

RV *INVESTIGATOR*HYDROCHEMISTRY DATA PROCESSING REPORT

Voyage:	in2020_v10
Chief Scientist:	Karen Wild-Allen and Cath Samson
Voyage title:	MNF Trials, Storm Bay Modelling and Information System Data Collection, and Bathymetric and Benthic Habitat mapping of the Huon AMP
Report compiled by:	Julie Janssens and Merinda McMahon

Contents

1	Exe	cutiv	e Summary	4
2	Itine	erary	⁷	5
3	Key	pers	sonnel list	5
4	Sam	nple	Summary	6
	Table 2	2: Saı	nple Type and Number Assayed	6
	4.1.	1	CTD (Conductivity, Temperature, Density)	6
	4.1.	2	TSG (Thermosalinograph)	6
	4.2	Data	a Processing Overview	7
5	Sali	nity	Data Processing	8
	Table 3	3: Sal	inity Parameter Summary	8
	5.1	Salii	nity Method	8
	5.2	CTD	Salinity vs Bottle Salinity Plot	9
	5.3 Mi	ssing	or Suspect Salinity Data	. 10
	5.4 Sta	bility	of Salinity Standard over Voyage	. 10
6	Diss	olve	d Oxygen Data Processing	.11
	6.1	Diss	olved Oxygen Parameter Summary	. 11
	6.2	CTD	Dissolved Oxygen vs Bottle Dissolved Oxygen Plot	. 12
	6.3	Diss	olved Oxygen Instrument titrant: thiosulphate normality and blank correction	. 13
7	Nut	rient	Data Processing	.15
	7.1	Nut	rient Methods	. 15
			trient measurement parameters. All instrument parameters, reagent batches and events are logged for each analysis run. This information is available on request	. 16
	7.2	НуР	ro Processing Summary for Nutrients	. 16
	7.3	Acc	uracy - Reference Material for Nutrient in Seawater (RMNS)	. 17
	7.4	Nut	rient plots of RMNS	. 19
	7.4.	1	Figure 6: Silicate RMNS Plot (μmol L ⁻¹)	. 19
	7.4.	2	Figure 7: Phosphate RMNS Plot (μmol L ⁻¹)	. 20
	7.4.	3	Figure 8: Nitrate + Nitrite (NOx) RMNS Plot (μmol L ⁻¹)	. 21
	7.4.	4	Figure 9: Nitrite RMNS Plot (μmol L ⁻¹)	. 22
	7.5	Mea	surement Uncertainty	. 23
	7.6	Met	hod Detection Limit for Nutrients	. 23
	7.7	Sam	pling Precision	. 23
	7.8	Red	field Ratio Plot (14.14) for CTD Deployments	. 24
	7.9	Mis	sing or Suspect Nutrient Data	. 25

8	App	oendi	x	26
	8.1	Salir	nity: Reference Material Used	26
	8.2	Nuti	rients: RMNS results for each Analysis Run & CTD Deployment	27
	8.2.	1	RMNS Lot CJ Results	27
	8.2.	2	RMNS Lot CG Results	27
	8.2.	3	RMNS Lot CD Results	27
	8.3	Nuti	rients: Measured Detection Limit for each Analysis Run & CTD Deployment	29
	8.4	Flag	Key for Hydrology Data Set	30
	8.5	GO-	SHIP Specifications	31
	8.5.	1	Salinity	31
	8.5.	2	Dissolved Oxygen	31
	8.5.	3	Si(OH) ₄	31
	8.5.	4	PO ₄	31
	8.5.	5	NO ₃	31
	8.5.	6	Notes	31
9	Ref	eren	ces	32

1 Executive Summary

Please cite the following manuscript when reporting or publishing data for silicate, phosphate, nitrate+nitrite (NOx) and nitrite:

Rees, C., L. Pender, K. Sherrin, C. Schwanger, P. Hughes, S. Tibben, A. Marouchos, and M. Rayner. (2018) "Methods for reproducible shipboard SFA nutrient measurement using RMNS and automated data processing." Limnol. Oceanogr: Methods, 17(1): pp. 25-41. doi:10.1002/lom3.10294

The three main objectives to this voyage were 1) complete trials and testing of MNF equipment, 2) Storm Bay sampling for the FRDC project 'Storm Bay Modelling and Information System', 3) Bathymetric and seafloor survey off the Huon Australian Marine Park, Southern Tasmania.

The continuous underway nutrient analyser (AA100) was run on this voyage during the transit out from Hobart, the transit into Hobart and in conjunction with the triaxus tows. The AA100 was set up to analyse NOx, PO₄ and NH₄. Refer to the AA100 reports (in2020_v10_UWYNUT) for further details.

Water samples collected during the voyage were analysed in the ship's hydrochemistry laboratory for nutrients, dissolved oxygen, and salinity. The samples all came from deployments of the conductivity, temperature and depth (CTD) rosette and the underway system.

Five nutrients were analysed; silicate ($Si(OH)_4$), phosphate (PO_4), nitrate + nitrite (NO_2) and ammonium (NH_4). Certified reference materials for nutrients in seawater were within the specified limits of the certified value.

Final hydrology data, analytical methods, and related log sheets and processing notes can be obtained from the CSIRO data centre.

Contact: DataLibrariansOAMNF@csiro.au

2 Itinerary

Hobart to Hobart, 13th November – 22nd November 2020.

