. 5.51) as in the discrete closure isotropic

experiment. This is in contrast to the low resolution study of the CUQDIA (Fig. 5.42)

where it was shown that the CUQDIA did not estimate the skewness with the same

accuracy as the corresponding discrete isotropic CUDIA. However, when the topography

was modified to increase the topographic strength at the small-scales the CUQDIA closure

was found to much better estimate the skewness factor and large-scale Reynolds number

(Fig. 5.45 top).

In Figs. 5.46 and 5.47 energy and palinstrophy spectra were shown for the lower

resolution C48 experiment for a run time approximately double that of the C64 case.

The longer runtime at C48 allowed a more detailed examination of the evolution of the

skewness (Fig. 5.48 top) where we clearly see the under-representation of the skewness

and an over-representation of the Reynolds number (Fig. 5.48 bottom). The initial

Reynolds number for both C48 and C64 resolutions was found to be RL(0) = 304 with

RL(0.18)/RL(0) = 0.9090 for the C64 DNS calculation and RL(0.18)/RL(0) = 0.9328 for

the C64 CUQDIA results whereas RL(0.4)/RL(0) = 0.7700 for the C48 DNS calculation

and RL(0.4)/RL(0) = 0.8134 for the C48 CUQDIA. Figure 5.48 (bottom) shows the evo-

lution of RL(t)/RL(0) for the C48 case. Interestingly both the C48 and C64 moderate

Reynolds number studies show better accuracy in their estimation of the evolved mean

energy (Figs. 5.46 and 5.49) than was observed for the low Reynolds number study from

spectrum A (Fig. 5.40).

5.7 Summary

Using low resolution studies we have compared the evolution and dynamics of the mean

and transient fields for two-dimensional inhomogeneous flow over topography. Close agree-

ment was found between the QDIA closure equations and DNS of the barotropic vorticity
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equation for both an inviscid unforced case and cases where either or both viscosity and

forcing were present. We also identified the basis of the DNS sampling error and presented

methods in order to remove it for subsequent spectral studies. Higher resolution spectral

studies at C16, C48 and C64 were carried out over a wide range of topographies and pa-

rameter choices. A number of diagnostic quantities were employed in order to investigate

the accuracy of the closure equations and close agreement to DNS was demonstrated, espe-

cially for the case of viscous decay from an initial canonical equilibrium state. Subsequent

experiments at low and moderate Reynolds number revealed an under-representation of

the small-scale transient enstrophy due to spurious convection effects in the closure cal-

culation; this is to be expected on the basis of the well-known behavior of the Eulerian

DIA closure for isotropic turbulence [109, 112, 108]. The slope of the topography and the

strength of the mean field relative to the transient field were found to affect the accu-

racy with which the closure predicted the small scales of the evolved fields. The closure

model has been found to perform significantly better in estimating the evolved small-scale

transient field amplitudes when the small-scale amplitudes of both the topography and

evolved mean field are strong relative to the evolved transient field amplitude (Figs. 5.43,

5.44 and 5.45). The mean field amplitudes were found to be in close agreement for all

three moderate Reynolds number studies with some minor under-estimation found in the

low Reynolds number experiment. The cumulant update procedure was further shown to

improve the estimation of the skewness for cases where restarts were required. In the next

chapter a description will be given of how the CUQDIA may be extended to the β-plane

in order to incorporate differential rotation, large-scale zonal flows and Rossby waves.



Chapter 6

Rossby wave turbulence

In this chapter the QDIA and CUQDIA closure models are extended from an f -plane

to a β-plane via the inclusion of the so-called β-effect. This work is not intended to be

a thorough investigation of all the potential problems of interest for turbulent flow on a

β-plane but is designed to show how an efficient and logical extension of both the model

and theory to incorporate both large-scale flow and differential rotation may be achieved.

In general most studies of geophysical flow over topography on a β-plane have used the

“standard” formulation of the barotropic vorticity equation with the standard large-scale

zonal flow and differential rotation terms added [113, 114, 13, 115]

∂ζ

∂t
+ J(ψ − Uy, ζ + h + βy) = 0. (6.1)

Unfortunately standard β-plane models are in actuality not all that similar to spherical

models. Models formulated for spherical geometry incorporate planetary and solid body

rotation vorticity terms in a very natural way whereas the standard β-plane only includes

the planetary vorticity. In sections 6.1, 6.2, 6.3 and 6.4 a “generalized” β-plane model

is developed that is comparable to models formulated using a spherical geometry. The

extension of the standard β-plane model to the generalized β-plane is achieved via the

addition of a term, k2
0Uy, representing the vorticity associated with the large-scale flow.

Note that in general k2
0U << β for atmospheric flows. It is noted that the difference

between the generalized and standard β-plane models can in principle be made as small

as would be liked by taking k2
0 → ε.

145
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An additional advantage of formulating the QDIA closure on the generalized β-plane

is that the symmetry properties of the f -plane QDIA closure equations are preserved.

The importance of symmetry in Frederiksen’s original derivation of the QDIA [91] is in

allowing a very compact set of closure equations to be achieved that can be implemented

in an obvious way. On the other hand the standard β-plane barotropic vorticity equation

(Eq. 6.1) produces a large and “unwieldy” set of closure equations with nonsymmetric

interaction coefficients whose implementation represents a significantly more difficult task.

This chapter is begun with a presentation of the generalized β-plane barotropic vortic-

ity equation. As well as providing a one-to-one correspondence to the barotropic vorticity

equation in spherical geometry the resulting symmetric form of the closure equations may

be implemented simply by the extension of the interaction coefficients and wavenumber

space to include a k00 mode that acts in an analogous way to the (0, 1) mode in spheri-

cal geometry. In sections 6.1-6.4.2 closure equations and their interaction coefficients are

derived; as well conservation of energy and potential enstrophy equations are considered

before deriving canonical equilibrium solutions. After the theory has been described in

detail experiments at C3 and C16 resolution are shown for inviscid unforced, viscous de-

cay and forced dissipative flows over a Gaussian topography on the doubly periodic plane.

These experiments are intended to show that the β-QDIA and β-CUQDIA numerical mod-

els give results that are not only in close agreement with DNS but are consistent with the

current knowledge of waves and turbulence on a β-plane.

6.1 Dispersion relations

General geophysical flow over topography is further complicated by the presence of dif-

ferential rotation and the effects of interaction with the large-scale flow that drives the

system. The addition of differential rotation is known as the β-effect. In the presence

of the β-effect, linear waves satisfy the dispersion relation for plane transverse waves of

the form ψ ∝ e−ik·x−ωt. Also in contrast to the f -plane, the direction of the large-scale

flow U now becomes of increased importance due to the β-effect exciting Rossby waves;

that is the development of a downstream Rossby wave-train for eastward initial flow as
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opposed to weak transient Rossby waves for westward initial flow. For 2-D turbulent flow

over topography there is the added possibility that turbulence may now be converted to

waves (this particular aspect has been discussed by Rhines [113]). To reiterate, on the

sphere there are two contributions to the vorticity, namely the planetary vorticity and the

vorticity of the large-scale solid body rotation flow. The vorticity of the large-scale flow is

small compared to the planetary vorticity but important nevertheless, especially so when

one considers that the standard β-plane attempts to approximate the large-scale Laplacian

on the sphere with a small-scale Laplacian when applied to Uµ1. In order to incorporate

these effects the required ”modified” β-plane dispersion relation for planar geometry is

derived in such a way that the resulting closure equations and interaction coefficients are

in a symmetric form.

