

voyageplan sso2-2008

The role of submarine canyons in upwelling, sediment transport, and productivity hotspots off the Bonney Coast and Kangaroo Island, South Australia.

Itinerary

Depart Hobart 1600hrs, Monday 4 February, 2008 Arrive Port Adelaide 0800hrs, Tuesday 26 February, 2008

Principal Investigators

Dr David Currie (Chief Scientist) – SARDI Aquatic Sciences, GPO Box 120, Henley Beach, South Australia 5022 **Email:** currie.david@saugov.sa.gov.au

Dr John Middleton – SARDI Aquatic Sciences, GPO Box 120, Henley Beach, South Australia 5022 **Email:** middleton.john@saugov.sa.gov.au

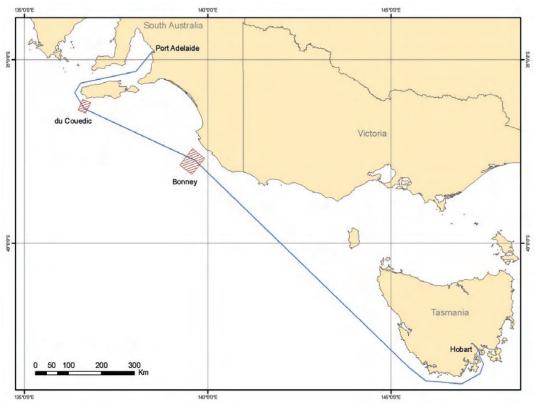
Assoc. Prof. Bruce Ainsworth – University of Adelaide, Australian School of Petroleum, Adelaide, South Australia 5005 **Email:** bainsworth@asp.adelaide.edu.au

Dr Sasi Nayar – SARDI Aquatic Sciences, GPO Box 120, Henley Beach, South Australia 5022 **Email:** nayar.sasi@saugov.sa.gov.au

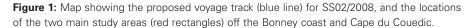
Scientific Objectives

Canyons provide a source for upwelling through their influence on currents, nutrient flux, sediment transport, and influence marine productivity and deep-scattering layers (prey for exploited fish, marine mammals and birds). Off the Bonney Coast-Kangaroo Is, numerous canyons exist, and together with wind-forced upwelling near the coast, may provide nutrient and sediment paths between the deep ocean slope and coast. The Bonney Coast canyons are of particular importance because the area is being explored for hydrocarbons. Tar ball strandings along the Bonney coast may be transported up the canyons from natural leaks at the base of the slope. If proven, this may indicate oil-bearing sediments buried in up to 4000 m deep water, in this un-drilled region. During summer, westward currents over the slope generated by the Flinders Current and meso-scale eddies could produce currents within the canyons sufficient to move sediments and nutrients up slope. It is imperative to understand the importance of the canyons to regional productivity before a need arises to manage hydrocarbon extraction.

We will integrate measurements into numerical models to answer:


- 1) What are the roles of meso-scale eddies and the Flinders Current in driving upwelling within the canyons?
- 2) Does this deep-slope upwelling, in conjunction with wind-forced upwelling, lead to nutrient (and tar-ball) fluxes from the deep-slope to the coasts of the region?
- 3) Do the shelf-edge canyons focus upwelling onto the Bonney Coast, forming discrete hotspots of pelagic productivity?
- 4) Are the sediments and benthic community structure and diversity different beneath hotspots of pelagic productivity?

The importance of canyons in all of the questions above has been established elsewhere and in other studies. The significance of this project then is to determine the nature and role of canyons for the BC-KI region and the specific paths of nutrient and sediment transport and impact of the circulation on hotpots of productivity and the benthic community. The development of a predictive skill in these areas will be of great assistance to future management, particularly as the BC-KI canyons are adjacent to and are likely to influence productivity and biodiversity in two recently established Commonwealth Marine Reserves i.e. Murray and Nelson.


Voyage Objectives

Upwelling will occur within canyons that are exposed to westward slope currents and be largest where warm core (anticlockwise) eddies are found. Two canyon systems that periodically exhibit upwelling will be surveyed during the voyage. An unnamed canyon system off the Bonney Coast is our principal area of interest, and will be surveyed first, but if time permits, a second canyon system ("du Couedic" off the southwest tip of Kangaroo Island) will also be surveyed (Figure 1). The first two weeks in February is generally a period of coastal upwelling so it is also likely that such an event will be captured during the cruise but this is not essential to the canyon study proposed.

