

# MNF Voyage Highlights and Summary

| Voyage #:       | IN2021_E02                                                  |
|-----------------|-------------------------------------------------------------|
| Voyage title:   | Trials and Calibrations (Winches)                           |
| Mobilisation:   | Monday, 15 November – Wednesday, 17 November 2021, Hobart   |
| Depart:         | Saturday, 20 November 2021, Selfs Point                     |
| Return:         | Sunday, 28 November 2021, Hobart PW04 ~1100hrs              |
| Demobilisation: | Sunday, 28 November – Monday, 29 November 2021, Hobart PW04 |
| Voyage Manager: | Tegan Sime                                                  |
| Technical Lead: | Jason Fazey                                                 |
| Affiliation:    | CSIRO                                                       |

## PART A – Voyage Highlights

This voyage's primary aims were to test and calibrate (mechanical and digital) of the following systems:

- General Purpose Winch with new Heavy Ocean Towing System (HOTS) Fibron cable Annual Calibration
- Annual calibrations of:
  - CTD Winch #1 & 2
  - Deep Corer winch
  - o Towed Body winch
  - Port and Starboard trawl winch
- Automatic Heave Compensation testing on all capable winches
- Deep Tow Camera (DTC) 'flight testing' deployments on new HOTS cable, adjustments to package weights/tow speed.
- Commission fishery mode software for auto-spool adjust on ship turns
- Test and familiarisation with pelagic & demersal trawl equipment and rigging for RV Investigator with support of external fishing master

With a new swing of ship crew, the voyage had significant work to complete for primary winch calibrations.

The outcomes of these projects will allow *Investigator* to continue to support multi-disciplinary research on behalf of the nation.

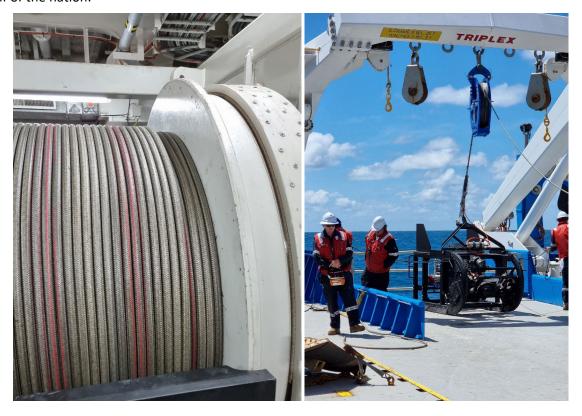



Fig 1. Deep Corer Winch line post re-spooling showing minor burying on cheekplate (left). Deep Tow Camera prepared for first deployment on HOTS (right).

## Voyage Highlights

#### Technical Lead

Jason Fazey is the MNF's Science Technology Coordinator and has many years' experience onboard RV Investigator. Jason was also involved in the early project management, scoping, assessment and procurement of the Giant Piston Corer and Core Handler systems prior to this voyage.

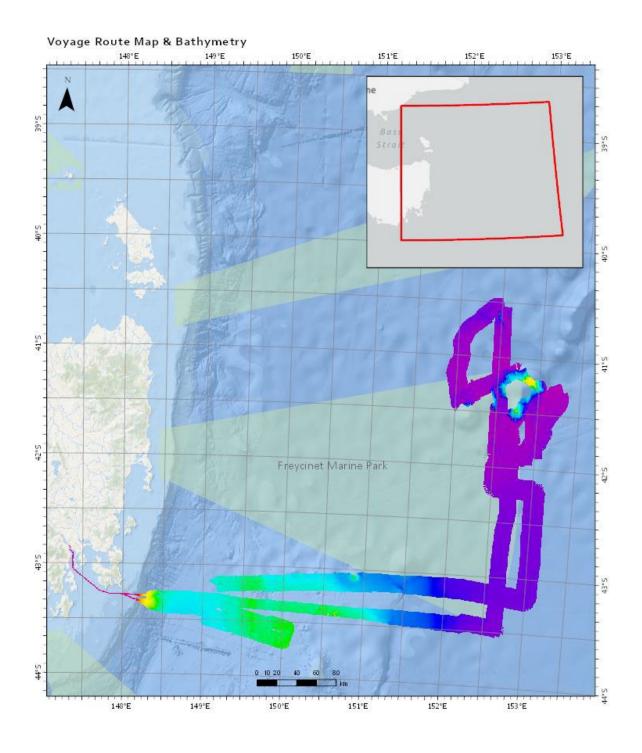


#### Title

IN2021 E02 Trials and Calibrations (Winches).

