





# Pelagic ecosystem productivity and dynamics off the West coast of Western Australia

rogram

Southern

RV

#### Itinerary

Mobilise Hobart, Monday 30th April 2007. Transit 03/2007: Depart Hobart 1800hrs, Monday 30 April 2007 Arrive Fremantle, AM Wednesday 9 May 2007, bunker and store.

Leg 1: AM Thursday 10 May 2007, load WA-based scientific equipment Depart Fremantle 1600hrs, Thursday, 10 May 2007 5 days of benthic survey off Perth Arrive Fremantle 0800hrs, Tuesday, 15 May 2007.

Leg 2: Depart Fremantle 1600 hrs, Tuesday 15 May 2007 Several transects south of 30°S Small boat transfer of personnel to harbour near Perth, ~ 20-21 May.

Leg 3: Depart Perth after small boat transfer (~20-21 May) Transects north of Perth and eddy mapping (if eddy is present) Arrive Dampier 0800 hrs, Wednesday 6 June 2007 and demobilise.

#### **Principal Investigators**

Dr. Peter Thompson (Chief Scientist) – CSIRO Marine & Atmospheric Research, GPO Box 1538, Hobart 7001 Tasmania
Phone: (03) 6232 5298 Email: peter.a.thompson@csiro.au
John Keesing – CSIRO Marine & Atmospheric Research, Floreat, WA.
Lynnath Beckley – Murdoch University, Perth, WA.
Martin Lourey – CSIRO Marine & Atmospheric Research, Floreat, WA.

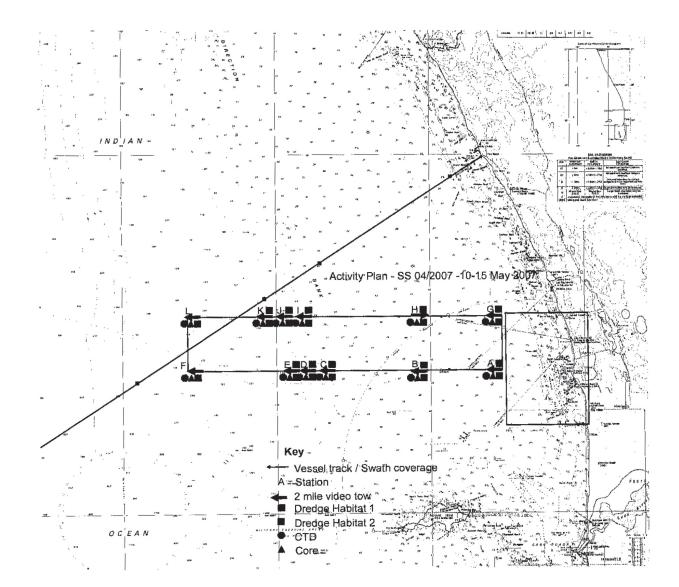
#### **Scientific Objectives**

The Leeuwin Current, a unique poleward-flowing eastern boundary current, dominates the oceanography off the west coast of Western Australia. Factors regulating the seasonal plankton cycle and its interannual variability remain poorly understood in this region. One of its most interesting features is the ten-fold increase in chlorophyll, which coincides with the seasonal intensification of Leeuwin Current flow. We propose here to examine:

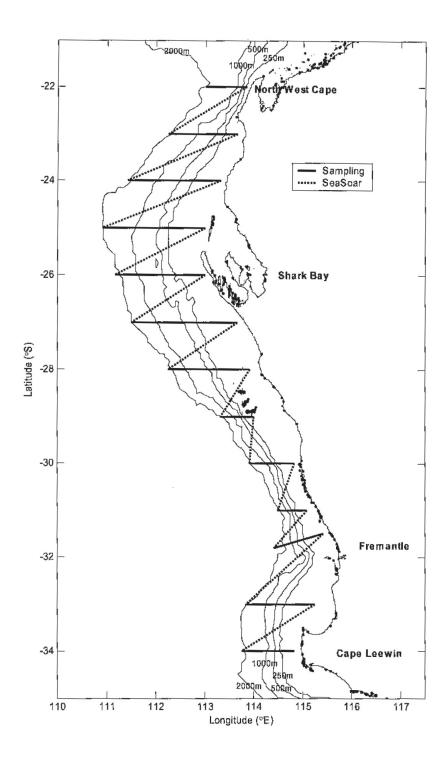
- the regional extent of this bloom and its key drivers for primary production: stratification and depth of the mixed layer, the influence of Leeuwin eddy dynamics and local wind-driven upwelling, and alongshore and cross-shelf advection,
- plankton food web structure during the bloom: the relative importance of picoplankton and larger phytoplankton, micro- and meso-zooplankton, and links with larval and juvenile fish in relation to onshore-offshore and north-south oceanographic features.
- Benthic productivity and recycling of nutrients on the shelf.
- If a suitable eddy has formed off the west coast between May 15th and May 20th we propose to spend 1-3 days mapping the features of the eddy and sampling it.