Firstly, consider the dispersion relation for linear Rossby waves on the sphere in the

presence of solid body rotation zonal flow [11] given by

ωr = mU − 2m(1 + U)
n(n + 1)

(6.2)

= mU − β01m + n01(n01 + 1)Um

n(n + 1)
(6.3)

where β01 = 2, n01 = 1, m = zonal wavenumber, and n = total wavenumber. For flow on

the sphere the earths’ radius A has been used as a length scale and the earths’ angular

momentum Ω−1 as a time scale. 2. Also the mean streamfunction for solid body rotation

is

ψ = −Uµ (6.4)

with µ the sine of the latitude. It is also noted that Frederiksen [11] considered U =

−
√

3
2ψ01 where ψ01 is the streamfunction of the solid body rotation. In contrast, when

ψ = −Ûy the Rossby waves on the standard β−plane have the dispersion relation

ωβ
r = kxÛ − β

kx

k2
(6.5)

1That is, when the small-scale Laplacian is applied to Uµ the result is zero whereas the application of

the large-scale Laplacian to Uµ produces a nonzero result
2These scalings are also used for the equatorial β-plane
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where kx is the zonal wavenumber and k2 = k2
x + k2

y. On the standard β−plane, the

dimensional βd is

βd =
d

dφ
(2Ωsinφ)

dφ

dyd

=
2Ωcosφ

A
(6.6)

which, using the time and length scales above, has the dimensionless form

β = 2cosφ. (6.7)

A more detailed discussion and derivation of these relationships may be found in the book

by Holton [116]. In a planar geometry the standard β−plane incorporates the planetary

vorticity but neglects the vorticity of the large-scale flow which in spherical co-ordinates

appears as [117]

O2
sphereψ = [

∂

∂µ
(1− µ2)

∂

∂µ
+

1
1− µ2

∂2

∂λ2
]ψ (6.8)

= −2Uµ. (6.9)

On an equatorial β−plane (βeq) it is evident that the β−plane dispersion relation,

including the contribution from the solid body rotation vorticity, by direct comparison to

equations 6.2 and 6.3 must be

ω
βeq
r = kxU − 2kx(1 + U)

k2
(6.10)

= kxU − βeqkx + k2
0Ukx

k2
(6.11)

where βeq = 2 and k2
0 = k2

0eq
= 2. More generally we would expect the β−plane dispersion

relation to have the form

ωβ
r = kxÛ − βkx + k2

0Ûkx

k2
(6.12)

6.2 The generalized β−plane vorticity equation

The vorticity equation with the vorticity of the large-scale flow included but neglecting

dissipation and forcing, and with Û → U , is

∂ζ

∂t
+ J(ψ − Uy, ζ + h + βy + k2

0Uy) = 0. (6.13)
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In order to determine the evolution of the large scale flow U conservation of energy must

be considered (see Appendix A, Frederiksen and Frederiksen [115]). This requires that

∂U

∂t
=

1
S

∫

S
h

∂ψ

∂x
dS. (6.14)

where S is the area of the surface. The kinetic energy is given by

E =
1
2
U2 +

1
2

1
S

∫

S
(Oψ)2 dS (6.15)

while the potential enstrophy is defined by

Q =
1
2
(k0U +

β

k0
)2 +

1
2

1
S

∫

S
(ζ + h)2 dS (6.16)

=
1
2
(ζU + hU )2 +

1
2

1
S

∫

S
(ζ + h)2 dS (6.17)

where ζU = k0U and hU = β
k0

. Equation (6.17) has a similar form to Eq. 5.9 of Carnevale

and Frederiksen [13] with the inclusion of the nontrivial term 1
2k2

0U
2 and the trivial con-

stant term 1
2

β
k2
0
.

For a large scale flow it is to be expected that k0 be less than the retained wavenumber

of the smallest scale and then either k0 < 1 or if we regard the small scales as periodic

on the domain 0 ≤ x ≤ 2π
N , 0 ≤ y ≤ 2π

N , where N is an integer which is greater than 1, if

k0 ≥ 1, ie.,

k[0 ≤ x ≤ 2π

N
, 0 ≤ y ≤ 2π

N
] = Nk[0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π]. (6.18)

6.3 Canonical equilibrium theory

This section contains a discussion of the equilibrium statistical mechanics of flow on the

generalized β-plane making a direct comparison with the previous study of Carnevale

and Frederiksen [13] for flow on the standard β-plane. It will also be shown that in

the limit as k0 → 0 the generalized β-plane reduces to the standard β-plane and thus

the nonlinear stability properties developed previously [13] apply. Firstly, consider the

stationary contribution by analogy with Eq. 5.10 of Carnevale and Frederiksen [13]. Let

µ = µeq = a/b where as before a and b are determined by the prescribed values of E and
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Q for the mean energy and potential enstrophy of the ensemble 3. The simplest nontrivial

solution to Eq. 6.13, is the linear relation

µ(ψs − U sy) = O2ψs + βy + k2
0U

sy + h. (6.19)

Thus, the large-scale contributions may be separated and written as

µ =
β + k2

0U
s

U s
(6.20)

or

U s = − β

µ + k2
0

= − k0hU

µ + k2
0

. (6.21)

This implies

Es
U =

1
2

β2

(µ + k2
0)2

=
1
2k2

0|hU |2
(µ + k2

0)2
, (6.22)

Qs
U =

1
2
(k0U

s + hU )2 =
1
2µ2|hU |2
(µ + k2

0)2
. (6.23)

The definitions of Es and Qs differ from Eqs. 5.12 and 5.12b of Carnevale and Frederiksen

[13] only by the terms containing k2
0. Also,

Es =
1
2k2

0|hU |2
(µ + k2

0)2
+

1
2

∑

k

k2|hk|2
(µ + k2)2

(6.24)

Qs =
1
2µ2|hU |2
(µ + k2

0)2
+

1
2

∑

k

µ2|hk|2
(µ + k2)2

(6.25)

where it is noted that

EU =
1
2
U2 (6.26)

and

QU =
1
2
(k0U +

β

k0
)2 =

1
2
(ζU + hU )2. (6.27)

3The properties of parameters a and b are detailed in Eqs. 3.7a to 3.10 of Carnevale and Frederiksen

[13] as well as the monograph of Katz [118]



CHAPTER 6. ROSSBY WAVE TURBULENCE 151

These are in the standard from for the statistical mechanics developed in section 2 of

Frederiksen and Sawford [10]. Thus the transient terms are

ET
U =

1
2

a + bk2
0

(6.28)

QT
U =

1
2k2

0

a + bk2
0

(6.29)

thereby giving

ET =
1
2

a + bk2
0

+
1
2

∑

k

1
a + bk2

(6.30)

QT =
1
2k2

0

a + bk2
0

+
1
2

∑

k

k2

a + bk2
. (6.31)

Again the large scale flow simply adds an extra term with k2 → k2
0. Also note that with

ζU = k0U it is found that

〈ζU 〉 = k0U
s =

−bk2
0hU

a + bk2
0

(6.32)

which is in the same form as Eq. 13.1a of Frederiksen [91] with k2 → k2
0, hk → hU .

