

Voyage #:	IN2019_V02			
Co-Voyage title:	SOTS: Southern Ocean Time Series automated moorings for climate and carbon cycle studies southwest of Tasmania; Subantarctic Biogeochemistry of Carbon and Iron, Southern Ocean			
	Time Series site			
Mobilisation:	Hobart, Tuesday - Wed	nesday, 12-13 Mar	ch 2019	
Depart:	Hobart, Thursday, 14 N	1arch 08:00		
	for equipment tests in Storm Bay and then transit to SOTS site			
Return:	Hobart, Friday, 5 April 2019, 0800			
Demobilisation:	Hobart, Friday, 5 April 2019			
Voyage Manager:	Tegan SimeContact details:Tegan.Sime@csiro.au			
Chief Scientist:	Thomas W. Trull			
Affiliation:	CSIRO	Contact details:	Tom.Trull@csiro.au	
Principal Investigators:	Philip Boyd (Shore based), Mathew Bressac (Sea going), Robert Strzepek (Sea Going).			
Project name:	Subantarctic Biogeochemistry of Carbon and Iron, Southern Ocean Time Series site			
Affiliation:	UTAS	Contact details:	Philip.Boyd@utas.edu.au	

Version Date: 5th March, 2019.

Scientific objectives

Trull: Southern Ocean Time Series

The Southern Ocean has a predominant role in the movement of heat and carbon dioxide into the ocean interior moderating Earth's average surface climate. SOTS uses a set of two automated moorings to measure these processes under extreme conditions, where they are most intense and have been least studied. The atmosphere-ocean exchanges occur on many timescales, from daily insolation cycles to ocean basin decadal oscillations and thus high frequency observations sustained over many years are required. The current context of anthropogenic forcing of rapid climate change adds urgency to the work.

The primary objective is to first deploy a new set of SOTS moorings (SOFS-8 and SAZ-21) and then recover the existing SOTS moorings (SOFS-7.5 and SAZ-20). Each of the SOTS moorings delivers to specific aspects of the atmosphere-ocean exchanges:

- the SAZ sediment trap mooring collects samples to quantify the transfer of carbon and other nutrients to the ocean interior by sinking particles, and investigate their ecological controls.
- the Southern Ocean Flux Station (SOFS) mooring measures meteorological and ocean properties important to air-sea exchanges, ocean stratification, waves, and currents. Additional sensors quantify CO₂ partial pressure, net community production from oxygen and total dissolved gases and nitrate depletion, biomass from bio-optics and bio-acoustics. Water samples are collected for nutrient and plankton measurements after recovery.

Ancillary work will obtain supporting information on atmospheric and oceanographic conditions using CTD casts for samples and bio-optical sensor data, underway measurements, Triaxus towed body, Continuous Plankton Recorder and autonomous profiling Biogeochemical-Argo floats.

The final and lowest priority SOTS objectives, for the purposes of furthering engineering analyses and cleaning up the SOTS site, are to: i) to recover the lower section of the SOFS-6 mooring (which broke at ~1800 m below the surface) and ii) deploy a test anchor equipped with a package of high engineering sensors which will be released and recovered.

Boyd: Subantarctic Biogeochemistry of Carbon and Iron, Southern Ocean Time Series site

The subantarctic water mass forms a circumpolar ring which comprises half of the open waters of the Southern Ocean. Complex environmental forcing controls its productivity, ecology and biogeochemistry both in the present day and in the geological past. An improved mechanistic understanding of these controls on the marine biota is needed, and will provide the context to better interpret observations being obtained at unparalleled resolution by the SOTS moorings. Our study will forge strong links with SOTS by determining how environmental forcing manifests itself in biological and biogeochemical signatures across a range of scales. A better understanding of this relationship will aid the development of a state-of-the-art coupled iron and carbon biogeochemical model which will be validated using future multi-property time-series observations.

Our main aim is to enhance our understanding of the interlinked biogeochemical cycles of iron and carbon in the Southern Ocean to better understand how intra-seasonal, seasonal and interannual variability in iron supply and recycling influences the productivity and export of carbon into the ocean's interior in the subantarctic circumpolar ring. Additional aims include:

• Elucidation of the relative roles of iron supply versus biological and photochemical recycling in driving subantarctic primary productivity and export fluxes.

- Resolution of the interplay of multiple environmental controls irradiance, mixed layer depth, trace element supply (zinc, copper, etc.), silicate supply, iron availability across a range of temporal and spatial scales to better predict changes in rates of primary productivity.
- Enhancement of knowledge on the interplay of mesoscale and submesoscale physics and biogeochemistry in the vicinity of the SOTS site to better understand the degree of coupling and integration of surface ocean processes with those in the subsurface ocean (such as the sensors and particle traps on the SOTS mooring).

Voyage objectives

<u>SOTS</u>

- 1. Deploy SOFS-8 meteorology/biogeochemistry mooring
- 2. Deploy SAZ-21 sediment trap mooring
- 3. Recover SAZ-20 sediment trap mooring
- 4. Recover SOFS-7.5 meteorology/biogeochemistry mooring
- 5. Do deep CTDs (2 casts to 2250m) at the SOTS site, including collecting samples for nutrients, oxygen, dissolved inorganic carbon, alkalinity, and particulate matter analyses
- Do shallow CTDs (day/night pairs) and carry out underway air and water sampling and sensor measurements that support SOTS autonomous measurement calibrations, including bio-optics and bio-acoustics
- 7. Deploy 2-3 Biogeochemical-Argo autonomous profiling floats at the SOTS site, if available.
- 8. Tow MacArtney Triaxus on return to Hobart
- 9. Tow CPR on transit to SOTS site
- 10. Recover SOFS_6 lower mooring section for break analysis to advance mooring durability design
- 11. Deploy test anchor to study deployment dynamics and recover engineering package

Boyd: Subantarctic Biogeochemistry of Carbon and Iron, Southern Ocean Time Series site

- 1. Underway oceanographic sampling of mesoscale and sub-mesoscale physics and biogeochemistry in the vicinity of the SOTS mooring (sampling underway seawater, TM clean tow-fish)
- 2. Repeat temporal vertical physics, chemistry, bio-optics and biological profiles near the SOTS mooring (using ISP, TMR, TM clean tow fish, CTD)
- 3. Process studies of key questions including the supply of recycled versus new iron (using zooplankton nets, marine snow catchers, ZOOrespire, ISP, TMR, TM clean tow fish, CTD, MNF rad van and deckboard incubators)
- 4. Ocean and atmospheric sampling to develop a stable isotopic budget for iron (using atmospheric chemistry lab, and zooplankton net tows, ISP, TMR, TM clean tow fish)
- 5. Deployment and recovery of the free-drifting RESPIRE sinking particle traps (with traps for trace elements, in-situ oxygen respiration, and potentially particle forms as isolated into polyacrylamide gels).