#### **Voyage Objectives**

These objectives require a voyage to cover the west coast of Australia during the late autumn/early winter (May/June) period. Initially the voyage will survey the shallow habitats near Perth do assess benthic productivity. Swath mapping, video 'samples', dredges, grabs and box cores are to be collected. Rates of primary production and nutrient efflux will be measured from box cores. Animals and plants will be sorted and stored for analysis later.


The voyage will then be based on 13 CTD onshore-offshore transects undertaken every degree of latitude from Northwest Cape (22o S) to Capes Naturaliste and Leeuwin (34o S). Each transect will extend from as nearshore as is practicable (25 – 30 m depth) to 2000 m depth (Fig. 4). Stations will be set at 25 (inshore), 50, 75, 100 (mid-shelf), 200 (shelf-break), 300, ~500 (Leeuwin core), 750, 1000, and 2000 (offshore) m depth.

Each transect leg will have a seasoar return leg to give high vertical and horizontal resolution of temperature, salinity and fluorescence. These will be used to locate a station in the middle of the Leeuwin Current on each CTD transect.


The SeaSoar mapping, combined with current satellite images, will enable us to place the 'Leeuwin' station within the core of the Leeuwin Current on each transect.) CTD profiles will be carried out at all stations to measure temperature, salinity, dissolved oxygen, PAR, chlorophyll fluorescence, and zooplankton acoustic backscatter (using the 6-frequency Trachor Acoustic Profiling System, TAPS) through the water column to a maximum depth of 1000 m. Water samples will be taken at standard depths to measure salinity and nutrients (nitrate/nitrite, ammonia, dissolved organic nitrogen, particulate nitrogen, phosphate, silicate). Full biological sampling will be carried out at the inshore (25 m), Leeuwin Current (200 - 500 m) stations, and offshore (2000 m). Replicate oblique bongo tows to 150 m maximum; the light profile to 50 m using a hyperspectral radiometer; water samples for phytoplankton pigment (HPLC) analysis and species composition from near-surface and chlorophyll maximum depths; measurement of size-fractionated primary productivity (C-14 incubation method and PAM measurements from standard sampling depths); nitrogen uptake from labelled nitrate, ammonia, and N2; sampling of lipids and/or stable C and N isotopes in the size-fractionated phytoplankton and in selected zooplankton and ichthyoplankton species to examine food web pathways; microzooplankton grazing based on the dilution method (Landry and Hassett 1982); total alkalinity & DIC (to assess pH); and secondary production estimates based on egg production and a biochemical (aminoacyl-tRNA synthetase (Yebra and Hernandez-Leon 2004)) assay. Zooplankton samples will be split, with part retained in ethyl alcohol to examine selected larval fish otoliths for growth to be related to oceanographic conditions. Neuston sampling will also be carried out.

#### **Voyage Track**

#### Voyage track Leg 1: Benthic work from May 10 to May 15, 2007.



Voyage track Leg 2 & 3: May 15th to June 6th 2007.



## **Time Estimates**

5 days of benthic work near Perth. Video work at ~ 1knot.

13 transects with CTD stations ~12 days

13 seasoar transects ~ 7 days

1 - 3 days eddy mapping (dependent upon time and a suitable eddy being in region).