6.3.1 Standard β−plane

The potential enstrophy for the standard β−plane (Eq. 5.12b Carnevale and Frederiksen

[13]) differs from the generalized case by a constant term 1
2(β/k0)2 as well as by the term

1
2k2

0U
2. In order to see how the case incorporating the vorticity of the large-scale flow

reduces to the standard β−plane as k2
0 → 0 let

Q̃U = QU − 1
2
(β/k0)2, (6.33)

Q̃s
U =

1
2µ2(β/k0)2

(µ + k2
0)2

− 1
2
(β/k0)2 (6.34)

= −β2µ + 1
2β2k2

0

(µ + k2
0)2

. (6.35)

Thus

Q̃s
U → −β2

µ
; QT → 0 (6.36)

as k2
0 → 0 in agreement with Carnevale and Frederiksen [13]. It then follows that the

connection between nonlinear stability and canonical equilibrium follows as developed in

Carnevale and Frederiksen [13] for infinite resolution.
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6.4 Closure equations and interaction coefficients

In this section the f -plane CUQDIA closure equations are extended to the β-plane via a

symmetric formulation of the interaction coefficients or bare vertex terms. From Eq. 6.13

with dissipation and forcing included, we have in spectral form

(
∂

∂t
+ ν0(k)k2)ζk(t) =

∑

p∈R

∑

q∈R

δ(k + p + q) [K(k,p,q)ζ−pζ−q

+A(k,p,q)ζ−ph−q] + f0
k −

[
ikxU(ζk + hk) + ikxψk(β + k2

0U)
]

=
∑

p∈R

∑

q∈R

δ(k + p + q) [K(k,p,q)ζ−pζ−q + A(k,p,q)ζ−ph−q] + f0
k

+ik0

[
kx

k2
− kx

k2
0

]
ζkζU + ik0

[
kx

k2
ζkhU − kx

k2
0

ζUhk

]
(6.37)

=
∑

p∈R

∑

q∈R

δ(k + p + q) [K(k,p,q)ζ−pζ−q + A(k,p,q)ζ−ph−q] + f0
k

+k0

[
kx

k2
− kx

k2
0

]
ζkζ−0 + k0

[
kx

k2
ζkh−0 − kx

k2
0

ζ−0hk

]
(6.38)

where ν0 is the bare viscosity and f0
k the bare forcing, and where

ζ−0 = iζU = ik0U ; h−0 = ihU = i
β

k0
; (6.39)

ζ0 = ζ∗−0 = −iζU ; h0 = h∗−0 = −i
β

k0
. (6.40)

It is now possible to extend the sums over p and q to include the vector 0 by defining

the appropriate interaction coefficients. Note that we do distinguish between 0 and −0

in this representation and R is the points in discrete wavenumber space. We define the

interaction coefficient

K(k,p,q) =
γ

2
[pxq̂y − p̂yqx](p2 − q2)/p2q2 (6.41)
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where

q̂y =





1 if q = 0 or p = 0,

qy otherwise
(6.42)

p̂y =





1 if p = 0 or q = 0,

py otherwise
(6.43)

γ =





k0 if q = 0 or p = 0,

1 otherwise.
(6.44)

We also let

A(k,p,q) = −γ(pxq̂y − p̂yqx)/p2 (6.45)

where q̂y and p̂y are defined in Eqs. 6.42 and 6.43 and γ is defined in Eq. 6.44. Finally

the spectral form of the barotropic vorticity equation with differential rotation may be

written in a compact form as

(
∂

∂t
+ ν0(k)k2)ζk(t) =

∑

p∈T

∑

q∈T

δ(k + p + q) [K(k,p,q)ζ−pζ−q

+A(k,p,q)ζ−ph−q] + f0
k (6.46)

where T = R ∪ 0.

From Eq. 6.14

∂U

∂t
=

1
(2π)2

∫ 2π

0

∫ 2π

0
dx

∑

q́∈R

hq́ exp iq́ · x
∑

q∈R

iqxψq exp iq · x (6.47)

=
∑

q∈R

iqxψqh−q

= −i
∑

q∈R

qx

q2
ζqh−q (6.48)

= −i
1
2

∑

p∈R

∑

q∈R

(px − qx)
p2

ζ−ph−q. (6.49)

Thus

∂k0U

∂t
= −ik0

∑

q∈R

qx

q2
ζqh−q =

∂ζU

∂t
(6.50)
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which, using ζ0 = −iζU = −ik0U , can equivalently be written as

∂ζ0
∂t

= −k0

∑

q∈R

qx

q2
ζqh−q (6.51)

and the appropriate interaction coefficients may be defined as

A(0,p,q) =
k0

2
(pxq̂y − p̂yqx)/p2 (6.52)

where p̂y = q̂y = 1. (6.53)

This means that

∂ζ0
∂t

=
∑

p∈R

∑

q∈R

δ(0 + p + q)A(0,p,q)ζ−ph−q (6.54)

where

K(0,p,q) =
1
2
[A(0,p,q) + A(0,q,p)] (6.55)

from which it follows that

∑

p∈R

∑

q∈R

δ(0 + p + q)K(0,p,q)ζ−pζ−q = 0. (6.56)

We can also write

(
∂

∂t
+ ν0(k0)k2

0)ζ0(t) =
∑

p∈T

∑

q∈T

δ(0 + p + q) [K(0,p,q)ζ−pζ−q

+A(0,p,q)ζ−ph−q] + f0
0 (6.57)

on including drag and forcing in the ζ0 equation where ν0(k0)k2
0 = const. In particular

terms such as

f0
0 − ν0(k0)k2

0ζ0(t) = α(ζ0 − ζ0(t)). (6.58)

may be included. In general, the interaction coefficients that couple the field to the

topography may be written as

A(k,p,q) = −γ(pxq̂y − p̂yqx)/p2 (6.59)
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where

γ =





−k0
2 if k = 0

k0 if q = 0 or p = 0

1 otherwise

(6.60)

q̂y =





1 if k = 0 or p = 0 or q = 0

qy otherwise
(6.61)

p̂y =





1 if k = 0 or p = 0 or q = 0

py otherwise
(6.62)

and

K(k,p,q) =
1
2

[A(k,p,q) + A(k,q,p)] . (6.63)

Now consider

C0(t, t́) = 〈ζ0(t)ζ−0(t́)〉

= 〈ζ0(t)ζ∗0(t́)〉 (6.64)

as we define ζ−0(t́) = ζ∗0(t́). Then

C0(t, t́) = 〈−ik0U(−ik0U)∗〉

= k2
0〈U(t)U(t)〉 (6.65)

where U is real, and similarly

Ck−0(t, t́) = 〈ζk(t)ζ−0(t́)〉

= 〈ζk(t)ζ∗0(t́)〉. (6.66)

Thus we find that Eqs. 6.46 and 6.57 are of the same form as Eq. 2.3 of Frederiksen [91]

and so the closure equations can be immediately written down, taking care with the ±0

subscripts, and have the same form as those previously considered for the f -plane.
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6.4.1 N-periodic flow

The argument is now generalized to consider N-periodic flow on the equatorial β−plane.

It is firstly noted that with the scaling k → kN , where k, p, and q are not equal to 0,

then

A(kN,qN,pN) = A(k,q,p)

K(kN,qN,pN) = K(k,q,p). (6.67)

From the rescaling transformation
[
kx

k2
ζk(β + k2

0U)− kxU(ζk + hk)
]
k → kN−−−−−→

[
kx

k2
ζk

(β + k2
0U)

N
− kxUN(ζk + hk)

]
(6.68)

and Eq. 6.48 with k → kN we have that

∂U

∂t
=
−i

N

∑
q

qx

q2
ζqh−q (6.69)

or

∂UN

∂t
= −i

∑
q

qx

q2
ζqh−q. (6.70)

Let U = UN , k2
0 = k2

0
N2 , B = β

N . Thus with

k → kN (6.71)

U → U = UN (6.72)

k0 → k0 =
k0

N
(6.73)

β → B =
β

N
(6.74)

we are back to the form of the original set of equations provided

ν0(k) → ν0(k)N2. (6.75)
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6.4.2 Equilibrium conditions

The required equilibrium conditions incorporating large scale flow are simply defined as

for the f -plane but with additional k(0,0) terms

Ceq
0 =

k2
0

a + bk2
0

, (6.76)

Ceq
k =

k2

a + bk2
, (6.77)

〈ζ0〉eq = −bh0Ceq
0 , (6.78)

〈ζk〉eq = −bhkCeq
k , (6.79)

h0 = −i
β

k0
. (6.80)

An equilibrium calculation, on the doubly periodic plane for flow over a Gaussian moun-

tain, is depicted in Fig. 6.1 with parameters given in table 6.1. The closure model was

found to obey canonical equilibrium exactly with the stability of the equilibrium state

independent of the strength of the topography or stepsize. The parameters a and b are

typical for meteorological flows and are the same as used in the low resolution f -plane

study of homogenous turbulence without topography of Frederiksen, Davies and Bell [104].