A broad-scale mapping survey using swathe, acoustics and ADCP will be conducted at each target area to obtain high-resolution bathymetry, and a synoptic picture of the canyon and coastal upwelling. This broad-scale survey will be determined by the path necessary to swathe the target with some extensions over the survey lines onto the shelf. Following broad-scale mapping, a series of transects along and to each side of the canyon axis will be established (Appendix 1). Stations will be occupied along each transect to obtain a CTD-rosette sampler profile and lowered ADCP profile. Benthic grab samples will be taken at selected depth-stratified stations to determine the composition and structure of the bottom sediments and the biodiversity of the associated infauna. Dredge and trawl samples will also be taken at the same sampling stations to quantify the distribution and composition of epifaunal invertebrates and demersal fish, and to age exposed rocks on the seafloor.

Voyage Track

Time Estimates

Activity	Region	Distance /Area	Time (hrs)	Total Time hrs (days)
Transit	Hobart – Bonney Coast	570 nm	52	
	Bonney Coast – du Couedic	170 nm	16	
	du Couedic – Port Adelaide	140 nm	13	
				81 (3.4 days)
Swath Mapping	Bonney Coast	6,900 km ²	150	
	du Couedic	1,000 km ²	24	
				174 (7.2 days)
Bio/physical Sampling	Bonney Coast		216 (9 days)	
	du Couedic		72 (3 days)	
				288 (12.0 days)
Total				543 (22.6 days)

Table 1: Estimate of time for transit and surveys during SS02/2008 voyage.

Poor weather conditions and equipment failures have the potential to adversely impact on the scientific outcomes of this project. A flexible sampling plan, to be revised on a daily basis, is therefore proposed. A prioritised listing of all scheduled physical, chemical and biological sampling is provided in Appendix 2. Swath mapping priorities have also been summarised in Appendix 3.

Piggy-back Projects

1) Project title: Invertebrate biodiversity in deepwater canyons off South Australia

PI Thierry Laperousaz, South Australian Museum

Objective: The deepwater invertebrate fauna off southern Australia is poorly understood. This project complements core sampling to be undertaken during the voyage, and will primarily involve the preservation, curation and identification of invertebrate organisms collected during sled sampling operations.

2) Project title: Genetic analyses of deepwater fish.

PI Prof. Steve Donnellan, South Australian Museum

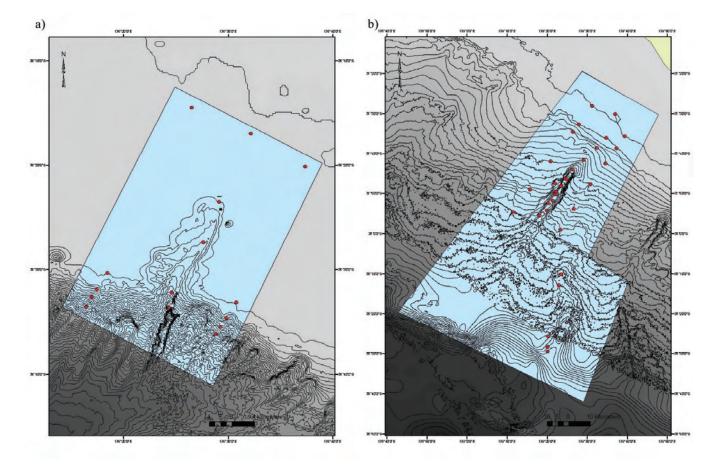
Objective: Short DNA sequences that can discriminate species are currently being determined for many marine animal species under the "Census of Marine Life" project. This piggyback project will contribute to our understanding of biodiversity, distribution and abundance of marine life in the oceans, by undertaking genetic analyses of fish collected during proposed beam-trawl sampling.

Southern Surveyor Equipment

- Communications Voice, fax and data
- Navigation archiving of underway data including time, ship position, bathymetric depth
- Meteorological data air temperature, humidity, windspeed, and direction, barometric pressure and light
- Oceanographic data underway logging of sea surface temperature and salinity
- General computing facilities and marine charting software
- Seapath Seatex 200 for heading pitch and roll
- Simrad EK500 sounder (12, 38, 120kHz)
- Simrad EM300 multibeam swath mapper
- ADCP
- Lowered ADCP
- General purpose laboratory
- Controlled temperature laboratory (3-5°C)
- Hydrochemistry laboratory
- Fish laboratory/geoscience laboratory
- Fish sorting room
- Photographic/preservation laboratory
- Blast freezer
- Walk in freezer
- Scanmar (for monitoring altitude of underwater equipment)
- Sensors to measure: tension, winch-speed and wire out for CTD, trawl and coring winches
- Trawl winches with 5,000m of 24mm wire
- Coring winch with 7,000m of 19mm wire
- CTD/Hydro winches with 7,000m of 8mm single core conducting cable
- Hydrographic A-frame
- Stern A-frame (SWL 15 tonnes)
- 7 tonne knuckleboom crane
- Gilson winches (15 tonne, 5 tonne)
- Electronic fish measuring boards
- Smith McIntyre grabs (2)
- Small epibenthic sled
- Rock dredge (2)
- CTD (seabird SBE 911 plus)
- Additional CTD sensors (Profiling fluorometer, DO, Light)
- Rosette (24 x 10 litre Niskin bottles)
- Underway fluorometer
- Scintillation counter
- Milli-Q water supply
- On deck flowing seawater supply for phytoplankton incubators