Figure 1: Voyage Track

3 Key personnel list

Table 1: Key Personnel list

Name	Role	Organisation	
Karen Wild-Allen	Principal Investigator	CSIRO	
Cath Samson	Principal Investigator	Parks Australia	
John Hooper	Voyage Manager	CSIRO	
Julie Janssens	Hydrochemist	CSIRO	
Merinda McMahon	Hydrochemist	CSIRO	

4 Sample Summary

Table 2: Sample Type and Number Assayed

Analysis (instrument)	Number of Samples
Salinity (Guildline Salinometer)	25 CTD
	15 TSG
Dissolved Oxygen (automated titration)	26 CTD
	11 UWY
Nutrients (Seal AA3HR)	98 CTD
	19 UWY

4.1.1 CTD (Conductivity, Temperature, Density)

- 36 bottle rosette with 12 L Ocean Test Equipment bottles (Niskin) for water collection.
- 6 CTD deployments were sampled in total by Julie Janssens, Merinda McMahon, Karen Wild Allen, Ruth Eriksen and Craig Neil.

4.1.2 TSG (Thermosalinograph)

 Samples collected by Julie Janssens from underway lab for calibration of thermosalinograph.

For TSG sample information, please refer to the voyage eLog.

4.2 Data Processing Overview

The sample meta-data, measured bottle salinity results, dissolved oxygen assay results and the nutrient assay raw data are processed by the CSIRO program HyPro. The final output is the hydrology data set. An overview of this process is illustrated in figure 2.

Figure 2: Hydrology Data Processing Flow Diagram.

5 Salinity Data Processing

Table 3: Salinity Parameter Summary

Details			
HyPro Version	5.7		
Instrument	Guildline Autosal Laboratory Salinometer 8400(B) – SN 72088		
Software	Ocean Scientific International Ltd (OSIL) Data Logger ver 1.2		
CSIRO Hydrochem Method.	Sampling: WI_Sal_002 Measurement: SOP006		
Accuracy	± 0.001 practical salinity units		
Analysts	Julie Janssens		
Lab Temperature (±0.5°C)	20.5 -23.0°C during analysis.		
Bath Temperature	24°C		
Reference Material	OSIL IAPSO ¹ - Batch P162, use by $16/04/2021$, $K_{15} = 1.99966$		
Sampling Container type	200 ml volume OSIL bottles made of type II glass (clear) with disposable plastic insert and plastic screw cap.		
Sample Storage	Samples stored in the salinometer room for a minimum of 8 hrs before measurement.		
Comments	None.		

5.1 Salinity Method

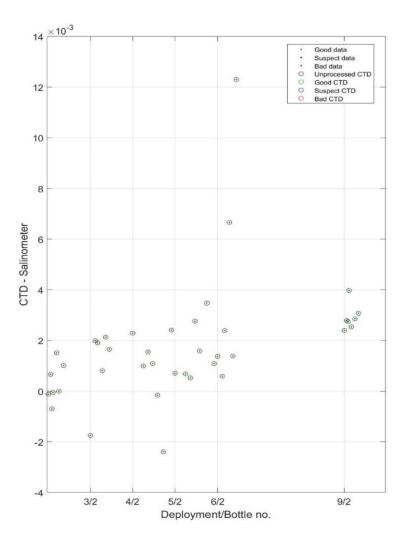
Salinity samples are measured on a high precision laboratory salinometer (Guildline Autosal 8400B) which is operated in accordance with its technical manual.

Practical salinity (S) is defined in terms of the ratio (K_{15}) of the electrical conductivity measured at 15°C 1 atm of seawater to that of a potassium chloride (KCl) solution of mass fraction 32.4356 x 10⁻³.

Before each batch of sample measurements, the Autosal is calibrated with standard seawater (OSIL, IAPSO) of known K_{15} ratio. A new bottle of OSIL solution is used for each calibration. The frequency of calibration is one per set of samples per CTD deployment.

Method synopsis: Salinity samples are collected into 200ml OSIL bottles, filled from the bottom, via a polytetrafluoroethylene (PTFE) straw, till overflowing. The bottle is removed from the straw and the sample is decanted to allow a headspace of approximately 25 cm³. A plastic insert is fitted, the bottle inverted and rinsed with water then capped and stored cap-down until measured. To measure, the Autosal cell is flushed three times with the sample and then measured after the fourth and fifth flush. The OSIL data logger software captures the conductivity ratio and calculates the practical salinity.

The output from the data logger software is imported into HyPro and collated with the CTD deployment meta-data.


¹ International Association for the Physical Sciences of the Oceans

5.2 CTD Salinity vs Bottle Salinity Plot

The difference between the unprocessed (uncorrected) CTD values and the measured bottle salinities is generally less than 0.01 PSU.

The unprocessed CTD values are adjusted (corrected) by DAP using the bottle results. The corrected values are not reported in the hydrology set. Please contact the DataLibrariansOAMNF@csiro.au for corrected CTD data.

Note: dots = bottle samples, circles = CTD instrument (unprocessed)

Figure 3: CTD Salinity vs Bottle Salinity Plot. Deployment/Bottle number (x-axis). Difference of Salinity bottle data from the corresponding CTD salinity value (y-axis). Note: dots = bottle samples, circles = CTD instrument (unprocessed). Units: PSU (dimensionless).

5.3 Missing or Suspect Salinity Data

Table 4: Missing or Suspect Salinity Data. Data is flagged based on notes from CTD sampling log sheet, observations during analysis, and examination of depth profile and waterfall plots (Flag key in appendix 8.4

CTD	RP	Run	Flag	Reason for Flag or Action
N/A	N/A	N/A	N/A	N/A

5.4 Stability of Salinity Standard over Voyage

The salinometer was standardized with IAPSO standard seawater lot P162 (PSU = 34.993). Figure 4 shows the reading used to standardise the instrument before each run. The blue line represents the mean of all standard measurements.