Table 6.1: Figure 6.1 parameters

4t a b β k2
0

0.1 4.824× 104 2.511× 103 2 2

6.5 C3 experiments

Before considering the results of the β-plane CUQDIA it is important to point out a further

technical complication. That is, although the closure equations have been written in a

compact form via the incorporation of the vorticity associated with the large-scale flow,

the interaction coefficients that arise due to the inclusion of a (kx = 0, ky = 0) mode are

significantly larger in number than for the f -plane closure. This is due to two reasons, the

first is that there is no longer an equivalency between the K(k,p,q) and K(−k,−p,−q)
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Figure 6.1: The mean stream function (left), excluding the Uy term, and topography

(right), for flow on an equatorial β-plane at canonical equilibrium over a nondimensional

Gaussian mountain on the doubly periodic plane at C16 resolution. Parameters are given

in table 6.1.

interaction coefficients for cases where k = 0, p = 0 or q = 0; thus

K(k,p,q) 6= K(−k,−p,−q),

A(k,p,q) 6= A(−k,−p,−q). (6.81)

This results in the number of nonzero interaction coefficients in each of the K(k,p,q),

A(k,p,q), K(−k,−p,−q), A(−k,−p,−q), K(−p,−q,−k), K(−p,−k,−q) and

A(−p,−q,−k) terms being greatly increased. The second and principle reason is essen-

tially one of convenience, that is, in order to allow vectorization the closure code with the

(kx = 0, ky = 0) mode interaction coefficients included, the model must be run over the

whole wavenumber space.

Considering the equatorial β-plane with β = 2, k2
0 = 2 and N-periodic flow on [0, 2π]

then this is equivalent to 1-periodic flow on [0, 2π] with the conditions as in Eqs. 6.71-6.74

and 6.75. Thus the choice of parameters depends on the choice of separation between

the large scale (k0) and small scales (kN). In Fig. 6.3 we have chosen β = k2
0 = 2 and

N = 4 thus giving β2π = 1/2, k2
02π

= 1/8 noting that the specification of ν0 is somewhat



CHAPTER 6. ROSSBY WAVE TURBULENCE 159

arbitrary. The initial values of ±i0.032389 for 〈ζ0(0)〉 correspond to westward/eastward

initial flow at 15ms−1 respectively. As for the f -plane experiments, only viscosities of the

form ν0(k) = ν̂ will be used in the numerical experiments, rather than the more general

ν0(k). Here ν̂ is the nondimensional viscosity.

Table 6.2: Parameters for figure 6.2 and 6.3

4t a b β k2
0 N

1.0 2.075× 105 2.130× 105 1
2

1
8 4

Table 6.3: Parameters for figures 6.2 and 6.3

ν̂ Ck(0, 0) C0(0, 0) h0 〈ζ0(0)〉 〈ζk(0)〉 f0

0.0 Ceq
k Ceq

0
−iβ
k0

±i0.032389 −bhkCeq
k 0

For flow in which the β-effect is taken into account, Rossby waves may be excited de-

pendent on the direction of the mean flow. In Fig. 6.2 we present the case for eastward flow

over a Gaussian mountain at C3 resolution. The topography hk is the Fourier transform of

a nondimensional Gaussian mountain on the doubly periodic plane with maximum height

corresponding to a dimensional height of approximately 30 meters (see Fig. 6.4 bottom

right). In this case the topography and mean field are considerably weaker than the tran-

sient field in order to guarantee stability at such low resolutions with the current relatively

large timestep (strong topographies are considered for the C16 cases). For eastward flow

the downstream wave pattern excited corresponds to a stationary wave with an elongated

circular crest. This downstream stationary Rossby wave develops quickly due to the large

value of U . As the system evolves the downstream wave-crest gains in strength as evident

in Fig. 6.4 (bottom left). Figure 6.4 (top) shows the evolution of the total (twice) en-

strophies for the same modes as previously considered in the C3 f -plane cases (excluding

the total and ζ0 modes) for 50 timesteps with parameters as given in table 6.3 but with

4t = 0.5. We see excellent agreement between DNS (solid) and CUQDIA (dashed) over

a nondimensional time of t = 50 for the N-periodic (N=4) calculation.
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For westward initial flow (see Fig. 6.3) we have no excitation of Rossby waves with

the β-effect reinforcing the trapping of the negative vorticity core (highs in ψ) over the

topography. Some small amplitude disturbances are seen to propagate in a principally

downstream direction although there is some evidence of the effects of the cyclic symmetry

of flow on the doubly periodic plane. These disturbances are transient in nature with the

system evolving toward a steady state very similar to the t = 10 case in Fig. 6.3. These low

resolution studies demonstrate that the closure model is giving results that are broadly in

agreement with previous studies of rotating barotropic flow over topography on a β-plane

[113, 119, 114] and corresponding studies on the sphere [11, 10].
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Figure 6.2: Evolution of the QDIA mean streamfunction for eastward initial flow over a

Gaussian mountain at C3 resolution: Parameters are given in tables 6.2 and 6.3. The

evolution of the mean streamfunction, excluding the Uy contribution, is shown over a

nondimensional time of t = 10. The downstream stationary Rossby wave of significant

amplitude is quickly excited while the lack of any obvious clockwise rotation is expected

for inviscid unforced flow.
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Figure 6.3: Westward initial flow over a Gaussian mountain for C3 resolution: Parameters

are as for Fig. 6.3. Flow in the westward direction does not result in significant excitation

of Rossby waves with only transient small amplitude Rossby waves apparent.
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Figure 6.4: (top) The evolution of the total fields for N-periodic flow (N=4) on a β-plane

with parameters as for tables 6.2 and 6.3 but with a non-dimensional timestep of 0.5. The

total and k = 0 modes are not displayed in order to focus on the modes where there is

significant evolution; however they display similar agreement. (bottom) The topography

and final state of the mean-field streamfunction after a nondimensional time of 25.
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6.6 C16 results

In this section we consider C16 resolution calculations for a flow over a Gaussian mountain

whose height in physical space corresponds to 3000 meters. This choice of topography

(see Fig. 6.1 left) provides a very strong mean flow component in the two cases that are

presented in this section. Again, relatively large time-steps have been used throughout.

As in the f -plane study we will use the following convention for the spectral plots:

Total field diagrams; DNS (solid lines), CUQDIA (dotted lines), initial fields (dashed

lines)

Component field diagrams: mean field; DNS (dashed lines), CUQDIA (dotted lines),

transient field; DNS (solid lines), CUQDIA (dot dashed lines).

Table 6.4: Parameters for Figs. 6.5 to 6.10

4t a b β k2
0 N

0.1 4.824× 104 2.511× 103 1
2

1
8 4

Table 6.5: Parameters for Figs. 6.5 to 6.10

ν̂ f0
0 Ck(0, 0) C0(0, 0) h0 〈ζ0(0)〉 〈ζk(0)〉

0.001 0.0 Ceq
k Ceq

0
−iβ
k0

−i0.04305 −bhkCeq
k

The first case we look at is very similar to the decay from equilibrium cases that

we discussed for the f -plane, however we now have an initial large-scale eastward flow

at 20ms−1 (see tables 6.4 and 6.5). The system is evolved for 60 timesteps including 2

restarts for a total nondimensional time of t = 6.0. The final energy spectra (Figs. 6.5

top, and 6.7 bottom) show close agreement for the total fields although the CUQDIA

slightly overestimates the transient energy at k > 13. In Fig. 6.7 close agreement is

shown for the evolved mean and transient energy. The relative difference between the

mean and transient energy spectra and their crossover point in Fig. 6.7 (bottom) is not

dissimilar to those found in the atmosphere and studied by Boer and Shepherd (see Fig.
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1a [120]). Comparison of the total potential enstrophy (Fig. 6.5 bottom) also shows close

agreement. At t = 6.0 the evolved mean potential enstrophy (Fig. 6.8) shows some slight

underestimation in the closure while some slight overestimation at scales 8 < k < 12 is

evident in the enstrophy and palinstrophy (Figs. 6.9 and 6.10). Overall all diagnostics

compare well even after considerable evolution of the fields.