6. Targeted experimental manipulations, such as fluctuating light incubations to better understand data obtained from 1. and 2. (using walk-in CT room, other lab temp-controlled incubators and the MNF deckboard incubation platform). Particles collected using Niskin bottles, nets and the underway seawater supply will provide material for aggregation and sinking experiment using the SNOWMAN (Simulator of Non-finite, Open Wheeled Marine Aggregation and sinking) and traditional roller tank + table. These experiments target a better understanding of the dynamics of carbon export in the SOTS area related to surface planktonic communities.

The overall voyage priority is the SOTS moorings (SOTS objectives 1-4), because these cannot be downscaled and have the highest dependence on weather. The next priority is to complete Boyd objectives, then remaining SOTS objectives.

Operational Risk Management

SOTS:

The mooring deployment and recovery operations are high risk, management includes:

- Detailed procedures reviewed with the crew and science team before and during the voyage
- Job hazard analysis and toolbox meetings
- Restriction of trawl deck working areas to essential participants
- Fatigue Management Training
- A designated safety observer

The mooring protocols are in the ship's Safety Management System (SMS)

Boyd Subantarctic Biogeochemistry of Carbon and Iron, Southern Ocean Time Series site:

Over-the-side operations using TMR, ISP, CTD, zooplankton nets and the TM clean tow fish will be deployed using ratified MNF Safe Working Procedures and Protocols. New Safe Work Instructions were developed for the 100L Marine Snow Catcher and the TM clean Towfish.

The deployment and recovery of the RESPIRE 300 m long surface tethered free drifting mooring has also been conducted successfully on to Investigator voyages. It is considered a medium/high risk operation and so risk management includes all of the checks and balances applied above to the SOTS moorings (the deployment and recovery will conducted by the SOTS mooring team).

Overall activity plan including details for first 24 hours of voyage

		Mobilise:
	 SOTS: Load CSIRO winch and mooring containers (Sed trap and Half- Height) and other mooring gear (SOFS-8 large float, anchors) to main trawl deck. Spool moorings to winches. 	
12-13	12-13 Mar	 BOYD: Load trace element lab vans (old white van, new blue van, TMR deck box, spare TMR)
		3. SOTS/BOYD Load lab equipment and begin internal labs setup
		4. SOTS: Load Triaxus
		0800: Depart
14	Mar	In Adventure or Storm Bay, test all of following: CTD, Triaxus, mooring anchor dual lift, A-frame and winch hydraulics. Depart following GSM standard tracks.
		Transit to SOTS site towing CPR, doing underway sensor observations
15	Mar	Hold Mooring Procedures Familiarization Meeting with Science Party, Master, Mates and Crew
		TMR shallow cast to start cleaning procedure for new bottles
16	Mar	Boyd: Triaxus bow-tie survey around SOTS site, informed by satellite remote sensing, depending on weather and how it impacts mooring and RESPIRE drifter deployment scheduling
		TMR shallow cast to finish cleaning procedure for new bottles
		0000 return to central SOTS site - near SOFS-8 target deployment site 0000-0400 SOTS: CTD cast to 2250m 0400-0600 Boyd: TMR cast to 1500m 0600-1200 SOTS: Deployment#1 of RESPIRE drifting traps for Boyd 1200-1300 SOTS: bio-optical cast of CTD to 300m
17	Mar	1300-1500 Boyd: TM-clean fish (upper 50 m)
		1500-1900 SOTS: ISP cast
		1900-2100 Boyd: TMR cast to 1500m
		2100-2300 Boyd: Zooplankton net hauls; Snowcatcher; ZooRespire (upper
		100 m)
		2300-2400 SOTS: bio-optical cast of CTD to 300m
		0000-0400 SOTS: ship sensor data collection near SOFS-7.5 mooring
		0400-0600 transit to SOFS-8 deployment start (9 miles down-weather
18	Mar	from target location)
		0600-2000 SOTS: deploy SOFS-8 mooring
		2000-2400 SOTS: triangulate SOFS-8 anchor, collect ship sensor observations close to SOFS-8
		0000-0400 SOTS: collect ship sensor observations close to SOFS-8
		0400-0600 Boyd: TMR cast to 1500m
		0600-1000 Boyd: ISP cast to 1500m
19	Mar	[0800-1800 SOTS: spool on SAZ-21 mooring –deck ops only]
		1000-1200 Boyd: TM-clean fish (upper 50 m)
		1200-1300 SOTS: bio-optical cast of CTD to 300m 1300-1700 Boyd: ISP cast to 1500m