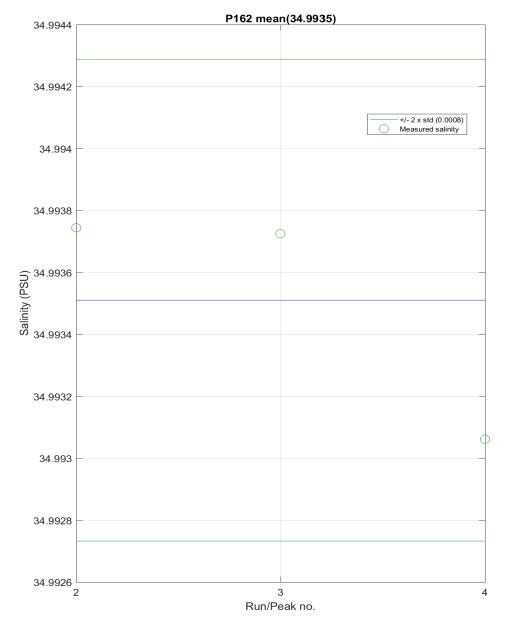


Figure 4: Measured salinity of P162 IAPSO salinity standard for instrument standardization prior to each run.

6 Dissolved Oxygen Data Processing

6.1 Dissolved Oxygen Parameter Summary

SIO method used. The method is based on the whole-bottle modified Winkler titration of Carpenter (1965) plus modifications by Culberson *et al* (1991).

Method synopsis: The sample is collected in an iodine determination flask of known volume. 1mL of manganese (II) chloride solution followed by 1 mL of alkaline iodide solution is added to the sample, the flask stoppered and inverted a minimum of 39 times. The dissolved oxygen oxidizes an equivalent amount of Mn (II) to Mn (IV) which precipitates. Just before titration, the sample is acidified, oxidizing the Mn (IV) back to the divalent state liberating iodine twice the original dissolved oxygen content of the sample. The tri-iodine is auto-titrated with a standardised thiosulphate solution using a Metrohm 665 Dosimat fitted with a 1 mL burette. The endpoint is determined by measuring changes in the UV absorption of the tri-iodide ion at 365 nm. The point at which there is no change in absorbance is the endpoint.

Before each batch of sample assays, the thiosulphate solution is standardised by using it to titrate a 10 mL aliquot of potassium iodate primary standard. A blank correction is also determined from the difference between two consecutive titres for 1 mL aliquots of the same potassium iodate solution.

The output from the SIO instrument software is imported into HyPro and collated with the CTD deployment meta-data.

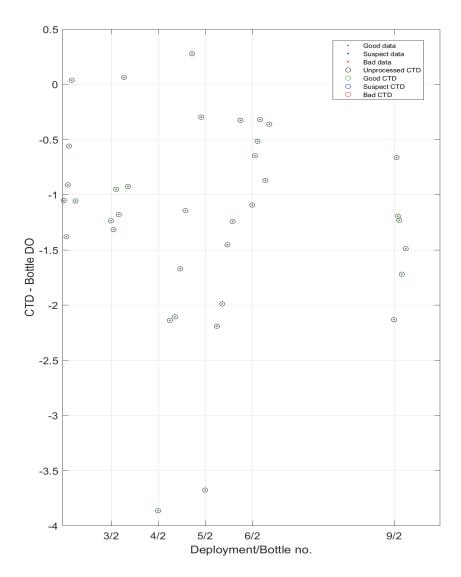
Table 5: Dissolved oxygen measurement parameters.

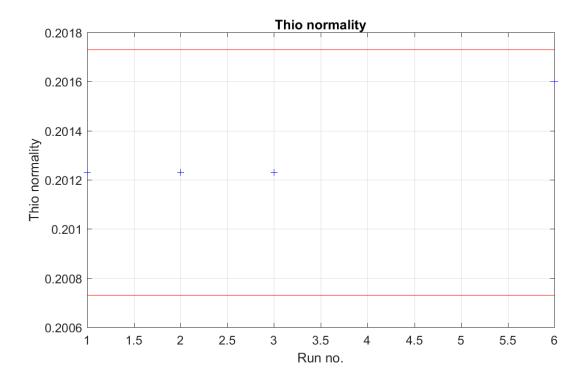
Details				
HyPro Version	5.7			
Instrument	Automated Photometric Oxygen System			
Software	Scripps Institution of Oceanography (SIO)			
CSIRO Hydrochem. Method	Sampling: WI_DO_001 Assay: SOP005			
Accuracy	± 0.5 μmol L ⁻¹			
Analyst(s)	Merinda McMahon and Julie Janssens			
Lab Temperature (±1°C)	19 - 23°C			
Sample Container type	Pre-numbered 140 mL glass iodine determination flasks with glass stopper. 18 flasks per light-proof container.			
Sample Storage	Samples stored in the hydrochemistry lab until analysis. All samples were analysed within ~72 hrs			
Comments	None.			

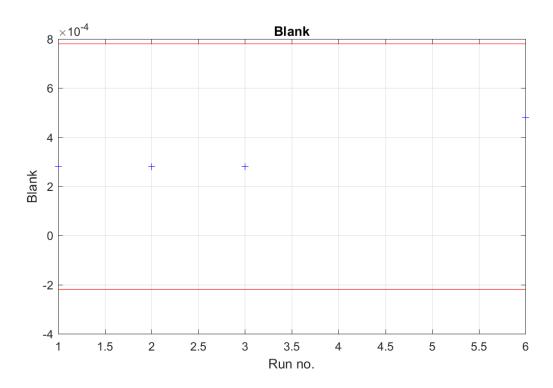
6.2 CTD Dissolved Oxygen vs Bottle Dissolved Oxygen Plot

The CTD values in this plot are unprocessed raw data.

The unprocessed CTD values are adjusted (corrected) by DAP using the bottle results. The corrected values are not reported in the hydrology set. Please contact the DataLibrariansOAMNF@csiro.au for corrected CTD data.