The second case we will be discussing in detail has parameters given in tables 6.6 and

6.7. This case is again for eastward initial flow at 20ms−1 but now with a much reduced

viscosity and with forcing of the mean large-scale flow 〈ζ0(0)〉 via 〈f0
0〉. The result is

that energy and enstrophy are forced into the system via the mean large-scale flow term

and dissipated via the other modes producing a system that has a very strong mean flow

that is forced to stay near 20ms−1 thereby producing large amplitude Rossby waves. We

again implement our restart procedure at t = t́ = 204t and evolve the system for a

nondimendional time of t = 5.0. In Figs. 6.11 and 6.12 both the mean and transient

energy and palinstrophy spectra are shown to closely agree at all scales.

Table 6.6: Parameters for Figs. 6.11 to 6.14

4t a b β k2
0 N

0.05 4.824× 104 2.511× 103 1
2

1
8 4

Table 6.7: Parameters for Figs. 6.11 to 6.14

ν̂ 〈f0
0〉 Ck(0, 0) C0(0, 0) h0 〈ζ0(0)〉 〈ζk(0)〉

0.0001 −i0.04305ν̂k2
0

1
100Ceq

k
1

100Ceq
0

−iβ
k0

−i0.04305 −bhkCeq
k

Figures 6.13 and 6.14 (bottom) reveal the evolution of the mean streamfunction con-

tours from the initial state (6.13 top). We can clearly see evidence of a local clockwise

rotation of the negative and positive vorticity structures in the vicinity of the topographic

peak. A similar type of effect has been studied in some detail by Verron and Le Provost

(Figs. 12a and b [114]).
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Figure 6.5: The total energy (top) and potential enstrophy spectra (bottom) after 60

timesteps. Total field diagrams; DNS (solid lines), CUQDIA (dotted lines), initial fields

(dashed lines).
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Figure 6.6: The total enstrophy (top) and palinstrophy spectra (bottom) after 60 timesteps

and 2 restarts. Total field diagrams; DNS (solid lines), CUQDIA (dotted lines), initial

fields (dashed lines).
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Figure 6.7: (top) The initial mean and transient energy spectra. (bottom) The mean and

transient energy spectra at t = 6.0. Component field diagrams: mean field; DNS (dashed

lines), CUQDIA (dotted lines), :transient field; DNS (solid lines), CUQDIA (dot dashed

lines).
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Figure 6.8: (top) The initial mean and transient potential-enstrophy spectra. (bottom)

The mean and transient potential-enstrophy spectra at t = 6.0. Component field diagrams:

mean field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines),

CUQDIA (dot dashed lines).
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Figure 6.9: (top) The initial mean and transient enstrophy spectra. (bottom) The mean

and transient enstrophy spectra after 60 timesteps. Component field diagrams: mean field;

DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines), CUQDIA

(dot dashed lines).
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Figure 6.10: (top) The initial mean and transient palinstrophy spectra. (bottom) The

mean and transient palinstrophy spectra after 60 timesteps. Component field diagrams:

mean field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines),

CUQDIA (dot dashed lines).
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Figure 6.11: (top) The initial mean and transient energy spectra. (bottom) The mean and

transient energy spectra after 100 timesteps and 4 restarts. Component field diagrams:

mean field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines),

CUQDIA (dot dashed lines). Note that the respective DNS and CUQDIA mean and

transient fields are almost indistinguishable.
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Figure 6.12: (top) The initial mean and transient palinstrophy spectra. (bottom) The

mean and transient palinstrophy spectra at t = 5.0. Component field diagrams: mean

field; DNS (dashed lines), CUQDIA (dotted lines), :transient field; DNS (solid lines),

CUQDIA (dot dashed lines). As for Fig. 6.11 the respective DNS and CUQDIA mean

and transient fields are almost indistinguishable.
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Figure 6.13: (top) The initial mean streamfunction and (bottom) the evolved mean stream-

function, excluding the Uy term, at t = 5.0. In the viscid forced case clear clockwise

rotation occurs in the vicinity of the mountain with a downstream wave appearing.
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Figure 6.14: Comparison of the evolved mean streamfunctions for (top) initially westward

large-scale flow and (bottom) initially eastward flow as for Fig. 6.13. The case for westward

flow exhibits some small counter-clockwise rotation near the mountain with no evidence

of downstream waves developing.
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In Fig. 6.14 (bottom) we can also begin to see the emergence of a downstream wave

crest as is to be expected. In Fig. 6.14 (top) we have the same case but with the initial flow

in the retrograde direction (westward). As in the C3 calculation (Fig. 6.3) there are no

downstream waves evident; however some anticlockwise rotational effects have emerged

which are more typical of large-scale f -plane flow. These effects are however small in

amplitude with the primary negative vorticity core directly over the main topographic

structure. This feature has been demonstrated previously in Fig. 13a of Verron and Le

Provost [114].

6.7 Summary

In this chapter a logical extension of the QDIA and CUQDIA closure from an f -plane

to a generalized β-plane is developed and shown to be in close agreement with DNS

calculations for resolutions up to C16. The closure theory is found to produce behavior in

broad agreement with that expected for flow over a Gaussian mountain on a β-plane and

also for flow over single realization random topographies (not shown). The C3 inviscid

unforced case shows the expected wavetrain response to isolated topography for eastward

initial flow whereas for initially westward flow only local mean response was found with

large transient Rossby waves evident. In the C16 case for forced dissipative flow with an

initially eastward direction, there is a very strong response evident in the vicinity of the

topographic structure, however the wavetrain response is weak due to the combined effect

of viscosity and strong nonlinearity. Strong nonlinearity results in a pronounced clockwise

rotation of the dipolar structure in the region of the topographic feature with the effective

viscosity suppressing the downstream wavetrain. For the case of initially westward large-

scale flow there is no evidence of a downstream wavetrain but some anti-clockwise rotation

of the negative vorticity structure arises, again, due to nonlinear effects.
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Conclusion

In this thesis the quasi-diagonal direct interaction approximation (QDIA) for flow over

mean topography has been implemented. As well, a variant has been developed in which

the potentially long time-history integrals are periodically collapsed and the information

they contain, namely the non-Gaussian cumulants are represented as non-Gaussian ini-

tial conditions at the subsequent timestep. This variant, termed the cumulant update

quasi-diagonal direct interaction approximation (CUQDIA), is found to produce a close

approximation to the QDIA while dramatically reducing the computational task. Low

resolution studies (triad, C3) of the dynamics of both the QDIA and CUQDIA, as com-

pared to DNS are found to be favorable as have higher resolution C16 studies of the total

kinetic energy and total potential enstrophy.

The CUQDIA mean and transient fields are found to be in extremely close agreement

with DNS for very low Reynolds number studies of the kinetic energy, enstrophy, potential

enstrophy and palinstrophy for two topographies of significantly differing spectral slope.

Resolutions up to C64 have been considered with only very slight discrepancies apparent

in the very smallest scales of the closure transient fields. Low and moderate Reynolds

number studies have shown that the CUQDIA gives very accurate estimates of the mean

and transient fields in the case where the topography squared is of the form |hk|2 = 4k
(1+k3)

and with a strong mean field at the small-scales comparative to the evolved transient

field. More sensitive comparisons of the closure skewness factor and large-scale Reynolds

number have also been shown to be in good agreement with DNS. However, in the case
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with a very weak amplitude small-scale topography, it has been shown that the evolved

DNS small-scale transient field dominates the evolved small-scale mean field. For this

particular case the CUQDIA significantly under-estimated the evolved transients in much

the same way as the non-topographic DIA theory. The closure mean fields on the other

hand are well represented in comparison to DNS in both cases studied.