		1700-1900 Boyd: TMR cast to 1500m 1900-2300 Boyd: Zooplankton net hauls; Snowcatcher; ZooRespire (upper
		1900-2500 Boyd. 200plankton net hauis, showcatcher, 200kespire (upper 100 m)
		2300-2400 SOTS: bio-optical cast of CTD to 300m
		0000-0600 SOTS: transit to SAZ-21 deployment start (8 miles down-
		weather target location)
20	Mar	0600-1500 SOTS: deploy SAZ-21 mooring
20	IVICI	1500-1900 SOTS: recovery#1 RESPIRE drifting traps, if remaining daylight
		allows, otherwise at first light on 21 Mar
		1900-2400 SOTS: triangulate SAZ-21 anchor location
		0000-0400 SOTS: CTD cast to 2250m
		0400-0600 Boyd: TMR cast to 1500m
		0600-1000 SOTS: recover#1 alternate RESPIRE drifting traps (if not recovered on 20 th)
		0600-1000 Boyd: ISP cast to 1500m, if RESPIRE drifting traps recovered on 20 Mar
21	Mar	1000-1300 Boyd: TM-clean fish (upper 50 m)
		1300-1600 SOTS: Deployment#2 RESPIRE traps for Boyd
		1600-1800 Boyd: Zooplankton net hauls; Snowcatcher; ZooRespire (upper
		100 m)
		1800-2000 Boyd: TMR cast to 1500m
		2000-2400 Boyd: ISP cast to 1500m
		0000-0500 SOTS: transit to SAZ-20 recovery site (1 mile down-weather
22	Mar	from anchor location)
	-	0600-1800 SOTS: recover SAZ-20 mooring
		1800-2400 SOTS: transit back to near SOFS-8
		0000-0400 SOTS: CTD cast to 2250m
		0400-0600 Boyd: TMR cast to 1500m
		0600-1000 Boyd: ISP cast to 1500m
		[0600-1800 SOTS: spool off SAZ-20 mooring –deck ops only]
		1000-1200 Boyd: TM-clean fish (upper 50 m)
23	Mar	1000-1200 SOTS: Deploy Bio-Argo floats 1200-1300 SOTS: bio-optical cast of CTD to 300m
23	IVICI	1300-1600 Boyd: ISP to 1500 m
		1600-1900 Boyd: Zooplankton net hauls; Snowcatcher; ZooRespire (upper
		100 m)
		1900-2100 Boyd: TMR cast to 1500m
		2100-2300 SOTS: ship sensor observations near SOFS-8
		2300-2400 SOTS: bio-optical cast of CTD to 300m
		0000-0400 SOTS: continue ship sensor observations near SOFS-8
		0400-0600 Boyd: TMR cast to 1500m
		0600-1000 Boyd: ISP cast to 1500m
24	Mar	1000-1200 Boyd: TM-clean fish (upper 50 m)
		1300-1800 SOTS: Recovery#2 RESPIRE trap for Boyd
		1800-2000 Boyd: Zooplankton net hauls; Snowcatcher; ZooRespire (upper
		100 m)

	1	
		2000-2200 Boyd: TMR cast to 1500m
		2200-2400 SOTS: ship sensor observations nears SOFS-7.5
		0000-0600 SOTS: ship sensor observations nears SOFS-7.5
25 Mar	Mar	0600-1800 SOTS: recovery of SOFS-7.5
		1800-2400 SOTS: transit back to SOFS-8 site (possibly towing Triaxus,
		depending on remote sensing)
		0000-0400 SOTS: : transit back to SOFS-8 site (possibly towing Triaxus,
		depending on remote sensing)
		0400-0600 Boyd: TMR cast to 1500m
		0600-1000 Boyd: ISP cast to 1500m
		1000-1200 Boyd: TM-clean fish (upper 50 m)
26	Mar	1200-1300 SOTS: bio-optical cast of CTD to 300m
20	IVIAI	1300-1600 SOTS: Deployment#3 RESPIRE trap for Boyd
		1600-1900 Boyd: Zooplankton net hauls; Snowcatcher; ZooRespire (upper 100 m)
		1900-2100 Boyd: TMR cast to 1500m
		2100-2300 time available (catch-up)
		2300-0000 SOTS: bio-optical cast of CTD to 300m
		0000-0400 Boyd: Zooplankton net tows; Snowcatcher; ZooRespire (upper
		100 m)
		0400-0600 Boyd: TMR cast to 1500m
		0600-1000 Boyd: IISP cast to 1500m
		1000-1200 Boyd: TM-clean fish (upper 50 m)
27	Mar	1200-1300 SOTS: bio-optical cast of CTD to 300m
		1500-1800 Boyd: Zooplankton net hauls; Snowcatcher; ZooRespire (upper
		100 m)
		1800-2000 Boyd: TMR cast to 1500m
		2000-2300 time available (catch-up)
		2300-2400 SOTS: bio-optical cast of CTD to 300m
		0000-0400 Boyd: Snowcatcher; ZooRespire
		0400-0600 Boyd: TMR cast to 1500m
		0600-1000 Boyd: IISP cast to 1500m
		1000-1200 Boyd: TM-clean fish (upper 50 m)
		1200-1300 SOTS: bio-optical cast of CTD to 300m
28	Mar	1700-1800 1900 Boyd: Zooplankton net hauls; Snowcatcher; ZooRespire
		(upper 100 m)
		1900-2100 Boyd: TMR cast to 1500m
		2100-2300 time available (catch-up)
		2300-2400 SOTS: bio-optical cast of CTD to 300m
		0000-0400 Boyd: Snowcatcher; ZooRespire
		0400-0600 Boyd: TMR cast to 1500m
29	Mar	0600-1000 Boyd: ISP cast to 1500m
29 r	war	1000-1200 Boyd: TM-clean fish (upper 50 m)
		1200-1200 Boyd. Thi-clean fish (upper 50 m) 1200-1700 SOTS: Recovery #3 RESPIRE trap for Boyd
		1200-1700 SOTS. RECOVERY #S RESPIRE LIDPIDI DUYU