Figure 4. CTD Dissolved Oxygen vs Bottle Dissolved Oxygen Plot. Deployment/Bottle number (x-axis). Difference in dissolved oxygen results from the bottle sample to its corresponding CTD measurement (y-axis). Note: dots = bottle samples, circles = CTD instrument (unprocessed). Units: μ mol L⁻¹


Table 6: Missing or suspect dissolved oxygen bottle data. Data is flagged based on CTD sampling log sheet notes, observations during analysis, and examination of the depth profile (Flag key in appendix 8.4).

CTD	RP	Run	Flag	Reason for Flag or Action	
N/A	N/A	N/A	N/A	N/A	

6.3 Dissolved Oxygen Instrument titrant: thiosulphate normality and blank correction.

The normality of the thiosulphate titrant (0.20 N) varied less than 0.00037 N between the 6 runs of dissolved oxygen sample titrations. The blank corrections are less than 0.0006 mL with a voyage mean of 0.0004 mL and standard deviation of 0.00014 mL (n=2). For reference, titre volumes for dissolved oxygen bottle samples lay in the range 0.44 to 0.55 mL

Figure 5. Auto-titrator calibration plots. In Figure 5a the red lines indicate \pm 0.0005 N either side of the mean titrant (thiosulfate) concentration. In Figure 5b red lines indicate acceptable variation either side of the mean blank concentration. The titrant should not vary more than 0.0005 N between analyses.

7 Nutrient Data Processing

7.1 Nutrient Methods

When using silicate, phosphate, nitrate+nitrite (NOx) and nitrite data set for publication, please cite the paper:

Rees, C., L. Pender, K. Sherrin, C. Schwanger, P. Hughes, S. Tibben, A. Marouchos, and M. Rayner. (2018) "Methods for reproducible shipboard SFA nutrient measurement using RMNS and automated data processing." Limnol. Oceanogr: Methods, 17(1): pp. 25-41. doi:10.1002/lom3.10294

Nutrient samples are assayed on a Seal AA3HR segmented flow auto-analyser fitted with 1 cm flow-cells for colorimetric measurements and a JASCO FP2020 fluorescence instrument as the ammonium detector.

Silicate (SOP001): colourimetric, molybdenum blue method. Based on Armstrong et al. (1967). Silicate in seawater is reacted with acidified ammonium molybdate to produce silicomolybdic acid. Tartaric acid is added to remove the phosphate molybdic acid interference. Tin (II) chloride is then added to reduce the silicomolybdic acid to silicomolybdous acid and its absorbance is measured at 660 nm.

Phosphate (SOP002): colourimetric, molybdenum blue method. Based on Murphy and Riley (1962) with modifications from the NIOZ-SGNOS¹ Practical Workshop 2012 optimizing the antimony catalyst/phosphate ratio and the reduction of silicate interferences by pH. Phosphate in seawater forms a phosphomolybdenum complex with acidified ammonium molybdate. It is then reduced by ascorbic acid and its absorbance is measured at 880 nm.

Nitrate (SOP003): colourimetric, Cu-Cd reduction – naphthylenediamine method. Based on Wood et.al (1967). Nitrate is reduced to nitrite by first adding an ammonium chloride buffer then sending it through a copper - cadmium column. Sulphanilamide is added under acidic conditions to form a diazo compound. This compound is coupled with 1-N-naphthly-ethylenediamine di-hydrochloride to produce a reddish purple azo complex and its absorbance is measured at 520 nm.

Nitrite (SOP003): colourimetric, naphthylenediamine method. As per nitrate method without the copper cadmium reduction column and buffer.

Ammonium (SOP004): fluorescence, ortho-phtaldiadehyde method. Based on Kérouel and Aminot (1997). Ammonium reacted with ortho-phtaldialdehyde and sulphite at a pH of 9.0-9.5 to produce an intensely fluorescent product. Its emission is measured at 460 nm after excitation at 370 nm.

SOP methods can be obtained from the CSIRO Oceans and Atmosphere Hydrochemistry Group.

¹ Royal Netherlands Institute for Sea Research – Study Group on Nutrient Standards.

Table 7: Nutrient measurement parameters. All instrument parameters, reagent batches and instrument events are logged for each analysis run. This information is available on request.

Details							
CSIRO Software	HyPro 5.7	HyPro 5.7					
Instrument	Seal AA3HR						
Instrument Software	Seal AACE 7.2	10					
CSIRO Hydrochem. Method, sampling	WI_Nut_001						
CSIRO Hydrochem. Method, nutrient	SOP001	SOP002	SOP003	SOP003	SOP004		
Nutrient	Silicate Phosphate Nitrate + Nitrite Ammonium						
Concentration range (µmol L ⁻¹)	0 - 112 0.0 - 3.0 0 - 42 0.0 - 1.4 0.0 - 2.0						
Method Detection Limit (MDL) (μmol L ⁻¹)	0.2	0.02	0.02	0.02	0.02		
Matrix Corrections	none	none	none	none	none		
Analyst	Merinda Mcl	Mahon and Jul	ie Janssens				
Lab Temperature (±1°C)	19 – 23 °C						
Reference Material	KANSO, RMN	IS lot CI					
Sampling Container type	CTD: 50ml HDPE with screw cap lids.						
Sample Storage	< 2 hrs at room temperature or ≤ 24 hrs @ 4°C						
Pre-processing of Samples	CTD and UW	Y: None.					
Comments							

7.2 HyPro Processing Summary for Nutrients

After a run, the raw absorbance/ fluorescence data is exported from the instrument and processed by HyPro. For each analyte, HyPro re-creates the peak traces, defines the region on the peak's plateau (peak window) used to determine the peak heights, constructs the calibration curve, applies corrections for carry-over, baseline and sensitive drifts then, derives the nutrient concentrations for each sample. The corrections are quantified using dedicated solutions included in every run.