The obvious conclusion to be drawn is that the presence of a large amplitude small-

scale topography and consequently a large amplitude small-scale mean field reduces the

tendency of the CUQDIA to generate spurious convection effects that manifest themselves

as an under-estimation of the small-scale transient fields. These spurious convection ef-

fects arise from the treatment by the direct interaction approximation of the three-point

cumulant term. The inhomogeneous terms of the closure, namely those terms that incor-

porate the topography and mean field, are found to be remarkably accurate including for

large amplitude small-scale topography and mean-field. This finding is a remarkable ex-

ample of the power of renormalized perturbation theory given that the theory is developed

assuming a small amplitude topographic component.

Finally, the CUQDIA has been extended from the f -plane to a generalized β-plane

in which the standard β-plane dispersion relation has the vorticity of the large-scale flow

in addition to the planetary vorticity. This additional term is incorporated in order that

the standard β-plane be in a one-to-one correspondence with the spherical geometry. The

generalized β-plane formulation also allows a symmetric formulation of the QDIA and

CUQDIA closures thus rendering numerical implementation relatively straight forward.

Respective studies of eastward and westward flow over a Gaussian mountain at C3 and

C16 resolution display close agreement to DNS for a variety of initial conditions, as well as

demonstrating behavior comparable to earlier DNS studies of quasi-geostrophic barotropic

flows. However, no attempt was made to examine the model at higher resolutions or for

increased Reynolds number, although for atmospheric flows the behavior of the mean flow

in the large-scale is of most significance.

It is somewhat obvious that the CUQDIA closure model, as presented in this thesis,

would benefit from the heuristic vertex renormalization known as regularization in the

manner developed by Frederiksen and Davies [28] for the DIA. Regularization requires the
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incorporation of a cut-off parameter in order that the triad interactions be made more

local thus restricting the generation of spurious convection effects inherent in the DIA. As

there are no clear impediments to the regularization of the CUQDIA closure model this

approach to mitigating the problem of spurious convection effects could be carried out in

a straight forward manner.



Appendix

I Eulerian renormalized perturbation theory

In this appendix a heuristic derivation of the direct interaction approximation (DIA) is

presented for stationary, homogeneous and isotropic turbulence. This appendix is included

in the interests of completeness. The main assumptions of the DIA such as weak depen-

dence and quasi-normal distribution are detailed as is the renormalization procedure, after

which the required interaction coefficients are also derived. Many similar derivations of

the DIA appear in the literature and are too numerous to list; however, the books by Leslie

[20], McComb [43] and Lesieur [79] contain comprehensive discussions of most aspects of

the DIA.

I.1 Isotropic turbulence in an incompressible fluid

In order to begin our examination of the Eulerian renormalized perturbation theory we

first define the covariance between two velocity fields vi ,vj as

Uij(x, t; x́, t́) =
〈
vi(x, t); vj(x́, t́)

〉
. (A.1)

In the case of stationary, homogeneous and isotropic turbulence we may express the co-

variance function Uij as a scalar

Uij

(
x, t; x́, t́

)
= CurlU

(|x− x́| , ∣∣t− t́
∣∣) εijl (xl − x́l) . (A.2)

We may write the Navier-Stokes (N-S) equation in the form

∂vi

∂t
+

∂ (vivj)
∂xj

= ν 52 vi − ∂ω

∂xi
+ fi (A.3)
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where ω = p
ρ is the pressure-density ratio. Incompressibility implies ∂vi

∂xi
= 0, while for

divergence free forcing we have that ∂fi

∂xi
= 0. We now work in spectral space via the

Fourier Transform procedure outlined below

vi (x, t) = (V T )−
1
2

∑

k,ω

vi (k, ω) exp i (k · x− ωt) (A.4)

fi (x, t) = (V T )−
1
2

∑

k,ω

fi (k, ω) exp i (k · x− ωt) (A.5)

ωi (x, t) = (V T )−
1
2

∑

k,ω

ωi (k, ω) exp i (k · x− ωt) (A.6)

where

lim
T→∞

1
V T

∑

k,ω

→ 1
(2π)4

∫
d3k

∫
dω (A.7)

with k = (k1, k2, k3,−ω) = (k,−ω), x = (x1, x2, x3, t) = (x, t) and Ω = V T . Here V

represents the volume of a large four dimensional box and temporal extent T [29]. Thus

we may write

vi (x) = Ω−
1
2

∑

k

vi (k) exp i (k · x) , (A.8)

1
Ω

∑

k

→ 1
(2π)4

∫
d4k. (A.9)

Substituting Eqs. A.4, A.5, and A.6 into the N-S Eq. A.3 and integrating over x we find

− iωvi (k) + Ω−
1
2 i

∑

ḱ+k̀=k

[
ḱjvi

(
ḱ
)

vj

(
k̀
)]

= −νk2vi (k)− ikiω (k) + fi (k) . (A.10)

We derive the ω term by multiplying Eq. A.10 by kik
−2 and employing the divergence

condition, which requires kivi = kifi = 0; thus,

ω = − 1

Ω
1
2 k2

∑

ḱ+k̀=k

kiḱjvi

(
ḱ
)

vj

(
k̀
)

. (A.11)

Then substituting Eq. A.11 back into the N-S equation gives

− iωvi (k) + νk2vi (k) = fi (k)

+
i

Ω
1
2

{kj

∑

ḱ+k̀=k

vi

(
ḱ
)

vj

(
k̀
)

−kikjkm

k2

∑

ḱ+k̀=k

vm

(
ḱ
)

vj

(
k̀
)
}. (A.12)
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Now we make use of the following identities (see Appendix I.4 for derivation)

Pij (k) = δij − kikj

k2
(A.13)

Pijm (k) = kjPim (k) + kmPij (k) . (A.14)

Finally Eq. A.12 becomes

(−iω + νk2
)
vi (k)

= fi (k)− i
Pijm (k)

2Ω
1
2

∑

ḱ+k̀=k

vm

(
ḱ
)

vj

(
k̀
)

. (A.15)

I.2 The impulse response function

Let us write Eq. A.15 in a more compact form
(

∂

∂t
+ νk2

)
vi (k, t)

−Nijm (k)
∑

ḱ

vj

(
ḱ, t

)
vm

(
k− ḱ, t

)
= fi (k) (A.16)

where Nijm (k) = − i

2Ω
1
2
Pijm (k). We may now consider the response ri to an infinitesimal

linear forcing function given by fi = δfnδinδ
(
t− t́

)
. Thus

(
∂

∂t
+ νk2

)
ri −

∑

jm

Nijmrjrm = δfnδinδ
(
t− t́

)
. (A.17)

δin =


 1 if i=n;

0 otherwise.
(A.18)

The difference ri − vi = δvi is obtained to give
(

∂

∂t
+ νk2

)
δvi −

∑

jm

Nijm (rjrm − vjvm) = δfnδinδ
(
t− t́

)
. (A.19)

Thus substituting ri = δvi + vi into Eq. A.19 and neglecting O (δv)2 terms we find the

impulse response function satisfies the equation
(

∂

∂t
+ νk2

)
Gin

(
t− t́

)

−2
∑

jm

Nijmvj (t) Gmn

(
t− t́

)
= δin

(
t− t́

)
(A.20)

where Gin

(
t− t́

)
= δvi

δfn(t́)
and we have used the symmetry property Nijm = Nimj .
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I.3 The direct interaction approximation