### **Purpose**

The purpose of this Marine National Facility (MNF) voyage was to calibrate and commission new, upgraded, and existing critical equipment (with sea trials and personnel training) onboard *Investigator* for upcoming voyages in the 2022 schedule and beyond.


The primary objectives for this voyage were testing and calibrating all primary and auxiliary winch systems including the General Purpose winch with new HOTS cable and the Deep Corer Winch. Additional tests of end-user equipment such as the Deep Towed Camera were also planned for after successful winch calibrations. Broadly another purpose of this voyage was to maintain, repair, test & report on other ship systems after significant time alongside.

#### Contribution to the nation

The outcomes of these projects together are of significance to the Australian community because they provide the MNF and therefore the nation with confidence of ship systems onboard *Investigator*.

### As a result of this voyage

- 1. We have a better understanding of ship winches and system operating performance and constraints.
- 2. We have mapped approximately 2291 line kilometres (1237 nautical miles) whilst underway using approximately 7 oceanic acoustic profiling devices onboard.



## Voyage Summary

#### Objectives and brief narrative of voyage

The purpose of this Marine National Facility (MNF) voyage was to calibrate and commission new, upgraded, and existing critical equipment (with sea trials and personnel training) onboard *Investigator* for upcoming voyages in the 2022 schedule and beyond.

The primary objectives for this voyage were testing and calibrating all primary and auxiliary winch systems including the General Purpose winch with new HOTS cable and the Deep Corer Winch. Additional tests of end-user equipment such as the Deep Towed Camera were also planned for after successful winch calibrations. Broadly another purpose of this voyage was to maintain, repair, test & report on other ship systems after significant time alongside.

#### Scientific objectives

The primary aim of this voyage was ship calibrations, however, additional activities such as seafloor mapping and Deep Tow Camera footage work to meet future voyage science objectives were also planned.

#### Voyage objectives

This voyage's primary aims were to test and calibrate (mechanical and digital) of the following systems:

- General Purpose Winch with new Heavy Ocean Towing System (HOTS) Fibron cable Annual Calibration
- Annual calibrations of:
  - o CTD Winch #1 & 2
  - o Deep Corer winch
  - o Towed Body winch
  - Port and Starboard trawl winch
- Automatic Heave Compensation testing on all capable winches
- Deep Tow Camera (DTC) 'flight testing' deployments on new HOTS cable, adjustments to package weights/tow speed.
- Commission fishery mode software for auto-spool adjust on ship turns
- Test and familiarisation with pelagic & demersal trawl equipment and rigging for RV Investigator with support of external fishing master

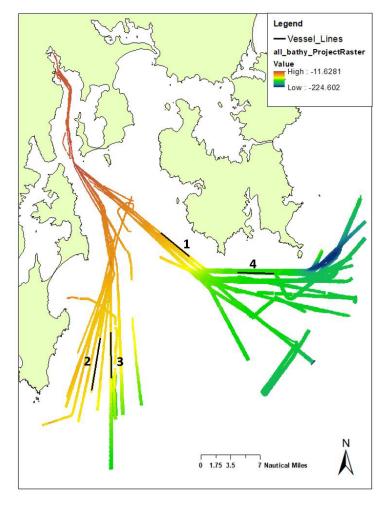
#### Results

ASP crew, RAPP MacGregor, the Fishing Master and support staff were successful in trailing and calibrating all primary and auxiliary winches onboard including the critical deep corer winch, with the exception of CTD #2 due to time constraints.

The General Purpose winch with increased capacity HOTS Fibron cable performed well with spooling, mechanical terminations, A-Frame block functionality and electro-optical termination.

#### Voyage narrative

Departing from Selfs Point bunkers on Saturday, 20 November 2021, voyage activities started with testing the General Purpose Winch and new HOTS electro-optical cable. Performance of the HOTS was as expected or better, including Automatic Heave Compensation.


Testing the Deep Corer Winch displayed symptoms of 'buried rope' deeper on the drum. The onboard team performed a risk assessment through ASP's standard JSA process and the rope was paid out astern of the vessel with a drogue and float until the drum was almost empty (~7.8km). Careful manual respooling here laid a good foundation and permitted auto-respooling functionality to return.

Port and Starboard trawl winches, using new trawl gallows, were calibrated using the resistance from trawl doors (otter boards) and associated fishing net, bridles and gear. After calibration, fishery mode software was commissioned to allow greater control of winch tension, net mouth spread and wire-water entry points, especially during vessel turns. This was successfully completed with some large and some almost-nil differences in performance between manual and auto fishery mode.