HyPro uses criteria to identify suspect calibration points, noisy peaks, method detection limits that are above the nominal limit and, duplicate sample results that do not match.

With suspect calibration points, their contribution to the curve is given less weighting dependent on their distance from the final curve. The cut-off limits for good calibration data are:

- ±0.5% of the concentration of the top standard for silicate and nitrate+nitrite (as per WOCE¹).
- Within 0.02 μmol L⁻¹ for phosphate, nitrite and ammonium.

HyPro classifies the quality of data as good, suspect or bad and flags accordingly. The flagged nutrient calibration data is in Appendix 8.2.

Missing or suspect nutrient data is tabulated in section 7.7, the flags are also in the final hydrology data set. The Flag key is in Appendix 8.5.

Table 8: All instrument parameters and reagent batches and operation events are logged for each analysis run. This information is available on request.

Result Details	Silicate	Phosphate	Nitrate + Nitrite (NOx)	Nitrite	Ammonia		
Data Reported as	μmol L ⁻¹	μmol L ⁻¹	μmol L ⁻¹	μmol L ⁻¹	μmol L ⁻¹		
Calibration Curve degree	Linear	Linear	Quadratic	Quadratic	Quadratic		
# of points in Calibration	6	6	6	6	6		
Forced through zero?	N	N	N	N	N		
Matrix correction	N	N	N	N	N		
Blank correction	N	N	N	N	N		
Peak window defined by	HyPro	HyPro	HyPro	HyPro	HyPro		
Carryover correction (HyPro)	Y	Y	Υ	Υ	Υ		
Baseline drift correction (HyPro)	Y	Y	Y	Y	Y		
Sensitivity drift correction (HyPro)	Y	Y	Y	Υ	Y		
Data Adj for RMNS variance.	N	N	N	N	N		
Medium of Standards	Low nutrient seawater (LNSW, bulk on deck of Investigator) collected on 28/9/2016. Sub-lot passed through a 10 µm filter and stored in 20 L carboys in the clean dry laboratory at 22°C.						
Medium of Baseline	18.2 Ω water. Dispensed from Milli Q						
Proportion of samples in duplicate.		< 10 %. CTD: Niskin fired at the greatest depth sampled in duplicate. Single samples collected for remaining depths.					
Comments	The second secon	l data is not co		RMNS. Per deplo	yment RMNS		

7.3 Accuracy - Reference Material for Nutrient in Seawater (RMNS)

Descriptive statistics are used to ascertain the accuracy and precision of the analysis from the repetitive measurement of the RMNS for silicate, phosphate, NOx, and nitrite in seawater.

¹ World Ocean Circulation Experiment

Japanese KANSO certified RMNS lot CI was assayed in triplicate in each run to monitor accuracy. The certified values are in Table 10.

For in2020_v10, the certified reference material results for NOx, silicate and phosphate is within 2 % and nitrite within 0.02 μ mol L⁻¹ of their certified mean concentration.

The GO-SHIP criteria (Hyde *et al.*, 2010), appendix 8.5, specifies using 1-3 % of full scale (depending on the nutrient) as acceptable limits of accuracy.

The assayed RMNS values per CTD deployments are listed in the Appendix 8.2.

Table 9: RMNS certified concentrations ± expanded uncertainty (U) at 21°C. Units: μmol L-1

RMNS	Nitrate (NO₃)	Nitrite (NO ₂)	NO ₃ + NO ₂ (NO _X)	Phosphate (PO ₄)	Silicate (Si(OH) ₄)
Lot CI	14.11 ± 0.13	0.420 ± 0.04	14.54 ± 0.17	0.97 ± 0.01	8.46 ± 0.09
Lot CD	5.629 ± 0.005	0.018 ± 0.004	5.647 ± 0.055	0.457 ± 0.008	14.264 ± 0.101
Lot CG	24.27 ± 0.205	0.061 ± 0.03	24.330 ± 0.24	1.74 ± 0.02	57.75 ± 0.51