We next implement the direct interaction approximation of Kraichnan[19] beginning with

the spectral form of the Navier-Stokes equations,
(

∂

∂t
+ νk2

)
vi −

∑

jm

Nijmvjvm = 0, (A.21)

and Eq. A.20. We define a perturbation parameter λ and expand vi and Gin in powers of

λ i.e.

vi = v0
i + λv1

i + λ2v2
i + O

(
λ3

)
(A.22)

Gin = G0
in + λG1

in + λ2G2
in + O

(
λ3

)
. (A.23)

Substituting Eqs. A.22 and A.23 into Eqs. A.20 and A.21 and equating in powers of λ up

to 2nd order gives

d

dt
v0
i + νk2v0

i = 0 (A.24)

d

dt
v1
i + νk2v1

i =
∑

jm

Nijmv0
j v

0
m (A.25)

(
d

dt
+ νk2

)
G0

in = δinδ
(
t− t́

)
(A.26)

(
d

dt
+ νk2

)
G1

in = 2
∑

jm

Nijmv0
j G

0
mn. (A.27)

In order to calculate the two-point cumulant we multiply Eq. A.21 by vi

(
t́
)
and take the

ensemble average denoted by 〈 〉. Thus we find that
(

∂

∂t
+ νk2

)
Ui

(
t− t́

)
=

∑

jm

Nijm

〈
vj (t) vm (t) vi

(
t́
)〉

(A.28)

where Ui

(
t− t́

)
=

〈
vi (t) vi

(
t́
)〉

.

To proceed further we require an equation for v1
i . This is obtained by solving Eq.

A.25:

v1
i (t) =

∑

jm

Nijm

∫ t

0
e−νk2(t−t́)v0

j

(
t́
)
v0
m

(
t́
)

dt́

=
∑

jmp

∫ t

0
NpjmG0

ip

(
t− t́

)
v0
j

(
t́
)
v0
m

(
t́
)

dt́ (A.29)
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where

G0
in

(
t− t́

)
=





δij e−νk2(t−t́) if t > t́

0 if t < t́

(A.30)

Eq. A.30 is easily deduced from Eq. A.26 with the appropriate causality condition for

t < t́. We may now consider the three-point correlation

〈
v1
i

(
t́
)
v0
j (t) v0

m (t)
〉

= 2
∑
prs

∫ t

0

〈
G0

ip

(
t− t́

)〉
Nprs

〈
v0
j (t) v0

m (t) v0
r

(
t̀
)
v0
s

(
t̀
)〉

dt̀ (A.31)

where we have assumed Kraichnan’s weak dependence principle[19], ie.,

〈
G0v0v0v0v0

〉
= G0

〈
v0v0v0v0

〉
. (A.32)

A further application of “weak dependence” allows us to write

〈
v1
i

(
t́
)
v0
j (t) v0

m (t)
〉

= 2
∑

p

∫ t

0

〈
G0

ip

(
t́− t̀

)〉
NpjmU0

j

(
t− t̀

)
U0

m

(
t− t̀

)
dt̀. (A.33)

We next consider
〈
vi

(
t́
)
vj (t) vm (t)

〉
up to 2nd order in terms of the expansion parameter

λ and apply the normal distribution condition. Note that we have assumed the initial

velocity field to have Gaussian distribution such that
〈
v0
i

〉
= 0 →

〈
v0
i v

0
j v

0
m

〉
= 0. Thus

upon substitution of Eq. A.33 in Eq. A.31 we find that

〈
vi

(
t́
)
vj (t) vm (t)

〉
= 2λ

∑
p

∫ t

0
(

〈
G0

ip

(
t́− t̀

)〉
NpjmU0

j

(
t− t̀

)
U0

m

(
t− t̀

)
dt̀

+
〈
G0

jp

(
t− t̀

)〉
NipmU0

p

(
t− t̀

)
U0

m

(
t́− t̀

)
dt̀

+
〈
G0

mp

(
t− t̀

)〉
NijpU

0
j

(
t́− t̀

)
U0

p

(
t− t̀

)
dt̀

)

+O
(
λ2

)
. (A.34)

Upon substitution of Eq. A.34 into Eq. A.28, and, with the bare two-point covariance and

propagator terms, U0 and G0 replaced by the generalized terms U and G (renormalized),
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we find that
(

∂

∂t
+ νk2

)
Ui

(
t− t́

)
= 2

∑

jmp

Nijm

∫ t

−∞
(

〈
Gip

(
t́− t̀

)〉
NpjmUj

(
t− t̀

)
Um

(
t− t̀

)
dt̀

+
〈
Gjp

(
t− t̀

)〉
NipmUi

(
t− t̀

)
Um

(
t́− t̀

)
dt̀

+
〈
Gmp

(
t− t̀

)〉
NijpUi

(
t− t̀

)
Uj

(
t́− t̀

)
dt̀

)

= 2
∑

jmp

Nijm

∫ t

−∞
(

〈
Gip

(
t́− t̀

)〉
NpjmUj

(
t− t̀

)
Um

(
t− t̀

)
dt̀

+2
〈
Gjp

(
t− t̀

)〉
NipmUi

(
t− t̀

)
Um

(
t́− t̀

)
dt̀ ) . (A.35)

Note in Eq. A.35 we have used symmetry (Nijk = Nikj) to combine the
〈
v0
i v

0
j v

1
m

〉
and〈

v0
i v

1
j v

0
m

〉
terms. Finally in order to close the system we must express

〈
Gij

(
t− t́

)〉
in

terms of Ui

(
t− t́

)
. Taking the expectation of Eq. A.20 we have

(
∂

∂t
+ νk2

)〈
Gin

(
t− t́

)〉

−2
∑

jm

Nijm

〈
vj (t) Gmn

(
t− t́

)〉

= δinδ
(
t− t́

)
. (A.36)

In similar fashion to the two-point cumulant we expand
〈
vj (t) Gmn

(
t− t́

)〉
in powers of

λ using Eqs. A.22 and A.23. Thus

〈
vj (t) Gmn

(
t− t́

)〉

=
〈
v0
j (t) G0

mn

(
t− t́

)
+ v0

j (t) λG1
mn

(
t− t́

)

+ λv1
j (t) G0

mn

(
t− t́

)〉
+ O

(
λ2

)
. (A.37)

Applying “weak dependence” and averaging to Eq. A.29, with a change in indicies, i → j,

j → m, m → n for clarity, we find

〈
v1
j (t)

〉
=

∑
mnp

∫ t

0
Npmn

〈
G0

jp

(
t− t̀

)〉 〈
v0
m

(
t̀
)
v0
n

(
t̀
)〉

dt̀ (A.38)

where
〈
v0
m

(
t̀
)
v0
n

(
t̀
)〉

= 0 for m 6= n (that is, the distribution is multivariate normal).

Thus for m = n

〈
v1
j (t)

〉
=

∑
mmp

∫ t

0
Npmm

〈
G0

jp

(
t− t̀

)〉
U0

m

(
t̀
)

dt̀. (A.39)
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However Npmm = 0 by definition and Eq. A.39 along with the 2nd term in Eq. A.37

vanishes. Similarly the 1st term in Eq. A.37 is also identically zero as
〈
v0G0

〉
=

〈
v0

〉
G0 =

0. Thus it remains to evaluate G1
mn

(
t− t́

)
. We proceed by integrating Eq. A.27

G1
mn

(
t− t́

)
= 2

∑
pqn

∫ t

0

G0
mp

(
t− t̀

)
Npqnv0

p

(
t− t̀

)
G0

mn

(
t̀− t́

)
dt̀. (A.40)

Substituting

〈
vj (t) Gmn

(
t− t́

)〉
= λ

〈
v0
j (t) G1

mn

(
t− t́

)〉
(A.41)

into Eq. A.36 with G1 given by Eq. A.40 and λ = 1 we find that
(

∂

∂t
+ νk2

) 〈
Gin

(
t− t́

)〉

−4
∑

jmpr

Nijm

∫ t

0

〈
Gmp

(
t− t́

)〉
NpjrUj

(
t− t̀

) 〈
Gin

(
t̀− t́

)〉
dt̀

= δinδ(t− t́). (A.42)

Here, we have again replaced the U0 and G0 terms with U and G. Thus, Eqs. A.35

and A.42 close the system at second order and the closure outlined constitutes the direct

interaction approximation. Note: Eqs. A.35 and A.42 correspond to Eqs. 6.28 and 6.31

of McComb[43].