User Equipment

- Beam-trawl net (4m headline Lewis/CSIRO design)
- Otter trawl (30m headline Kavanaugh/SARDI design)
- Benthic grab (0.1m² bucket Smith-McIntyre design)
- Sherman sled (1m width Lewis/CSIRO design)
- Epibenthic sled (1m width Ockelmann design)

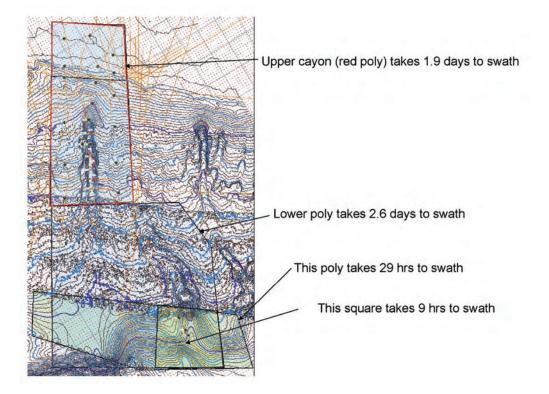

Personnel List

Name	Affiliation	Role
David Currie	SARDI	Chief Scientist
Sasi Nayar	SARDI	Phytoplankton Biologist
Graham Hooper	SARDI	Fish Biologist
Mike Steer	SARDI	Fish Biologist
James Paterson	FU	Phytoplankton Biologist, PhD student
Peter Boult	UA/PIRSA	Geologist
Tony Hill	PIRSA	Geologist
Wayne Rumball	SAM	Invertebrate Biologist
Ruan Gannon	SAM/UA	Fish biologist, PhD student
Marianne Sandstrom	UA	Geologist, PhD student
Anne Kennedy	FUGRO	Swath mapping support
Don McKenzie MSIC40524	CMAR	MNF Voyage Manager
Stephen Thomas MSIC40504	CMAR	MNF Electronics Support
Bob Beattie MSIC40511	CMAR	MNF Computing Support
Mark Rayner MSIC40640	CMAR	MNF Hydrochemistry Support

SARDI – South Australian Research and Development Institute; PIRSA
Primary Industries and Resources South Australia; UA – University of
Adelaide; FU – Flinders University; SAM – South Australian Museum; CMAR
CSIRO Marine and Atmospheric; MNF – Marine National Facility.

This voyage plan is in accordance with the directions of the National Facility Steering Committee for the Research Vessel *Southern Surveyor*.

Dr David Currie Chief Scientist



Appendix 1: Bathymetric maps of a) du Couedic canyon, and b) an unnamed canyon system off the Bonney Coast, showing target areas for swath mapping (blue polygons) and locations of prospective sampling stations (red filled circles).

Appendix 2. Summary table showing sampling locations (GDA94) and priorities for proposed sampling operations during SS02/2008.