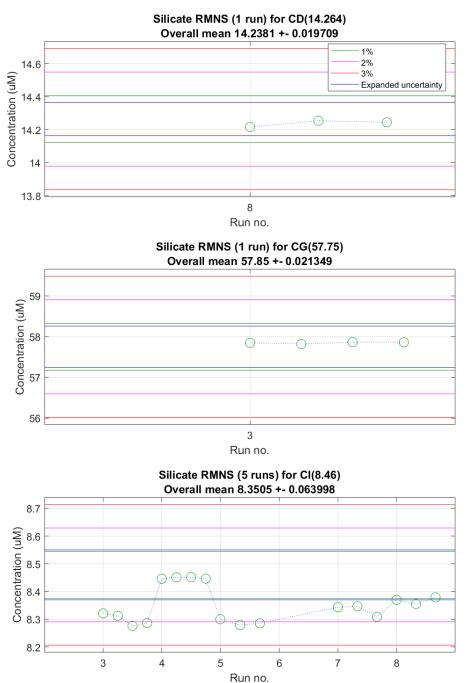
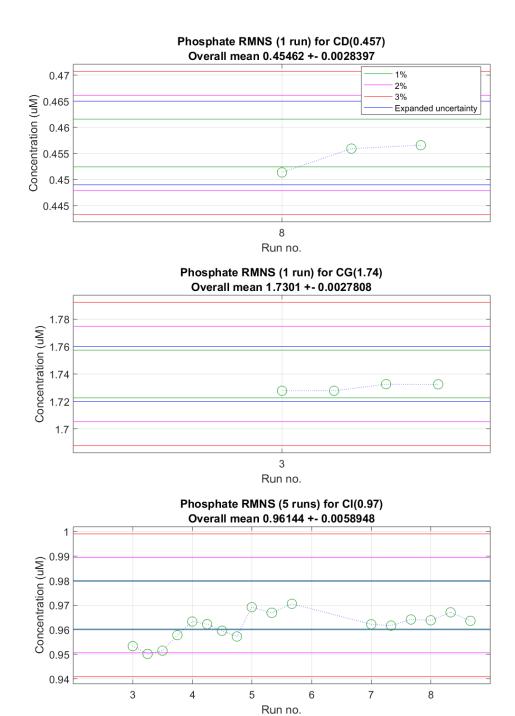
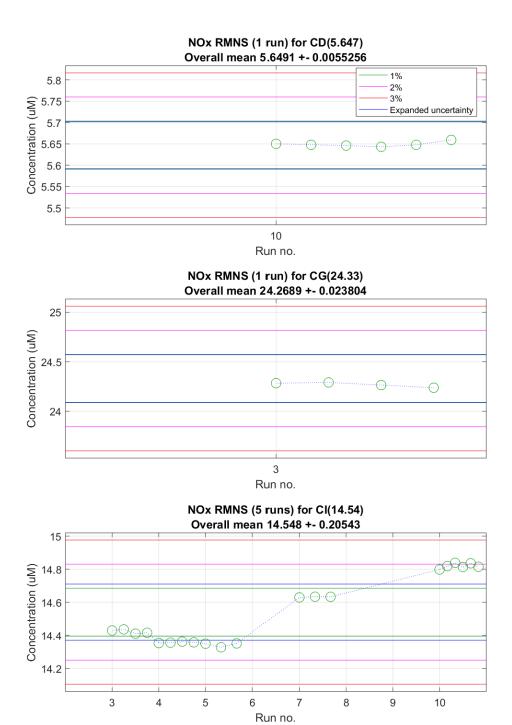
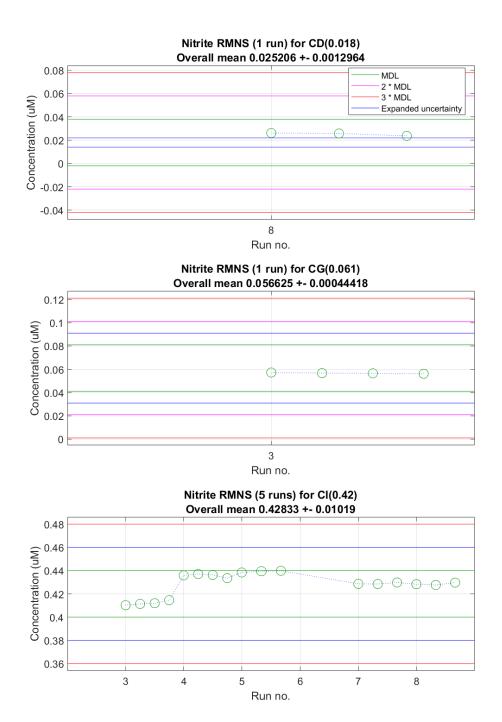

KANSO publishes the RMNS nutrient values in μ mol kg⁻¹. These are converted to μ mol L⁻¹ at 21°C. The RMNS is not certified for ammonium. NO_x is derived by summing the NO₃ and NO₂ values.

Table 10: RMNS statistics for this voyage. The minimum, maximum, mean, median, and reproducibility (standard deviation) are of all analytical measurements. Units: μmol L-1


RMNS CI	Nitrite (NO₂)	NO ₃ + NO ₂ (NO _X)	Phosphate (PO ₄)	Silicate (Si(OH)₄)
Minimum	0.412	14.343	0.953	8.288
Maximum	0.439	14.82	0.969	8.449
Mean	0.429	14.515	0.9622	8.3474
Median	0.429	14.423	0.963	8.333
Reproducibility	0.010	0.206	0.006	0.065

7.4 Nutrient plots of RMNS


The green pink and red lines are the 1 %, 2 % and 3 % contours from the RMNS certified mean value. Exception: nitrite, the contours are at 0.02 μ mol L⁻¹ increments from the certified value. The blue line is the certified value's expanded uncertainty.


7.4.1 Figure 6: Silicate RMNS Plot (μmol L⁻¹)

7.4.2 Figure 7: Phosphate RMNS Plot (μmol L⁻¹)

7.4.3 Figure 8: Nitrate + Nitrite (NOx) RMNS Plot (µmol L⁻¹)

7.4.4 Figure 9: Nitrite RMNS Plot (µmol L⁻¹)

7.5 Measurement Uncertainty

The CSIRO hydrochemistry method measurement uncertainty (MU) has been calculated for each nutrient based on the variation in the calibration curve, calibration standards, pipette and glassware calibration, and precision of the RMNS over time (Armishaw 2003).

Table 11: CSIRO Hydrochemistry nutrient analysis uncertainty values. Units: μmol L⁻¹

Calculated Meas	urement Uncertai	nty @ 1 μmol L ⁻¹		
Silicate	Phosphate	Nitrate + Nitrite (NOx)	Nitrite	Ammonia
±0.017	±0.024	±0.019	±0.14	±0.30 [¥]

^{*}The reported uncertainty is an expanded uncertainty using a coverage factor of 2 giving a 95 % level of confidence.

7.6 Method Detection Limit for Nutrients

Low nutrient seawater (LNSW) was measured 4 times in each run to determine its method detection limit (MDL). The nominal MDL was determined previously by measuring nutrients in LNSW 10 times. The MDL is set to three times the standard deviation of the LNSW results (National Association of Testing Authorities 2013). The resultant MDL was used to assess the analysis precision at low concentrations. The MDLs for each run are much lower than the nominal detection limits, indicating high analytical precision at lower concentrations. See appendix 8.3 for the measured MDL per CTD deployments.