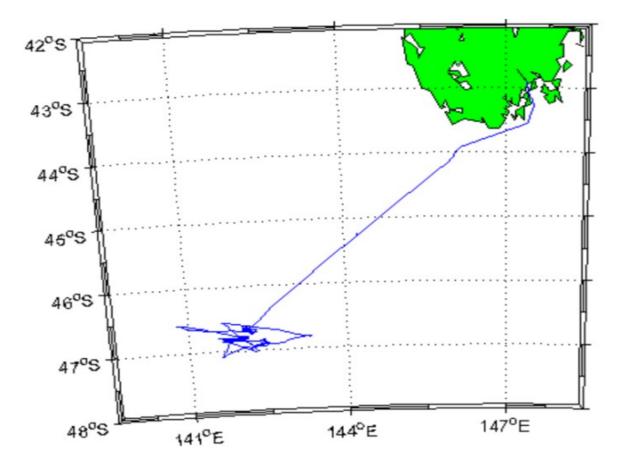
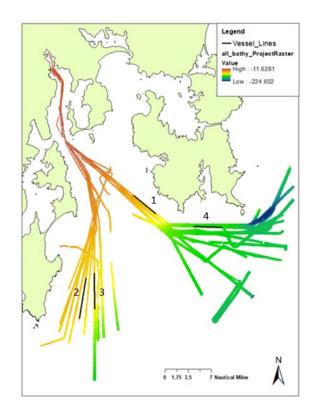

		 1700-1900 Boyd: Zooplankton net hauls; Snowcatcher; ZooRespire (upper 100 m) 1900-2100 Boyd: TMR cast to 1500m 2100-0000 time available (catch-up)
30	Mar	0000-0800 Boyd: Snowcatcher; ZooRespire 0800-1100 SOTS: Deployment #4 RESPIRE trap for Boyd 1200-1300 SOTS: bio-optical cast of CTD to 300m 1300-1400 SOTS: deploy test anchor 1400-2300 time available (catch-up) 2300-2400 SOTS: bio-optical cast of CTD to 300m
31	Mar	Weather day; full diel cycle of sensor comparisons with SOFS-8
1	Apr	Weather day; full diel cycle of sensor comparisons with SOFS-8
2	Apr	0000-0800 Boyd: Snowcatcher; ZooRespire 0800-1300 SOTS: Recovery#4 RESPIRE trap for Boyd 1300-1700 SOTS: Recover test anchor engineering package 1700-2400 Transit to towards SOFS-6 lower section site
3	Apr	0000-0600 continue transit towards SOFS-6 lower section site 0600-1200 SOTs: Recover SOFS-6 lower section; 1200-2400 begin Triaxus tow towards Hobart
4	Apr	Transit to Hobart towing Triaxus via eddy/jet targets
5	Apr	Return following GSM standard tracks. Arrive Hobart 08:00 Demobilisation

Table of Triaxus Tows:

Date	Research Goal	Maximum Tow Duration (hours)	
16 March	SOTS site mesoscale eddy context	24	
25/26 March	SOFS-7.5 vs SOFS-8 comparison	10	
3/4 April	EAC extension inputs to SOTS region	36	

Voyage track example


Waypoints and stations

Time estimates are at 11 knots

	Decimal Latitude	Decimal Longitude	Distance (nm)	Total Distance (nm)	Steaming time (hrs)	Total Steam (hrs)
Hobart	42.87	147.35				
Storm Bay	43.33	147.350	27.62	27.62	2.51	2.51
SOTS	46.80	141.884	311.50	339.12	28.32	30.83
Hobart	42.87	147.35	352.44	748.98	32.04	68.09

Line	Start		End	
	Latitude	Longitude	Latitude	Longitude
1	-43° 11.935′	147° 37.513'	-43º 14.911	147° 42.601'
2	-43° 24.478'	147° 27.939'	-43° 30.632′	147° 26.618′
3	-43° 23.824′	147° 29.656'	-43° 28.37′	147° 29.713
4	-43° 16.541′	147° 50.1′	-43° 16.629'	147° 56.081

Location of GSM Backscatter Calibration Lines on Storm Bay Exit (preferred line highlighted)

Locations of moorings to be recovered

Mooring	Latitude	Longitude	Depth
SOFS-7.5 anchor	47° 1.36' S	142° 14.05' E	4540 m
triangulation	47.02274 °S	142.2341 °E	
SAZ-20 anchor release	46° 47.52' S	141° 47.66' E	4518 m
(no triangulation)	46.792048 °S	141.794356 °E	
SOFS-6 anchor	46° 1.59' S	142° 7.74' E	4603 m
triangulation	46.02652 °S	142.12901 °E	

Target locations for mooring deployments

Mooring	Latitude	Longitude	Depth
SOFS-8 target	46° 53.7′ S	142° 21′ E	4300 m
	46.895°S	142.35 °E	
SAZ-21 target	46° 49.824'S	141° 38.981'E	4600 m
	46.83040 °S	141.64968 °E	
Test Anchor	46° 36.8′ S	141° 32.7′ E	3900m
	46.613714 °S	142.544681 °E	

Locations to be avoided

Mooring	Latitude	Longitude	Depth
FluxPulse-1 lower section, last acoustic sounding location	46° 43.44' S -46.72399 °S	141° 55.78' E 141.92972 °E	top of section at ~800 m

Investigator equipment (MNF)

<u>SOTS</u>

Trawl Deck Equipment and Support

- Install CSIRO mooring winch on mid-line forward on deck.
- Stern-ramp cover ("dance-floor") without overhanging lip on aft surface installed with gap protectors and mounts for user-supplied Bulls Horns fairlead.
- A-frame utility winches.
- Tagging line cleat attachment points fitted.
- SOTS sediment trap van (see user supplied equipment) requires 240V monophase power and Ethernet cable.
- deck space for half-height container with mooring gear on starboard aft quarter
- see deck loading plan for further details

Deck Equipment and Support

• Install Investigator net drum winch on Mezzanine with spooler-rail installed aft of it, as the best location as discussed with MNF and ASP for this voyage.

