

RV *Investigator*

ADCP Processing Report

Voyage #:	IN2019_T01
Voyage title:	Collaborative Australian Postgraduate Sea Training Alliance (CAPSTAN)
Depart:	Hobart, 0800 Monday, 29 April 2019
Return:	Fremantle, 0800 Thursday, 09 May 2019
Voyage Manager:	Matt Boyd
Chief Scientist:	Associate Professor Leah Moore
Affiliation:	Univesity of Canberra
Report compiled by:	Francis Chui

Contents

1	Sur	mmary	3
2	Pro	ocessing Background	3
		ocessing Notes	
		Area Covered	
		tCDF Data Headers	
	4.1	in2019_t01_ os75nb	6
	4.2	in2019_t01_ os75bb	. 12
	4.3	in2019 t01 os150nb	. 19

1 Summary

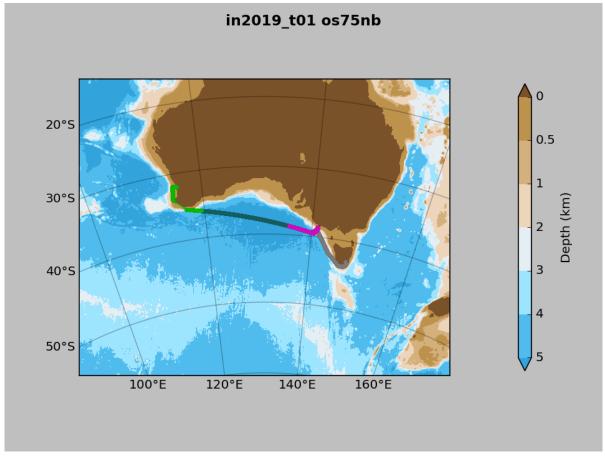
Both the RDI Ocean Surveyor 75kHz ADCP and 150kHz ADCP were operational during this voyage. These were run in narrow band mode for the majority of the voyage with the OS75 operated in broadband mode briefly after leaving the Tasmanian continental self and prior to entering 4000m of water.

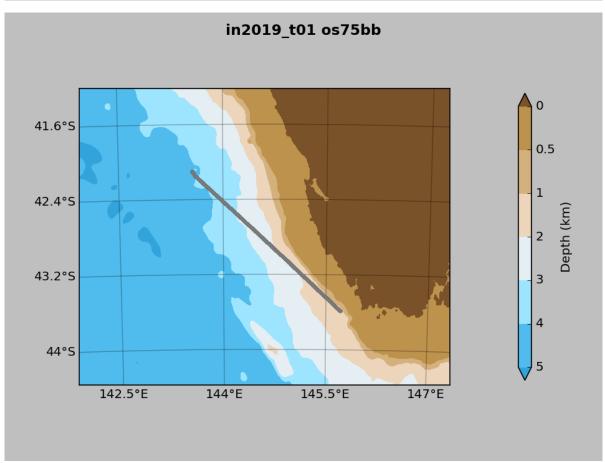
Internal triggering was used as the focus of this voyage was to collect current data and external triggering was found to be unstable on previous voyages.

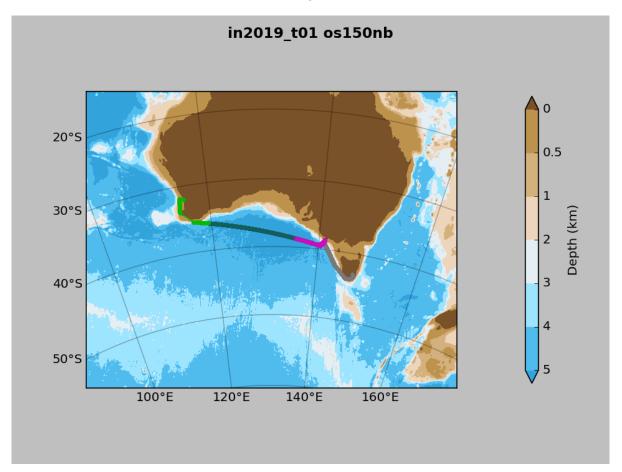
Port drop keel was flush with gondola for the entire period of data acquisition for the ADCPs at 2m.

See the voyage computing and instrumentation report for more details regarding data acquisition.

2 Processing Background


The University of Hawaii's CODAS software was used for data post-processing. UHDAS+CODAS python software revision 1108:88eb6931dc63 dated 2017-09-20T23:58:28Z was used.


3 Processing Notes


Narrow band data collection was collected on the OS75 and OS150 sounders and broad band data was collected briefly on the OS75, producing the three NetCDF files: in2019_t01_os75nb.nc, in2019_t01_os150nb.nc and in2019_t01_os75bb.nc (these files have been zipped into in2019_t01_ADCP_netCDF.zip).