Table 12: Nominal MDL statistics for nutrients analysed on this voyage. Units: μmol L⁻¹

MDL	Silicate	Phosphate	Nitrate + Nitrite	Nitrite	Ammonia
	(Si(OH) ₄)	(PO ₄)	(NOx)	(NO ₂)	(NH ₄)
Nominal MDL	0.20	0.02	0.02	0.02	0.02

7.7 Sampling Precision

Sampling precision is monitored by assaying duplicate samples collected from the greatest depth for each CTD deployment. The sampling precision is good if the difference between the duplicate concentrations is less than the MDL value. The exception is nitrate+nitrite, which uses 0.06 μ mol L⁻¹ as the MDL boundary. All duplicates measured conformed to these standards.

^{*}The ammonia MU precision does not include data for the RMNS.

7.8 Redfield Ratio Plot (14.14) for CTD Deployments.

Calculating and plotting the Redfield Ratio is a check for the accuracy of phosphate and nitrate+nitrite (NOx) analysis. The ratio is the required amount of P to N for marine phytoplankton growth. The ratio is very consistent in the deep ocean with phosphate to nitrate equalling 14. The ratio for this voyage was 14.14.

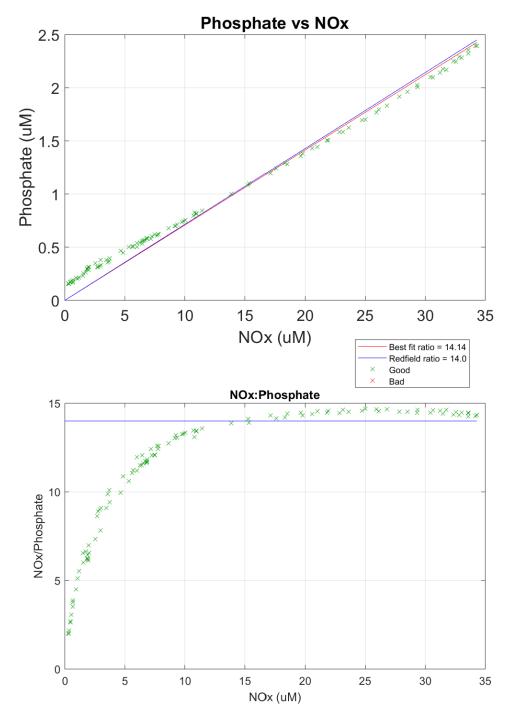


Figure 10. Redfield ratio plots.

7.9 Missing or Suspect Nutrient Data.

The table below identifies all flagged data and any samples that had repeated analyses performed to obtain good data. Good data are flagged 0. Data flagged 63, below detection limit, are not included in the table below. Data flagged BAD (133) are not included in the .csv results files (in2020_v10HydroDep.csv). Flag Key in Appendix 8.4.

Please note that:

- The RMNS results for NOx ion run 8 were outside of the hydrochemistry acceptance window. The NH₄ calibration curve on this run was also outside of acceptance criteria. The run was repeated in run 9 and 10. The NH₄ results will be quote from run 9 and the NOx results will be quoted from run 10.
- Nutrient run 5 (CTD 5) NH₄ dropped below the baseline. The samples were re-run in the run 6. The results from run 6 will be the results to quote for NH₄.

Table 13: Missing or Suspect Nutrient Data

CTD	RP	Run	Flag	Reason for Flag or Action
N/A	N/A	N/A	N/A	N/A

8 Appendix

8.1 Salinity: Reference Material Used

OSIL IAPSO Standard Seawater		
Batch:	P162	
Use by date:	16 th April 2021	
K ₁₅ :	0.99966	
PSU:	34.993	

8.2 Nutrients: RMNS results for each Analysis Run & CTD Deployment.

8.2.1 RMNS Lot CI Results

Analysis Run	CTD#	Silicate (Si(OH) ₄) (µmol L ⁻¹)	Phosphate (PO ₄) (μmol L ⁻¹)	Nitrite (NO ₂) (μmol L ⁻¹)	NOx (NO ₂ + NO ₃) (μmol L ⁻¹)
3	2&3	8.299	0.953	0.412	14.423
4	4	8.449	0.961	0.436	14.357
5/6	5	8.288	0.969	0.439	14.343
7	6	8.333	0.963	0.429	14.632
8/9/10	9	8.368	0.965	0.429	14.82

8.2.2 RMNS Lot CG Results

Analysis Run	CTD#	Silicate (Si(OH) ₄) (µmol L ⁻¹)	Phosphate (PO ₄) (μmol L ⁻¹)	Nitrite (NO ₂) (μmol L ⁻¹)	NOx (NO ₂ + NO ₃) (μmol L ⁻¹)
3	2&3	57.850	1.730	0.057	24.269

8.2.3 RMNS Lot CD Results

Analysis Run	CTD#	Silicate (Si(OH) ₄) (µmol L ⁻¹)	Phosphate (PO ₄) (μmol L ⁻¹)	Nitrite (NO ₂) (μmol L ⁻¹)	NOx (NO ₂ + NO ₃) (μmol L ⁻¹)
8/9/10	9	14.238	0.455	0.025	5.649

The submitted nutrient results do <u>NOT</u> have RMNS corrections applied.