## **Southern Surveyor Equipment**

| Simrad EK500 sounder (12, 38 and 120 kHz)                                                                                              |                                                                                                                | Yes          |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------|
| Simrad EA500 sounder (12kHz)                                                                                                           |                                                                                                                | Yes          |
| ADCP - measures current vectors beneath the vessel                                                                                     |                                                                                                                | Yes          |
| General purpose laboratory (includes fume hoods, fridge                                                                                | e, freezer)                                                                                                    | Yes          |
| Controlled temperature laboratory /cool room                                                                                           |                                                                                                                |              |
| - please specify temperature required                                                                                                  | 4 de                                                                                                           | grees        |
| Hydrochemistry laboratory                                                                                                              |                                                                                                                | Yes          |
| Wet laboratory/CTD room                                                                                                                |                                                                                                                | Yes          |
| Fish laboratory/geoscience laboratory                                                                                                  |                                                                                                                | Yes          |
| Photographic/preservation laboratory                                                                                                   |                                                                                                                | Yes          |
| Blast freezer – for quick freezing of samples                                                                                          |                                                                                                                | Yes          |
| Walk in freezer                                                                                                                        |                                                                                                                | Yes          |
| Moonpool transducer trolley                                                                                                            |                                                                                                                | Yes          |
| Sensors to measure: tension, winch speed and                                                                                           |                                                                                                                |              |
| wire out from CTD, trawl or coring winches                                                                                             |                                                                                                                | Yes          |
| Winches, A-frames and Crane<br>Applicants should consult the Operations Officer on<br>carrying capacities and other technical details. | Note: Will require winche<br>CTD/rosette, bongo towin<br>with conducting cable, ne<br>tows from starboard side | ng<br>euston |
| CTD/Hydro winches each with 7,000m of 8mm single c                                                                                     | ore conducting cable                                                                                           | Yes          |
| Towed-body winch with 3,000m of 12mm 7 core condu                                                                                      | cting cable Yes (sea                                                                                           | asoar)       |
| Hydrographic A-frame                                                                                                                   |                                                                                                                | Yes          |
| Stern A-frame (SWL 15 tonnes)                                                                                                          |                                                                                                                | Yes          |
| ADCP: standard data provided as 20 minute averages, 8                                                                                  | m bins from 8m to 300m                                                                                         | Yes          |
| ADCP log (photocopy)                                                                                                                   |                                                                                                                | Yes          |
| Ship's heading and speed over ground.                                                                                                  |                                                                                                                | Yes          |
| Data from winch sensors (tension, winch speed and win                                                                                  | e out)                                                                                                         | Yes          |
| Bridge log (photocopy)                                                                                                                 |                                                                                                                | Yes          |
|                                                                                                                                        |                                                                                                                |              |

#### Scientific Equipment

| Smith-McIntrye sediment grab                                   | Yes |
|----------------------------------------------------------------|-----|
| CTD (Seabird SBE 911 plus)                                     | Yes |
| Rosette (24 bottles up to 10 litres)                           | Yes |
| CTD data                                                       | Yes |
| CTD log (photocopy)                                            | Yes |
| Echograms from the Simrad EK500 sounder                        |     |
| - readable with Sonardata Echoview software.                   | Yes |
| Echograms from the Simrad EA500 sounder                        |     |
| <ul> <li>readable with Sonardata Echoview software.</li> </ul> | Yes |

#### **CTD/Chemical Analyses**

| 10 litre Niskin bottles                           | Yes                                     |
|---------------------------------------------------|-----------------------------------------|
| Total number of CTD casts required.               | 130 (13 transects*10 stations/transect) |
| Number of samples/cast.                           | ~ 8                                     |
| Salinity – analyses as required only to calibrate | CTD Yes                                 |
| Nitrate                                           | Yes                                     |
| Nitrite                                           | Yes                                     |
| Silicate                                          | Yes                                     |
| Phosphate                                         | Yes                                     |
| Ammonium                                          | Yes                                     |
|                                                   |                                         |

#### Other CTD Sensors

| The following sensors are available for use with the CTD |                     |  |
|----------------------------------------------------------|---------------------|--|
| Transmissometer (to 6,000m depth)                        | Yes                 |  |
| Profiling fluorometer – requires support from users      |                     |  |
| for calibration during the voyage (6,000m depth)         | Yes                 |  |
| Light (PAR) (to 500m depth)                              | Yes                 |  |
| Dissolved oxygen (to 6,000m depth). Requires support of  |                     |  |
| Marine National Facility hydrochemist for calibration.   | Yes                 |  |
| Lowered ADCP (to 6,000m depth). Requires users           |                     |  |
| support for data processing and interpretation.          | Yes, on some casts. |  |

#### Other Equipment and Facilities

| Underway fluorometer to measure sea surface fluorescence. Collection of data        |      |  |
|-------------------------------------------------------------------------------------|------|--|
| requires support from users for calibration of the equipment during the voyage.     | Yes  |  |
| Scintillation counter - this equipment can only be operated with user support.      | Yes  |  |
| Milli-Q water supply                                                                | Yes  |  |
| Radiation Sensors - these also require user contribution and support.               | Yes  |  |
| SeaSoar - towed undulating CTD system. Use requires an additional Marine National   |      |  |
| Facility technician. The SeaSoar may also be used as a platform for other small sen | ISOr |  |
| packages. You should discuss your requirements with the Operations Officer.         | Yes  |  |

#### Swath mapper

Kongsberg EM300 swath mapping system. Use of the swath mapper requires at least one person for technical support. Users should specify what level of support they require. Yes Swath bathymetry Yes Swath seabed reflectance Yes Swath water column data Yes **Sampling Systems and Trawl Nets** Yes Small Epibenthic Sled Yes **Data Products available on request** Seasoar Yes Hydrology Yes Swath bathymetry Yes Swath seabed reflectance Yes Swath water column Yes

### **User Equipment**

Bongo net with electronic depth sensor, flow meter (requires conducting cable) Neuston net TAPS Optical sensors (still to be decided) Small box corer (supplied by Andy Revill) Shallow video system, Shallow video winch, Benthic sled (Sherman).