CTD Equipment and Support

- 24 bottle CTD-rosette with 12L Niskin bottles and MNF-O₂, MNF-PAR, MNF-Wetlabs CStar 25cm pathlength, 700nm red light transmissometer, MNF Chelsea Aquatracker III fluorometer sensors mounted. Also mount User-supplied Wetlabs FLBB-RTD sensor (full ocean depth) face downward with clear field of view.
- Lowered ADCP with all heads working and logging
- CTD voltage inputs calibrated to correctly log sensor inputs
- MNF supplied hydrochemists to carry out oxygen, salinity and nutrient analyses. SOTS requires ~160 analyses of each type (to cover deep and shallow CTDs and Underway sample analyses especially during Triaxus tows).
- WOCE/Go-Ship compliant CTD data processing and output files to be provided, including error estimates for oxygen and nutrient parameters

TRIAXUS Equipment and Support

- Triaxus towed body and towed body winch, equipped with:
- MNF supplied electronics, data display and logging, and piloting support
- MNF dual CTs with oxygen electrodes
- MNF-LOPC
- user-supplied SUNA and FIRe sensors

Underway Equipment and Support

- Multibeam/Multifrequency bio-acoustic system, with MNF supplied electronics, computing, and operational support
- Working and logging underway echosounder with bottom detection and real-time display
- Working and logging underway ADCP, with real-time display
- Working and logging underway thermosalinograph and fluorometer and real-time display
- Working hull mounted 12 kHz transducer for use with acoustic release deck unit
- Working drop keel for bioacoustics, thermosalinograph and ADCP deployed to >4 m
- Working and logging meteorological instruments including ISAR SST radiometer
- Working underway seawater supply in Underway Lab for MNF fluorometer and pCO2 system

Boyd Subantarctic Biogeochemistry of Carbon and Iron

In addition to the facilities requested by SOTS, this project requires:

- 1. Both trace metal clean containers (MNF and CSIRO, one for sampling and the other for Flow Injection Analysis) to be mounted one on top of the other on the trawl deck (abutting the aftmost part of the ships superstructure).
- 2. TMR Deck Box installed on trawl deck (to house the TMR).
- 3. The MNF Rad van along with the MNF deckboard incubation platform (both in their usual positions).
- 4. Working MNF TMR and Kevlar on the associated winch, along with all of the operational MNF ISP's.
- 5. We will bring a Trace Metal clean fish that will be deployed mid-ship off the starboard side. We will require the ships compressor to drive the air pumps and the forward boom is required along to tow the fish.
- 6. Zooplankton nets, Snowcatcher and ZooRespire will be deployed off the winch on the starboard side at midships. UTAS will supply some nets and others from MNF will be required.
- 7. MNF supplied hydrochemists to carry out oxygen, salinity and nutrient analyses. Boyd requires 400 analyses of each type.

User Equipment

<u>SOTS</u>

For Installation on Trawl Deck (see deck loading plan)

- Bullhorn mooring fairlead to be mounted on ship stern this will mean that great care will be needed to avoid it for Triaxus deployments and recoveries.
- CSIRO mooring winch requires hydraulic leads to power supply installed in shelter-shed
- 1xhalf-height open-top containers to hold mooring equipment

- Full height ACE Sediment Trap Container for storing and working on sediment traps, requires monophase 240V 15 amp power supply and Ethernet cable to ship LAN. This container will also house the in-situ pumps for use during Boyd component, and Bio-Argo Floats (if available).
- SOFS float and recovery cradle
- mooring anchor stacks 3 to be combined into SOFS-8 anchor, plus single stack for SAZ anchor
- ~6 cage pallets of mooring equipment
- Handheld and deck mounted pneumatic line throwers ("grappling gun")
- Video cameras installed on trawl deck

For Installation in Shelter Science area

- Power Supply for CSIRO Mooring Winch
- TRIAXUS
- Pallet of mooring gear
- Pump for towed fish trace clean water supply
- Potentially bio-optical sensor package
- Marine Snow Catcher

For Installation in Ops room

• acoustic release deck unit to be mounted in the Ops room (and spare unit stored)

For Installation in Underway Lab

- Trull pigment filtration system in sink and FIRe instrument on bench.
- Trull/Schallenberg/Clementson AC-9 bio-optical instrument on bench

For installation in the General Purpose (Dry Clean) Laboratory,

- Trull particle filtration system, on forward inboard bench next to sink,
- (also requires use of laminar flow bench in this lab)
- Turner Fluorometer for Chla analyses by C. Schallenberg
- FlowCAM for rapid particle imaging, particle size spectra.

For installation in the CTD room (on athwartship bench next to sink)

- Trull/Bodrossy cartridge filtration system
- FLBB-RTD sensor to be installed on CTD

For installation on the Triaxus towed body

- SUNA nitrate sensor
- FIRE fluorescence induction and relaxation sensor (maximum depth 200m)
- LOPC (MNF)

Boyd: Subantarctic Biogeochemistry of Carbon and Iron

We will bring a Trace Metal clean fish that will be deployed mid-ship off the starboard side. We will require the ships compressor to drive the air pumps and the forward boom is required along to tow the fish.

Zooplankton nets, marine snowcatcher (MSC) and ZooRespire will be deployed off the winch on the starboard side at midships. UTAS will supply some nets and others from NF will be required.

RESPIRE particle interceptors for deployment by the SOTS team will be brought by UTAS and stored in the ships General Purpose Dirty Wet lab.

Temperature manipulation studies will be installed in CT room.

Incubations will be carried out on the upper deck next to the Rad van, which will be used to conduct radio-isotope incubations (based on the same plan as the March and September 2018 INV voyages).

Spare Trace Element Rosette for storage on Trawl Deck.