Region	Transect	Depth	Station	Latitude	Longitude	Sampling Method					
		(m)				CTD	ADCP	Grab	Sled	Rock Dredge	Benthic Trawl
Bonney	West	100	BW_100	-37.46834722	139.51933611	High	High	High	High		High
Bonney	West	200	BW_200	-37.54486667	139.46438611	High	High	High	High		High
Bonney	West	500	BW_500	-37.57616667	139.43952222	High	High	High	High		High
Bonney	West	1000	BW_1000	-37.69971111	139.34623889	High	High	High	High		High
Bonney	West	1500	BW_1500	-37.81713889	139.26047500	High	High	High	High		High
Bonney	West	2000	BW_2000	-37.90921389	139.19044722	High	High	High	High		Low
Bonney	Centre	100	BC_100	-37.50216111	139.61511111	High	High	High	High		High
Bonney	Centre	200	BC_200	-37.60080556	139.57857500	High	High	High	High		High
Bonney	Centre	500	BC_500	-37.64227778	139.53836667	High	High	High	High		High
Bonney	Centre	1000	BC_1000	-37.69348333	139.48298889	High	High	High	High		High
Bonney	Centre	1500	BC_1500	-37.73280000	139.43714722	High	High	High	High		High
Bonney	Centre	2000	BC_2000	-37.80190556	139.39012222	High	High	High	High		Low
Bonney	East	100	BE_100	-37.59430000	139.65561944	High	High	High	High		High
Bonney	East	200	BE_200	-37.64485000	139.62156667	High	High	High	High		High
Bonney	East	500	BE_500	-37.70728056	139.57463889	High	High	High	High		High
Bonney	East	1000	BE_1000	-37.79508611	139.51299722	High	High	High	High		High
Bonney	East	1500	 BE_1500	-37.89615556	139.44244444	High	High	High	High		High
Bonney	East	2000		-37.98351667	139.38726667	High	High	High	High		Low
, du Couedic	West	100	_ DCW_100	-36.24129922	136.44109855	Low	Low	Low	Low		Moderate
du Couedic	West	200	 DCW_200	-36.50519841	136.30691346	Low	Low	Low	Low		Moderate
du Couedic	West	500	DCW_500	-36.53096537	136.28989666	Low	Low	Low	Low		Moderate
du Couedic	West	1000	DCW_1000	-36.54387909	136.28172283	Low	Low	Low	Low		Moderate
du Couedic	West	1500	DCW_1500	-36.55921511	136.27277201	Low	Low	Low	Low		Moderate
du Couedic	Centre	100	DCC_100	-36.28262454	136.53590335	Low	Low	Low	Low		Moderate
du Couedic	Centre	200	DCC_200	-36.39152921	136.48534144	Low	Low	Low	Low		Moderate
du Couedic	Centre	500	DCC_500	-36.45619111	136.46005945	Low	Low	Low	Low		Moderate
du Couedic	Centre	1000	DCC_1000	-36.53633321	136.40923821	Low	Low	Low	Low		Moderate
du Couedic	Centre	1500	DCC_1500	-36.56064103	136.40524603	Low	Low	Low	Low		Moderate
du Couedic	East	100	DCE_100	-36.33534945	136.62214139	Low	Low	Low	Low		Moderate
du Couedic	East	200	DCE_200	-36.55275437	136.51239384	Low	Low	Low	Low		Moderate
du Couedic	East	500	DCE 500	-36.57715276	136.49700933	Low	Low	Low	Low	•	Moderate
du Couedic	East	1000	DCE_1000	-36.59216901	136.48695536	Low	Low	Low	Low	•	Moderate
du Couedic	East	1500	DCE_1500	-36.60266105	136.47931800	Low	Low	Low	Low		Moderate
Bonney	Centre	2400	PC1	-37.92596111	139.30054444	LOTT	LOW	2011	High	•	Wiodorate
Bonney	Centre	2300	PC2	-37.90415278	139.33032222				- ngn	High	•
Bonney	Centre	2300	PC3	-37.87333611	139.33819167		•		High		•
Bonney	Centre	2244	PC4	-37.83709444	139.36693611	•	•		High	•	•
Bonney	Centre	2200	PC5	-37.86263611	139.35598333	•	•			High	•
Bonney	Centre	2050	PC6	-37.82633056	139.37061667		•	•	•	High	
Bonney	Centre	1850	PC7	-37.76980278	139.40795000	·	•	•	High	Thgh	•
Bonney	Centre	1800	PC8	-37.77395278	139.41366389		•	•	_	High	•
Bonney	Deep	4280	PD10	-38.47225833	139.33450556	•	•	High	•	Thgh	•
Bonney	Deep	3609	PD10	-38.42662222	139.33684722	•	•	High	•	•	•
		3009	PD12			•	•		Hiab	•	•
Bonney	Deep		PD12 PD13	-38.21321944 -38.16991111	139.38138611	•		•	High	•	
Bonney	Deep	3000 4687	PD13 PD9	-38.16991111	139.38865833 139.33350278	•		Hiab	High	•	
Bonney	Deep							High			
Bonney	Terrace	1550	SC2	-37.78960278	139.36386111	Low	Low	Low	Low	Low	Low

Appendix 3: Bathymetric map showing unnamed canyon system off the Bonney Coast, and estimated swath mapping times for selected polygons. Note the upper canyon polygon is the highest priority, while the central polygon is the lowest priority.