#### **Special Requirements**

CSIRO approval will be required for low level radiation work to be conducted in the GP lab. GP lab to be prepared as radiation laboratory including removal of general purpose PC's, removal of carpet rug and appropriate signage. GP lab fume hoods have recently been re-certified.

Separate plan to be developed for the location and use of equipment and chemicals.

#### **Personnel List**

#### Leg 1: May 10th to May 15th

| Peter Thompson       | CSIRO     | Chief Scientist                    |
|----------------------|-----------|------------------------------------|
| John Keesing         | CSIRO     | Benthic sampling                   |
| Martin Lourey        | CSIRO     | Primary production nutrient efflux |
| Bruce Barker         | CSIRO     | Camera                             |
| Jeff Cordell         | CSIRO     | Camera                             |
| Mark Lewis           | CSIRO     | Gear/camera                        |
| Karen Gowlett-Holmes | CSIRO     | Inverts                            |
| ТВА                  | GA        | Swath                              |
| Rick Smith           | CSIRO     | Swath support                      |
| Mark Salotti         | WA Museum | Invertebrates                      |
| Julia Phillips       | CSIRO     | Benthic plants                     |
| Ron Plaschke         | MNF       | Voyage Manager                     |
| Pamela Brodie        | MNF       | Computing                          |
| Drew Mills           | MNF       | Electronics                        |
| Mark Rayner          | MNF       | Hydrochem                          |

#### Leg 2. May 15th to small boat transfer ~ May 20-21st

| Peter Thompson        | CSIRO       | Chief Scientist            |
|-----------------------|-------------|----------------------------|
| James McLaughlin      | CSIRO       | C14 uptake                 |
| Joanna Strzelecki     | CSIRO       | Zooplankton grazing        |
| Pru Bonham            | CSIRO       | Pigments                   |
| Cecile Rousseaux      | UWA         | Microzooplankton grazing   |
| Nugzar Margvelashvili | CSIRO       | Zooplankton acoustics      |
| Harriet Patterson     | UWA         | Flow cytometry             |
| David Holliday        | Murdoch Uni | Larval fish                |
| Lynnath Beckley       | Murdoch Uni | Larval fish                |
| Martin Lourey         | CSIRO       | N15 uptake                 |
| Lindsay Pender        | MNF         | Seasoar                    |
| Pamela Brodie         | MNF         | Voyage Manager & Computing |
| Stephen Thomas        | MNF         | Electronics                |
| Dave Terhell          | MNF         | Hydrochem                  |
| Mark Rayner           | MNF         | Hydrochem                  |

Small boat transfer: Lindsay Pender off and Karen Wild Allen on.

| Peter Thompson        | CSIRO       | Chief Scientist            |
|-----------------------|-------------|----------------------------|
| James McLaughlin      | CSIRO       | C14 uptake                 |
| Joanna Strzlecki      | CSIRO       | Zooplankton grazing        |
| Pru Bonham            | CSIRO       | Pigments                   |
| Cecile Rousseaux      | UWA         | Microzooplankton grazing   |
| Nugzar Margvelashvili | CSIRO       | Zooplankton acoustics      |
| Harriet Patterson     | UWA         | Flow cytometry             |
| David Holliday        | Murdoch Uni | Larval fish                |
| Lynnath Beckley       | Murdoch Uni | Larval fish                |
| Martin Lourey         | CSIRO       | N15 uptake                 |
| Pamela Brodie         | MNF         | Voyage Manager & Computing |
| Stephen Thomas        | MNF         | Electronics                |
| Dave Terhell          | MNF         | Hydrochem                  |
| Mark Rayner           | MNF         | Hydrochem                  |
| Karen Wild-Allen      | CSIRO       | Marine optics              |
|                       |             |                            |

#### Leg 3. Small boat transfer to Dampier ~ May 20-21 to June 6th

This voyage plan is in accordance with the directions of the National Facility Steering Committee for the Research Vessel Southern Surveyor.

# Peter Thompson

Chief Scientist