How to use the RMNS for Correction

Ratio = Certified RMNS Concentration/Measured RMNS Concentration in each run Corrected Concentration = Ratio x Measured Nutrient Concentration

Or for smoothing data

Ratio = Average RMNS Concentration across voyage/Measured RMNS Conc. in each run Corrected Concentration = Ratio x Measured Nutrient Concentration

8.3 Nutrients: Measured Detection Limit for each Analysis Run & CTD Deployment.

Measured Detection Limit Analysis CTD# Silicate **Phosphate** Nitrite NOx Ammonia (PO₄) (Si(OH)₄) (NO₂) $(NO_2 + NO_3)$ (NH₄⁺) Run (μmol L⁻¹) (µmol L-1) (μmol L⁻¹) (μmol L⁻¹) (µmol L-1) 3 2&3 0.017 0.006 0.003 0.005 0.004 4 4 0.017 0.006 0.002 0.003 0.006 5/6 5 0.008 0.005 0.003 0.043 0.004 7 6 0.028 0.006 0.006 0.008 0.004 9 8/9/10 0.021 0.001 0.002 0.005 0.004

8.4 Flag Key for Hydrology Data Set

Flag	Description
0	Data is GOOD – nothing detected.
192	Data not processed.
63	Below nominal detection limit.
69	Data flagged suspect by operator. Set suspect by software if Calibration or Duplicate data is outside of set limits but not so far out as to be flagged bad.
65	Peak shape is suspect.
133	Error flagged by operator. Data is bad – operator identified by # in slk file or by clicking on point.
129	Peak exceeds maximum A/D value. Data is bad.
134	Error flagged by software. Peak shape is bad - Median Absolute Deviation (MAD) analysis used. Standards, MDL's and Duplicates deviate from the median, Calibration data falls outside set limits.
141	Missing data, no result for sample ID. Used in netcdf file as an array compiles results. Not used in csv file.
79	Method Detection Limit (MDL) during run was equal to or greater than nominal MDL. Data flagged as suspect.

8.5 GO-SHIP Specifications

8.5.1 Salinity

Accuracy of 0.001 is possible with AutosalTM salinometers and concomitant attention to methodology. Accuracy with respect to one particular batch of Standard Sea Water can be achieved at better than 0.001 PSS-78. Autosal precision is better than 0.001 PSS-78. A precision of approximately 0.0002 PSS-78 is possible following the methods of Kawano with great care and experience. Air temperature stability of \pm 1°C is very important and should be recorded².

8.5.2 Dissolved Oxygen

Target accuracy is that 2 sigma should be less than 0.5 % of the highest concentration found in the ocean. Precision or reproducibility (2 sigma) is 0.08 % of the highest concentration found in the ocean.

8.5.3 Si(OH)₄

Approximately 1-3 % accuracy¹, 0.2 % precision³, full scale.

8.5.4 PO₄

Approximately 1-2 % accuracy¹, 0.4 % precision³, full scale.

8.5.5 NO₃

Approximately 1 % accuracy¹, 0.2 % precision³, full scale.

8.5.6 Notes

¹ If no absolute standards are available then accuracy should be taken to mean the reproducibility presently obtainable in the better laboratories.

² Keeping constant temperature in the room where salinities are determined greatly increases their quality. Also, room temperature during the salinity measurement should be noted for later interpretation, if queries occur. Additionally, monitoring and recording the bath temperature is also recommended. The frequent use of IAPSO Standard Seawater is endorsed. To avoid the changes that occur in Standard Seawater, the use of the most recent batch is recommended. The bottles should also be used in an interleaving fashion as a consistency check within a batch and between batches.

³ Developments of reference materials for nutrients are underway that will enable improvements in the relative accuracy of measurements and clearer definition of the performance of laboratories when used appropriately and the results are reported with the appropriate meta-data.

9 References

- Armishaw, P. (2003) "Estimating measurement uncertainty in an afternoon. A case study in the practical application of measurement uncertainty." Accred Qual Assur, 8: pp. 218-224
- Armstrong, F.A.J., Stearns, C.A., and Strickland, J.D.H. (1967) "The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer and associated equipment," Deep-Sea Res., 14: pp.381-389. doi: 10.1016/0011-7471(67)90082-4
- Hood, E.M. (2010). "Introduction to the collection of expert reports and guidelines." The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines. IOCCP Report No 14, ICPO Publication Series No. 134, Version 1, 2010.
- Hydes, D., Aoyama, M., Aminot, A., Bakker, K., Becker, S., Coverly, S., Daniel, A.G., Dickson, O., Grosso, R., Kerouel, R., van Ooijen, J., Sato, K., Tanhua, T., Woodward, E.M.S., and Zhang, J.Z. (2010). "Determination of dissolved nutrients (N, P, Si) in seawater with high precision and intercomparability using gas-segmented continuous flow analysers." The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines. IOCCP Report No 14, ICPO Publication Series No. 134, Version 1, 2010. (UNESCO/IOC)
- Kérouel, R., and Aminot, A. (1997) "Fluorometric determination of ammonia in sea and estuarine waters by direct segmented flow analysis". Mar. Chem., 57: pp. 265-275. doi: 10.1016/S0304-4203(97)00040-6
- Murphy, J. And Riley, J.P. (1962)" A Modified Single Solution Method for the Determination of Phosphate in Natural Waters", Anal. Chim. Acta, 27: p.30. doi: 10.1016/S0003-2670(00)88444-5
- Rees, C., L. Pender, K. Sherrin, C. Schwanger, P. Hughes, S. Tibben, A. Marouchos, and M. Rayner. (2018) "Methods for reproducible shipboard SFA nutrient measurement using RMNS and automated data processing." Limnol. Oceanogr: Methods, 17(1): pp. 25-41. doi:10.1002/lom3.10294
- Wood, E.D., Armstrong, F.A.J., and Richards, F.A. (1967) "Determination of nitrate in seawater by cadmium-copper reduction to nitrite." Journal of the Marine Biological Association of U.K. 47: pp. 23-31.