Permits

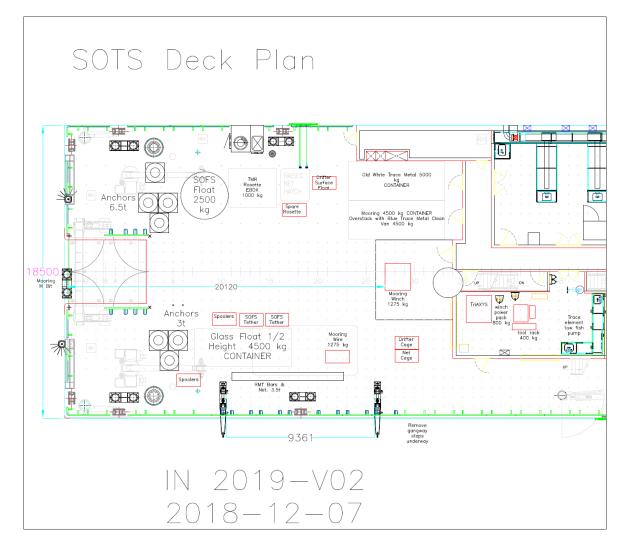
<u>SOTS</u>

- Collection of seawater and sediment trap samples for return to Hobart under ACE CRC Quarantine permit AQIS #IP0001721265.
- Mooring locations and buoy marking details will be provided to AMSA for notice to mariners.
- Towing of the CPR, Triaxus, and operation of underway ship scientific seawater supply through the Tasman Fracture Zone under Commonwealth Marine Reserve Permit PA2018-0005-1, issued to MNF.

Boyd: Subantarctic Biogeochemistry of Carbon and Iron, Southern Ocean Time Series site

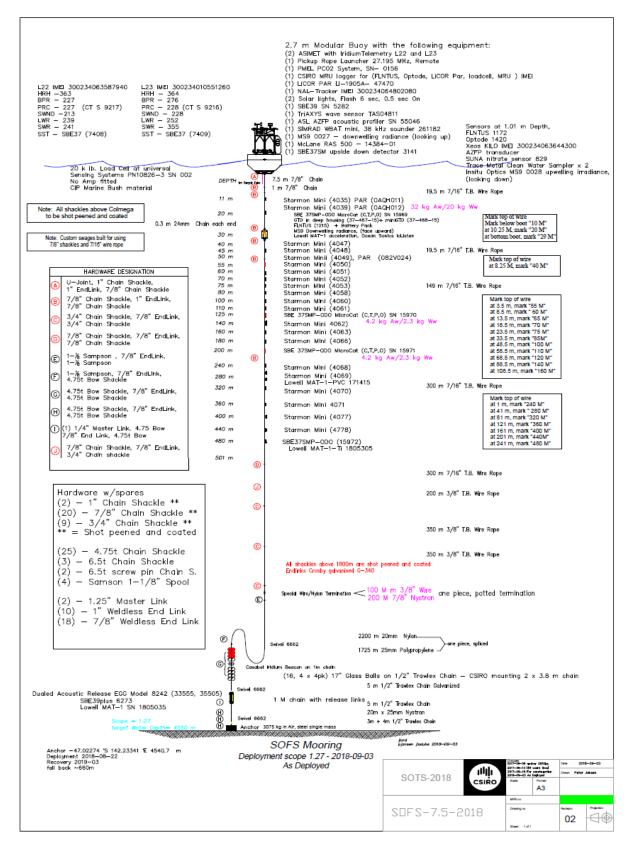
• Quarantine permit for phyto- and zoo-plankton and trace metal samples, UTAS IMAS AQIS #IP0001285143.

Signature

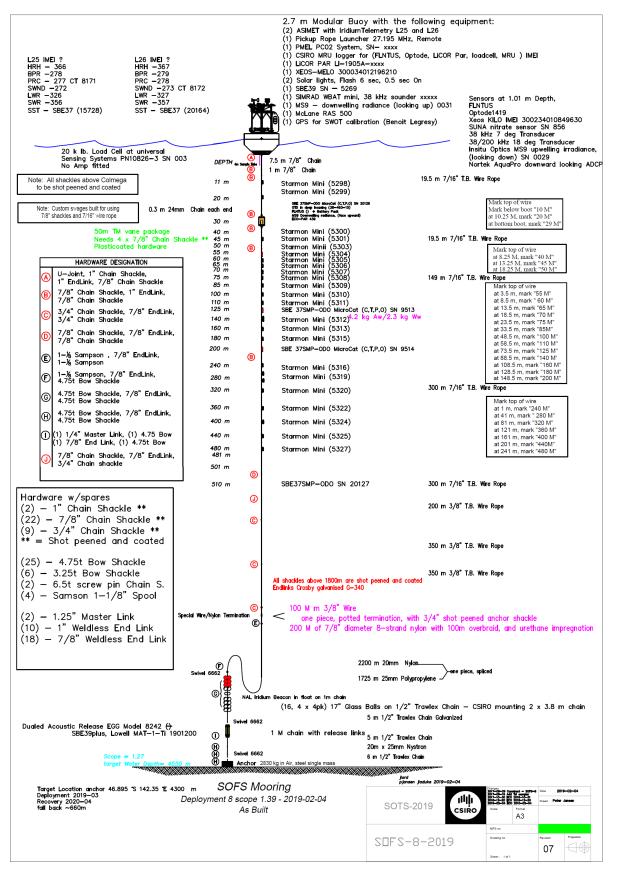

Your name	Thomas W. Trull
Title	Chief Scientist
Signature	Thomas W. Elec
Date:	26 February 2019