Please see the webpy_os75nb, webpy_os75bb and webpy_os150nb folders for overview plots of collected data.

3.1 Area Covered

4 NetCDF Data Headers

4.1 in2019_t01_ os75nb

```
netcdf in2019_t01_os75nb {
dimensions:
   time = 2557;
   depth_cell = 60 ;
variables:
   int trajectory;
      trajectory:standard_name = "trajectory_id" ;
   double time(time) ;
      time:long_name = "Decimal day" ;
      time:units = "days since 2019-01-01 00:00:00";
      time:C_format = "%12.5f";
      time:standard_name = "time" ;
      time:data_min = 117.955150462963;
      time:data_max = 127.953252314815;
   double lon(time) ;
      lon:missing_value = 1.e+38 ;
      lon:long_name = "Longitude" ;
      lon:units = "degrees_east" ;
      lon:C_format = "%9.4f" ;
      lon:standard_name = "longitude" ;
      lon:data_min = 114.679433333333 ;
      lon:data_max = 147.513630555556;
   double lat(time) ;
      lat:missing_value = 1.e+38 ;
      lat:long_name = "Latitude" ;
      lat:units = "degrees_north";
      lat:C_format = "%9.4f" ;
      lat:standard_name = "latitude" ;
      lat:data_min = -43.7898055555556 ;
      lat:data_max = -31.8016055555556;
   float depth(time, depth_cell);
      depth:missing_value = 1.e+38f ;
      depth:long_name = "Depth" ;
      depth:units = "meter";
      depth:C_format = "%8.2f" ;
      depth:positive = "down" ;
```

```
depth:data_min = 29.93f ;
   depth:data_max = 973.99f;
float u(time, depth_cell) ;
   u:missing_value = 1.e+38f ;
   u:long_name = "Zonal velocity component" ;
   u:units = "meter second-1" ;
   u:C_format = "%7.2f" ;
   u:data_min = -1.096323f;
   u:data_max = 0.7752547f;
float v(time, depth_cell) ;
   v:missing_value = 1.e+38f ;
   v:long_name = "Meridional velocity component";
   v:units = "meter second-1" ;
   v:C_format = "%7.2f" ;
   v:data_min = -0.6561433f;
   v:data_max = 0.7922524f;
short amp(time, depth_cell) ;
   amp:missing_value = 32767s ;
   amp:long_name = "Received signal strength" ;
   amp:C_format = "%d" ;
   amp:data_min = 10s ;
   amp:data_max = 218s ;
byte pg(time, depth_cell) ;
   pg:missing_value = -1b ;
   pg:long_name = "Percent good pings";
   pg:C_format = "%d" ;
   pg:data_min = 0b ;
   pg:data_max = 100b;
byte pflag(time, depth_cell) ;
   pflag:long_name = "Editing flags";
   pflag:C_format = "%d" ;
   pflag:data_min = 0b ;
   pflag:data_max = 7b ;
float heading(time);
   heading:missing_value = 1.e+38f ;
   heading:long_name = "Ship heading";
   heading:units = "degrees";
   heading:C_format = "%6.1f" ;
   heading:data_min = -179.1148f;
   heading:data_max = 176.9275f;
```

```
float tr_temp(time);
      tr_temp:missing_value = 1.e+38f ;
      tr_temp:long_name = "ADCP transducer temperature" ;
      tr_temp:units = "Celsius" ;
      tr_temp:C_format = "%4.1f" ;
      tr_temp:data_min = 13.90192f ;
      tr_temp:data_max = 23.81203f;
   byte num_pings(time) ;
      num_pings:long_name = "Number of pings averaged per ensemble" ;
      num_pings:units = "None";
      num_pings:C_format = "%d" ;
      num_pings:data_min = -124b ;
      num_pings:data_max = 97b ;
   float uship(time);
      uship:missing_value = 1.e+38f ;
      uship:long_name = "Ship zonal velocity component" ;
      uship:units = "meter second-1" ;
      uship:C_format = "%9.4f" ;
      uship:data_min = -6.123657f;
      uship:data_max = 4.955039f;
   float vship(time);
      vship:missing_value = 1.e+38f ;
      vship:long_name = "Ship meridional velocity component";
      vship:units = "meter second-1" ;
      vship:C_format = "%9.4f" ;
      vship:data_min = -6.194076f;
      vship:data_max = 6.387186f ;
// global attributes:
      :featureType = "trajectoryProfile";
      :history = "Created: 2019-05-16 02:22:47 UTC";
      :Conventions = "COARDS";
      :software = "pycurrents";
      :hg_changeset = "2417:49ecfa0cc6c5";
      :title = "Shipboard ADCP velocity profiles" ;
      :description = "Shipboard ADCP velocity profiles from in2019_t01 using instrument os75nb";
      :cruise_id = "in2019_t01" ;
      :sonar = "os75nb" ;
      :yearbase = 2019 ;
      :CODAS_variables = "\n",
```

```
"Variables in this CODAS short-form Netcdf file are intended for most end-user\n",
 "scientific analysis and display purposes. For additional information see\n",
 "the CODAS_processing_note global attribute and the attributes of each\n",
 "of the variables.\n",
 "\n",
 "\n",
 "------\n",
               Time at the end of the ensemble, days from start of year.\n",
 "time
 "lon, lat
               Longitude, Latitude from GPS at the end of the ensemble.\n",
 "u,v
               Ocean zonal and meridional velocity component profiles.\n",
 "uship, vship Zonal and meridional velocity components of the ship.\n",
 "heading
               Mean ship heading during the ensemble.\n",
 "depth
               Bin centers in nominal meters (no sound speed profile correction).\n",
 "tr_temp
               ADCP transducer temperature.\n",
 "pg
               Percent Good pings for u, v averaging after editing.\n",
 "pflag
               Profile Flags based on editing, used to mask u, v.\n",
 "amp
               Received signal strength in ADCP-specific units; no correction\n",
               for spreading or attenuation.\n",
 "------\n",
 "\n",
 "";
:CODAS_processing_note = "\n",
 "CODAS processing note:\n",
 "======\n",
 "\n",
 "Overview\n",
 "----\n",
 "The CODAS database is a specialized storage format designed for\n",
 "shipboard ADCP data. \"CODAS processing\" uses this format to hold\n",
 "averaged shipboard ADCP velocities and other variables, during the\n",
 "stages of data processing. The CODAS database stores velocity\n",
 "profiles relative to the ship as east and north components along with\n",
 "position, ship speed, heading, and other variables. The netCDF *short*\n",
 "form contains ocean velocities relative to earth, time, position, \n",
 "transducer temperature, and ship heading; these are designed to be\n",
 "\"ready for immediate use\". The netCDF *long* form is just a dump of\n",