I.4 The Pijm and Pij terms

The Pijm and Pij terms are important as they represent the coupling terms for the in-

teractions and hence define, in a sense, the nonlinearity. In other words the symmetric

operator Pijm represents the bare vertex terms or anharmonicity. In order to derive the

Pijm and Pij terms we again begin with the Navier Stokes equation

∂vi (x, t)
∂t

+ vm (x, t)
∂vi (x, t)

∂xm
− ν 52 vi (x, t) = − ∂ω

∂xi
(A.43)

where ω = p
ρ with ρ the density. In order to eliminate the pressure we take the divergence

of Eq. A.43. We now make use of the continuity condition i.e. ∂vj(x,t)
∂xj

= 0 and the fact

that ∂
∂xi

∂
∂t can replace ∂

∂t
∂

∂xi
to find the pressure condition

−52 ω =
∂vm

∂xi

∂vi

∂xm
. (A.44)
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However, the continuity condition allows us to write

−52ω =
∂vj

∂xi

∂vi

∂xj
+ vj

∂

∂xj

(
∂vi

∂xi

)

=
∂

∂xj

[
vi

∂vj

∂xj
+ uj

∂vi

∂xj

]

=
∂

∂xi

∂

∂xj
(vivj) =

∂

∂xj

∂

∂xm
(vjvm) . (A.45)

Thus

ω = − 1
52

∂

∂xj

∂

∂xm
(vjvm) . (A.46)

Substituting Eq. A.46 into Eq. A.43 we find

∂vi

∂t
− ν 52 vi +

[
vm

∂vi

∂xm

− ∂

∂xi

(
1
52

∂

∂xj

∂

∂xm
(vjvm)

)]
= 0. (A.47)

After some manipulation the term in square brackets may be written as

[ ] =
1
2

(
∂

∂xm

(
δij (vjvm)− 1

52

∂2

∂xixj
(vjvm)

))

+
1
2

(
∂

∂xj

(
δim (vjvm)− 1

52

∂2

∂xixm
(vjvm)

))
(A.48)

where we have used vm
∂vi
∂xm

= ∂
∂xm

(vivm) and ∂
∂xm

(vivm) = δij
∂

∂xm
(vjvm) . We now iden-

tify the following terms

Pij = δij − 1
52

∂2

∂xixj
(A.49)

and

Pijm =
∂

∂xm
Pij +

∂

∂xj
Pim. (A.50)

Finally, we take the Fourier Transform of Eq. A.50 i.e.

F.T.

[
∂

∂xm
Pij +

∂

∂xj
Pim

]

= ikm

(
δij − kikj

k2

)
+ ikj

(
δim − kikm

k2

)
(A.51)

as required.
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II Barotropic vorticity interaction coefficients

In this appendix the interaction coefficients K(k,p,q) and A(k,p,q) as defined in Eqs.

3.7 and 3.8 are derived. We first consider the Jacobian

J(ψ, ζ + h) =
∂ψ

∂x

∂(ζ + h)
∂y

− ∂ψ

∂y

∂(ζ + h)
∂x

(A.52)

where

∑

k

ψk(t) exp(ik · x) = −
∑

k

1
k2

ζk(t) exp(ik · x). (A.53)

Thus

J(ψ, ζ + h) =
∑
p

∑
q

pxqy − pyqx

p2

×ζp(t)[ζq(t) + hq] exp(ip · x + iq · x). (A.54)

Now take

1
(2π)2

∫ ∫ 2π

0
dx exp(−ik · x) = 〈φ(x)| (A.55)

thus

〈φ(x)|ψ(x)〉 =
1

(2π)2

∫ ∫ 2π

0
dx exp(−ik · x)

∑

ḱx

∑

ḱy

ψḱxḱy
exp(−iḱ · x) (A.56)

= ψk (A.57)

subsequently

〈φ(x)|J(ψ, ζ + h)〉 =
∑
p

∑
q

δ(k,−p,−q)
(pxqy − pyqx)

p2
ζp(t)[ζq(t) + hq]. (A.58)

So that ultimately we find

〈φ(x)| − J(ψ, ζ)〉 =
∑
p

∑
q

δ(k,p,q)K(k,p,q)ζ−p(t)ζ−q(t) (A.59)
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〈φ(x)| − J(ψ, h)〉 =
∑
p

∑
q

δ(k,p,q)A(k,p,q)ζ−p(t)h−q (A.60)

where the coefficients for the ζ−p(t)ζ−q(t) terms can be symmetrized to give

K(k,p,q) =
1
2

(pxqy − pyqx)(p2 − q2)
p2q2

(A.61)

and the coefficients for the ζ−p(t)h−q terms remain unchanged as the topographic terms

are non-dynamic variables ie

A(k,p,q) = −(pxqy − pyqx)
p2

. (A.62)

III Two-point restart via fluctuation-dissipation theorem

In this appendix an alternate derivation of the two-point restart terms (derived in sec-

tion 3.4.2 using perturbation theory) is developed. The following approach makes use of

the fluctuation dissipation theorem. Consider the equation for the off-diagonal two-time

cumulant

Ck−l(t, t́) =
∫ t

t0

dsRk(t, s)C−l(t́, s)[A(k,−l, l− k)hk−l

+2K(k,−l, l− k)〈ζk−l(s)〉]

+
∫ t́

t0

dsCk(t, s)R−l(t́, s)[A(−l,k, l− k)hk−l

+2K(−l,k, l− k)〈ζk−l(s)〉]. (A.63)

We now suppose that the propagator can be written in the form

Rk(t, s) = Rk(t, T )Rk(T, s) (A.64)

and that the fluctuation-dissipation theorem for the O(1) diagonal propagator holds, ie.,

Ck(t, s)θ(t− s) = Rk(t, s)Ck(s, s). (A.65)
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Thus for t ≥ t́ ≥ T

Ck−l(t, t́) =
∫ t

T
dsRk(t, s)C−l(t́, s)[A(k,−l, l− k)hk−l

+2K(k,−l, l− k)〈ζk−l(s)〉]

+
∫ t́

T
dsCk(t, s)R−l(t́, s)[A(−l,k, l− k)hk−l

+2K(−l,k, l− k)〈ζk−l(s)〉]

+Rk(t, T )R−l(t́, T )
∫ T

t0

dsRk(T, s)C−l(T, s)[A(k,−l, l− k)hk−l

+2K(k,−l, l− k)〈ζk−l(s)〉]

+Rk(t, T )R−l(t́, T )
∫ T

t0

dsCk(T, s)R−l(T, s)[A(−l,k, l− k)hk−l

+2K(−l,k, l− k)〈ζk−l(s)〉]. (A.66)

Now writing Eq. A.66 in compact form as

Ck−l(t, t́) =
∫ t

T
dsRk(t, s)C−l(t́, s)[A(k,−l, l− k)hk−l

+2K(k,−l, l− k)〈ζk−l(s)〉]

+
∫ t́

T
dsCk(t, s)R−l(t́, s)[A(−l,k, l− k)hk−l

+2K(−l,k, l− k)〈ζk−l(s)〉]

+Rk(t, T )R−l(t́, T )Ck−l(T, T ). (A.67)

We note that we only need Ck−l(t, t́) in the closure equations and not Rk−l(t, t́) as we

are assuming white noise.
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