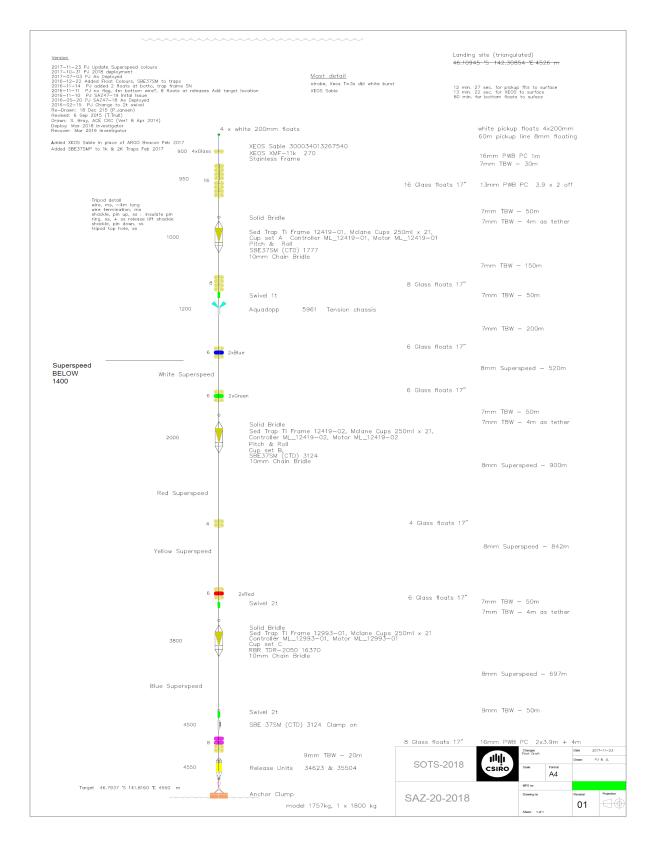
Appendices

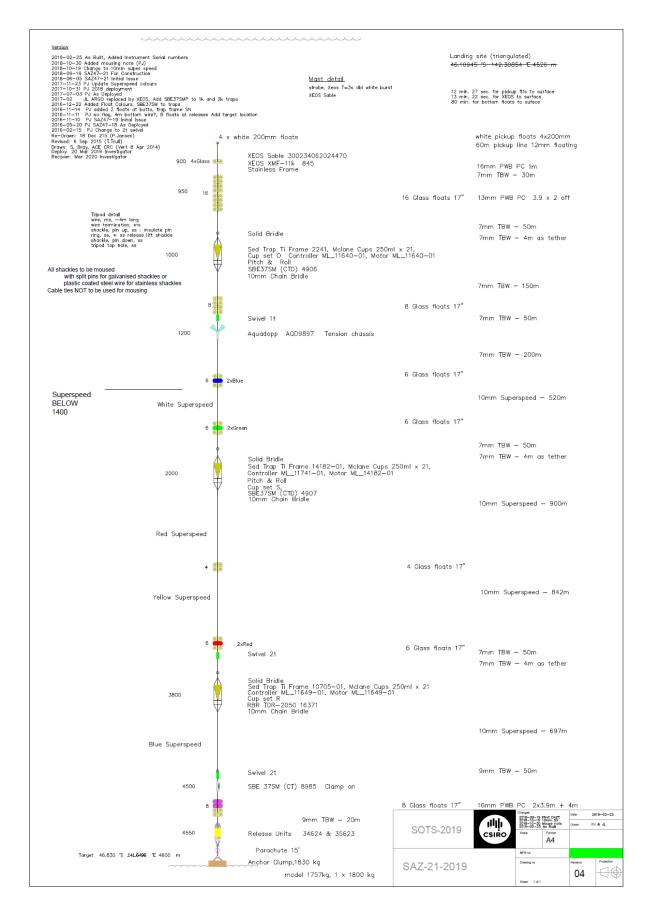
- 1. Deck Loading Plan
- 2. SOTS (SOFS and SAZ) mooring diagrams
- 3. Map of SOTS mooring locations
- 4. UTAS RESPIRE drifting traps diagram
- 5. CTD Water Sample Collection and Labelling Plan (available separately)
- 6. Mooring Deployment Procedures (available separately)