 "the entire CODAS database. Some variables are no longer used, and all\n",
 "have names derived from their original CODAS names, dating back to the n",
 "late 1980\'s.\n",
 "\n",
```

```
"Post-processing\n",
"----\n",
"CODAS post-processing, i.e. that which occurs after the single-ping\n",
"profiles have been vector-averaged and loaded into the CODAS database,\n",
"includes editing (using automated algorithms and manual tools),\n",
"rotation and scaling of the measured velocities, and application of a\n",
"time-varying heading correction. Additional algorithms developed more\n",
"recently include translation of the GPS positions to the transducer\n",
"location, and averaging of ship\'s speed over the times of valid pings\n",
"when Percent Good is reduced. Such post-processing is needed prior to\n",
"submission of \"processed ADCP data\" to JASADCP or other archives.\n",
"\n",
"Full CODAS processing\n",
"-----\n",
"Whenever single-ping data have been recorded, full CODAS processing\n",
"provides the best end product.\n",
"\n",
"Full CODAS processing starts with the single-ping velocities in beam\n",
"coordinates. Based on the transducer orientation relative to the\n",
"hull, the beam velocities are transformed to horizontal, vertical, and \"
"\"error velocity\" components. Using a reliable heading (typically from\n",
"the ship\'s gyro compass), the velocities in ship coordinates are\n",
"rotated into earth coordinates.\n",
"\n",
"Pings are grouped into an \"ensemble\" (usually 2-5 minutes duration)\n",
"and undergo a suite of automated editing algorithms (removal of\n",
"acoustic interference; identification of the bottom; editing based on\n",
"thresholds; and specialized editing that targets CTD wire interference \n",
"and \"weak, biased profiles\". The ensemble of single-ping velocities\n",
"is then averaged using an iterative reference layer averaging scheme.\n",
"Each ensemble is approximated as a single function of depth, with a\n",
"zero-average over a reference layer plus a reference layer velocity\n",
"for each ping. Adding the average of the single-ping reference layer\n",
"velocities to the function of depth yields the ensemble-average\n",
"velocity profile. These averaged profiles, along with ancillary\n",
"measurements, are written to disk, and subsequently loaded into the \n",
"CODAS database. Everything after this stage is \"post-processing\".\n",
"\n",
"note (time):\n",
"----\n",
```

```
"Time is stored in the database using UTC Year, Month, Day, Hour,\n",
"Minute, Seconds. Floating point time \"Decimal Day\" is the floating\n",
"point interval in days since the start of the year, usually the year\n",
"of the first day of the cruise.\n",
"\n",
"\n",
"note (heading):\n",
"-----\n",
"CODAS processing uses heading from a reliable device, and (if\n",
"available) uses a time-dependent correction by an accurate heading\n",
"device. The reliable heading device is typically a gyro compass (for\n",
"example, the Bridge gyro). Accurate heading devices can be POSMV, \n",
"Seapath, Phins, Hydrins, MAHRS, or various Ashtech devices; this\n",
"varies with the technology of the time. It is always confusing to\n",
"keep track of the sign of the heading correction. Headings are written\n",
"degrees, positive clockwise. setting up some variables:\n",
"\n",
"X = transducer angle (CONFIG1_heading_bias)\n",
    positive clockwise (beam 3 angle relative to ship)\n",
"G = Reliable heading (gyrocompass)\n",
"A = Accurate heading\n",
"dh = G - A = time-dependent heading correction (ANCIL2_watrk_hd_misalign)\n",
"\n",
"Rotation of the measured velocities into the correct coordinate system\n",
"amounts to (u+i*v)*(exp(i*theta)) where theta is the sum of the\n",
"corrected heading and the transducer angle.\n",
"\n",
"theta = X + (G - dh) = X + G - dh n",
"\n",
"\n",
"Watertrack and Bottomtrack calibrations give an indication of the \n",
"residual angle offset to apply, for example if mean and median of the\n",
"phase are all 0.5 (then R=0.5). Using the \"rotate\" command,\n",
"the value of R is added to \"ANCIL2_watrk_hd_misalign\".\n",
"\n",
"new_dh = dh + R\n",
"Therefore the total angle used in rotation is\n",
"\n",
"new_theta = X + G - dh_new n",
```

```
= X + G - (dh + R) \setminus n",
                = (X - R) + (G - dh)\n",
       "\n",
       "The new estimate of the transducer angle is: X - R n",
       "ANCIL2_watrk_hd_misalign contains: dh + R\n",
       "-----\n",
       "\n",
       "Profile flags\n",
       "----\n",
       "Profile editing flags are provided for each depth cell:\n",
       "\n",
       "binary
                decimal
                                 Percent\n",
                         below
       "value
                                          bin\n",
                value
                          bottom Good
       "-----+\n",
       "000
                 0\n",
       "001
                  1
                                           bad\n",
       "010
                  2
                                  bad\n",
       "011
                  3
                                  bad
                                           bad\n",
       "100
                  4
                          bad\n",
       "101
                  5
                          bad
                                           bad\n",
       "110
                  6
                          bad
                                  bad\n",
       "111
                  7
                                           bad\n",
                          bad
                                  bad
       "-----+\n",
       "";
}
4.2 in2019_t01_ os75bb
netcdf in2019_t01_os75bb {
dimensions:
  time = 152;
  depth_cell = 80 ;
variables:
  int trajectory;
     trajectory:standard_name = "trajectory_id" ;
  double time(time) ;
     time:long_name = "Decimal day" ;
     time:units = "days since 2019-01-01 00:00:00";
     time:C_format = "%12.5f" ;
```