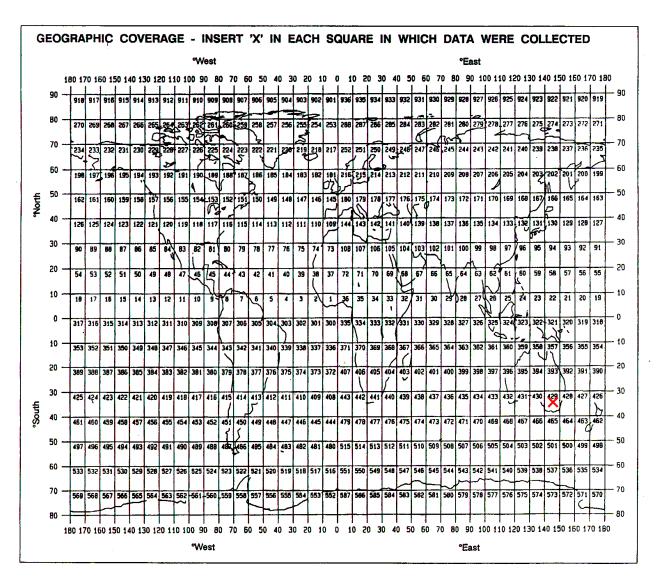
Deep Tow Camera testing was conducted, however, almost immediately upon first deployment the video functionality failed. Onboard SIT performed extensive troubleshooting of the video camera systems and prepared deployments for the next voyage (IN2021\_E03).

CTD #1 winch was calibrated using the 24 rosette with additional weights added to reach minimum 500kg requested by chief engineer. Due to time constraints, the calibration of CTD #2 winch was moved to IN2021 E03.

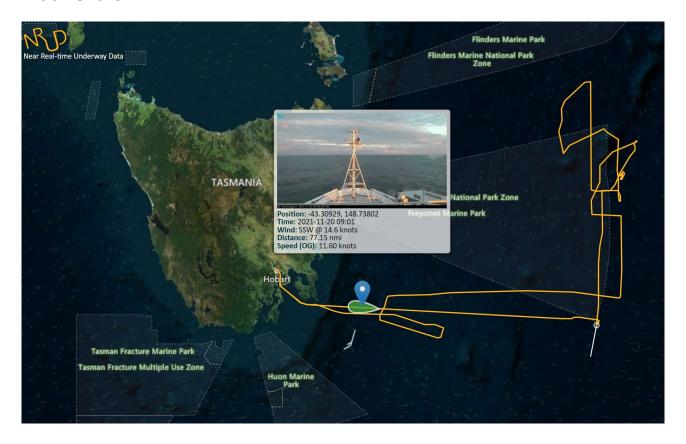
Backscatter checks and calibrations of the EM710 were performed underway when transiting through sites #1 and #4 as pictured below.



Throughout the voyage, routine underway data collection was performed including echosounders, underway seawater (including calibration of new PC02 sensor), gravity meter, sea surface temperature ratiometer, Sound Velocity profiles from XBT launches and other means.


#### Summary

Overall, this voyage was successful in achieving almost all planned scope of works for trials and calibrations of winches (except CTD #2), though it was at significant effort to maximise all possible time from unplanned errors & troubleshooting during calibrations. The planning and delivery of this voyage was highly compressed, facing many changes and challenges such as changed ports and areas of operation, unconfirmed departure time, personnel changes and further onboard winch faults.


Considering the context of these challenges, the problems uncovered (many resolved onboard) and the volume of work completed and feedback of participants – many consider this voyage a positive and important restart to operations for the Marine National Facility, following from our extended Long Maintenance Period of 2021. This voyage was successful because of the skills and experience of the ship's crew, MNF staff, the science teams and their ability to work together in any conditions.

## Marsden Squares





#### **Track Chart**



### Acknowledgements

Acknowledgement and thanks to ASP crew, Technical Lead, Jason Fazey and Voyage Manager, Tegan Sime who were instrumental in supporting a high workload of winch calibrations in a short timeframe. Acknowledgement and thanks to Kate Kiefer from MNF Facilities and Logistics who was able to procure an important test weight at short notice.

Thanks also to Engineering and Technology team members who were supportive, understanding and flexible during dynamic operations whist at sea.