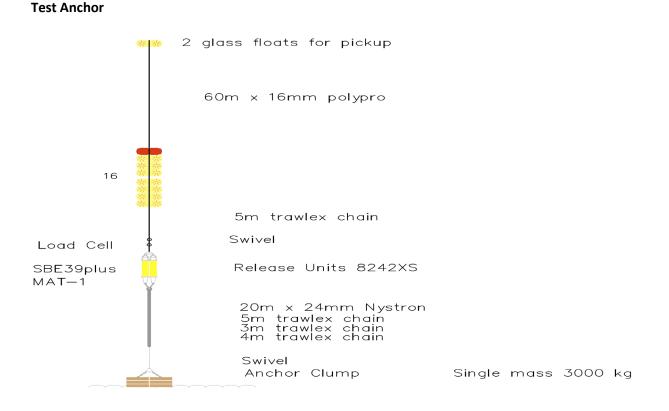

Appendix 1

Deck Plan

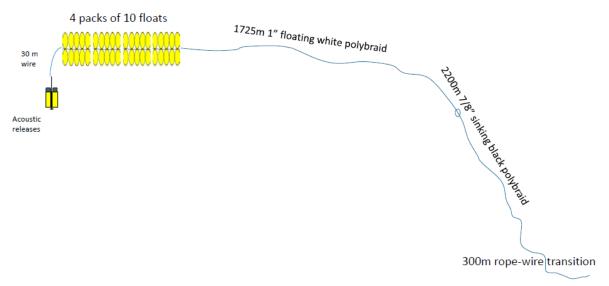


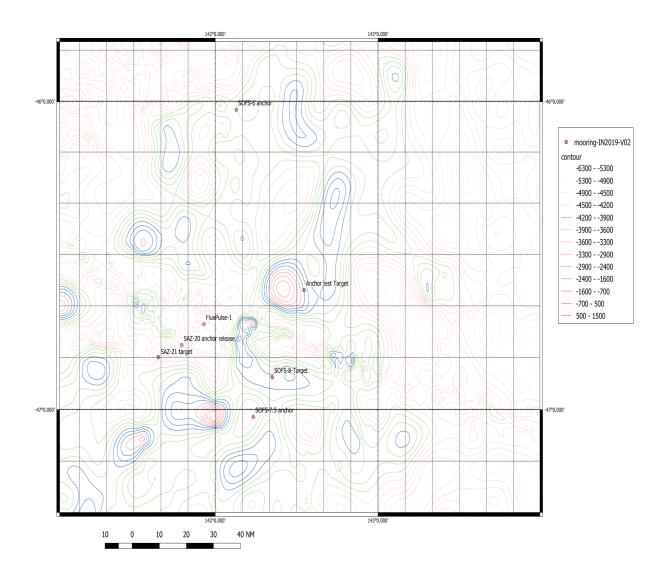

Appendix 2


SOFS-7.5

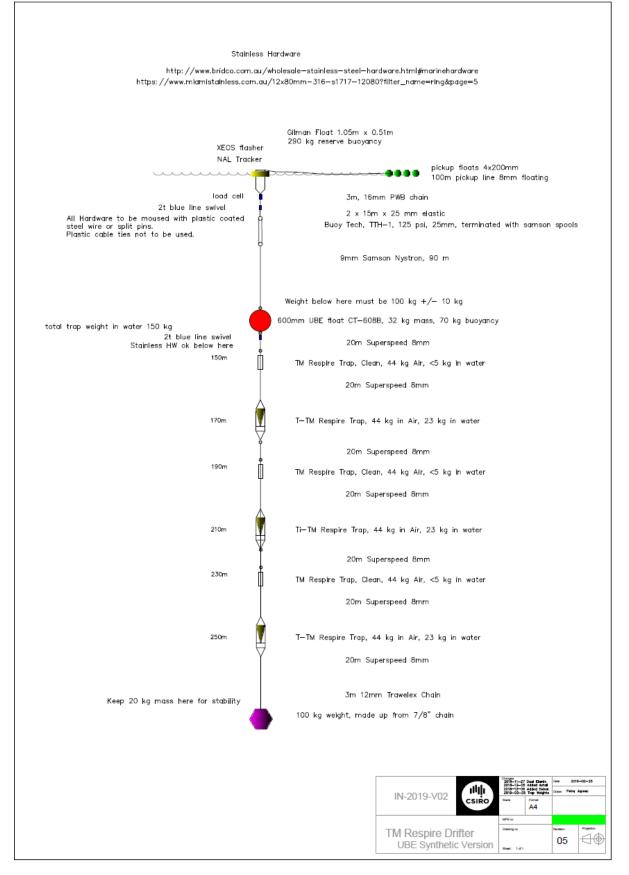


SOFS-8





SOFS-6 lower section expected surface layout



Appendix 3

Mooring Location Map

Appendix 4

Scientific equipment and facilities provided by the Marine National Facility

Some equipment items on the list may not be available at the time of sailing. Applicants will be notified directly of any changes.

Indicate what equipment and facilities you require from the Marine National Facility by placing an **X** in the relevant box.

(i) Standard laboratories and facilities

Name	Essential	Desirable
Aerosol Sampling Lab	Х	
Air Chemistry Lab	Х	
Preservation Lab	Х	
Constant Temperature Lab	Х	
Underway Seawater Analysis Laboratory	Х	
GP Wet Lab (dirty)	Х	
GP Wet Lab (Clean)	Х	
GP Dry Lab (Clean)	Х	
Sheltered Science Area	Х	
Observation deck 07 level		
Walk in Freezer	Х	
Clean Freezer	Х	
Blast Freezer	Х	
Ultra-Low Temperature Freezer	Х	
Walk in Cool Room	Х	

(ii) Specialised laboratory and facilities

May require additional support

Name	Essential	Desirable
Modular Radiation Laboratory	х	
Modular Trace Metal Laboratories	Х	
Modular Hazchem Locker		
Deck incubators	Х	
Stabilised Platform Container		

(iii) Standard laboratory and sampling equipment

Name	Essential	Desirable
CTD - Seabird 911 with 36 Bottle Rosette		
CTD -Seabed 911 with 24 Bottle Rosette	Х	
LADCP	Х	
Sonardyne USBL System	Х	
Milli -Q System	Х	
Laboratory Incubators	Х	
Heavy Duty Electronic Balance		
Medium Duty Electronic Balance	Х	
Light Duty Electronic Balance	Х	
Surface Net	Х	
Bongo Net	Х	
Smith Mac grab		
Dissecting Microscopes	Х	

(iv) Specialised laboratory and sampling equipment

May require additional support

Name	Essential	Desirable
TRIAXUS – Underway Profiling CTD	Х	
Continuous Plankton Recorder (CPR)	Х	
Deep tow camera		
Piston Coring System		
Gravity Coring System		
Multi Corer		
XBT System	Х	
Trace Metal Rosette and Bottles, and TMR Deck Box	Х	
Sherman epibenthic sled		
Trace- metal in-situ pumps	Х	
LADCP		
Rock Dredges		
EZ Net		
Rock saw		
Portable pot hauler		
Beam Trawl		
Trawl doors (pelagic or demersal)		
Stern Ramp NEEDS TO BE COVERED WIITH DANCE FLOOR	Х	
Trawl monitoring instrumentation (ITI)	Х	
Radiosonde		

(v) Equipment and sampling gear requiring external support

May require additional support from applicants

Name	Essential	Desirable
Seismic compressors		
Seismic acquisition system		

(vi) Underway systems

Acoustic Underway Systems

Name	Essential	Desirable
75kHz ADCP	Х	
150kHz ADCP		
Multi Beam echo sounder EM122 12kHz (100m to full ocean depth)	Х	
Multi Beam echo sounder EM710 70-100kHz (0-1000m approx.)	Х	
Sub-Bottom Profiler SBP120		
Scientific Echo Sounders EK60 (6 bands, 18kHz-333kHz)	Х	
Gravity Meter		
Trace metal clean seawater supply		

(vii) Atmospheric Underway Sensors

Name	Essential	Desirable
Nephelometer		
MAAP (multi angle absorption photometer)	х	
SMPS (scanning mobility particle sizer)	х	
Radon detector	х	
Ozone detector		
Manifold instrumentation (intake temperature and humidity)	Х	
Picarro spectrometer (analysis of CO ₂ /CH ₄ /H ₂ O)		
Aerodyne spectrometer (analysis of N ₂ O/CO/H ₂ O)	Х	
O2 analyser		
Manifold instrumentation (intake temperature and humidity)	Х	
CCN (Cloud Condensation Nuclei)	х	
MOUDI (Micro-Orifice Uniform Deposit Impactors)	Х	
Polarimetric Weather Radar		

(viii) Underway Seawater Instrumentation

Name	Essential	Desirable
Thermosalinograph	Х	
Fluorometer	Х	
Optode	Х	
PCO2	Х	