### Signature

| Your name: | David Flynn                 |
|------------|-----------------------------|
| Title:     | Voyage Delivery Coordinator |
| Signature: | (insert signature)          |
| Date:      | 05/01/2022                  |

## Appendix A – CSR/ROSCOP Parameter Codes

|     | METEOROLOGY                       |
|-----|-----------------------------------|
| M01 | Upper air observations            |
| M02 | Incident radiation                |
| M05 | Occasional standard measurements  |
| M06 | Routine standard measurements     |
| M71 | Atmospheric chemistry             |
| M90 | Other meteorological measurements |

|     | PHYSICAL OCEANOGRAPHY                                    |
|-----|----------------------------------------------------------|
| H71 | Surface measurements underway (T,S)                      |
| H13 | Bathythermograph                                         |
| H09 | Water bottle stations                                    |
| H10 | CTD stations                                             |
| H11 | Subsurface measurements underway (T,S)                   |
| H72 | Thermistor chain                                         |
| H16 | Transparency (eg transmissometer)                        |
| H17 | Optics (eg underwater light levels)                      |
| H73 | Geochemical tracers (eg freons)                          |
| D01 | Current meters                                           |
| D71 | Current profiler (eg ADCP)                               |
| D03 | Currents measured from ship drift                        |
| D04 | GEK                                                      |
| D05 | Surface drifters/drifting buoys                          |
| D06 | Neutrally buoyant floats                                 |
| D09 | Sea level (incl. Bottom pressure & inverted echosounder) |
| D72 | Instrumented wave measurements                           |
| D90 | Other physical oceanographic measurements                |

|     | MARINE DIOLOGY/EIGHEDIEG                                |
|-----|---------------------------------------------------------|
|     | MARINE BIOLOGY/FISHERIES                                |
| B01 | Primary productivity                                    |
| B02 | Phytoplankton pigments (e.g. chlorophyll, fluorescence) |
| B71 | Particulate organic matter (inc POC, PON)               |
| B06 | Dissolved organic matter (inc DOC)                      |
| B72 | Biochemical measurements (e.g. lipids, amino acids)     |
| B73 | Sediment traps                                          |
| B08 | Phytoplankton                                           |
| B09 | Zooplankton                                             |
| В03 | Seston                                                  |
| B10 | Neuston                                                 |
| B11 | Nekton                                                  |
| B13 | Eggs & larvae                                           |
| В07 | Pelagic bacteria/micro-organisms                        |
| B16 | Benthic bacteria/micro-organisms                        |
| B17 | Phytobenthos                                            |
| B18 | Zoobenthos                                              |
| B25 | Birds                                                   |
| B26 | Mammals & reptiles                                      |
| B14 | Pelagic fish                                            |
| B19 | Demersal fish                                           |
| B20 | Molluscs                                                |
| B21 | Crustaceans                                             |
| B28 | Acoustic reflection on marine organisms                 |
| B37 | Taggings                                                |
| B64 | Gear research                                           |
| B65 | Exploratory fishing                                     |
|     |                                                         |

| H21 | Oxygen                                    |
|-----|-------------------------------------------|
| H74 | Carbon dioxide                            |
| H33 | Other dissolved gases                     |
| H22 | Phosphate                                 |
| H23 | Total - P                                 |
| H24 | Nitrate                                   |
| H25 | Nitrite                                   |
| H75 | Total - N                                 |
| H76 | Ammonia                                   |
| H26 | Silicate                                  |
| H27 | Alkalinity                                |
| H28 | PH                                        |
| H30 | Trace elements                            |
| H31 | Radioactivity                             |
| H32 | Isotopes                                  |
| H90 | Other chemical oceanographic measurements |

|     | MARINE CONTAMINANTS/POLLUTION  |
|-----|--------------------------------|
| P01 | Suspended matter               |
| P02 | Trace metals                   |
| P03 | Petroleum residues             |
| P04 | Chlorinated hydrocarbons       |
| P05 | Other dissolved substances     |
| P12 | Bottom deposits                |
| P13 | Contaminants in organisms      |
| P90 | Other contaminant measurements |

|     | MARINE GEOLOGY/GEOPHYSICS                 |
|-----|-------------------------------------------|
| G01 | Dredge                                    |
| G02 | Grab                                      |
| G03 | Core - rock                               |
| G04 | Core - soft bottom                        |
| G08 | Bottom photography                        |
| G71 | In-situ seafloor measurement/sampling     |
| G72 | Geophysical measurements made at depth    |
| G73 | Single-beam echosounding                  |
| G74 | Multi-beam echosounding                   |
| G24 | Long/short range side scan sonar          |
| G75 | Single channel seismic reflection         |
| G76 | Multichannel seismic reflection           |
| G26 | Seismic refraction                        |
| G27 | Gravity measurements                      |
| G28 | Magnetic measurements                     |
| G90 | Other geological/geophysical measurements |