time:standard_name = "time" ;

```
time:data_min = 118.44556712963 ;
   time:data_max = 118.969849537037;
double lon(time) ;
   lon:missing_value = 1.e+38 ;
   lon:long_name = "Longitude" ;
   lon:units = "degrees_east" ;
   lon:C_format = "%9.4f" ;
   lon:standard_name = "longitude" ;
   lon:data_min = 143.559058333333 ;
   double lat(time);
   lat:missing_value = 1.e+38 ;
   lat:long_name = "Latitude" ;
   lat:units = "degrees_north";
   lat:C_format = "%9.4f" ;
   lat:standard_name = "latitude" ;
   lat:data_min = -43.58559444444444;
   lat:data_max = -42.1003805555556;
float depth(time, depth_cell);
   depth:missing_value = 1.e+38f ;
   depth:long_name = "Depth" ;
   depth:units = "meter";
   depth:C_format = "%8.2f" ;
   depth:positive = "down" ;
   depth:data_min = 22.5f;
   depth:data_max = 654.5f ;
float u(time, depth_cell);
   u:missing_value = 1.e+38f ;
   u:long_name = "Zonal velocity component";
   u:units = "meter second-1";
   u:C_format = "%7.2f";
   u:data_min = -0.2127275f;
   u:data_max = 0.3672853f;
float v(time, depth_cell) ;
   v:missing_value = 1.e+38f ;
   v:long_name = "Meridional velocity component" ;
   v:units = "meter second-1" ;
   v:C_format = "%7.2f";
   v:data_min = -0.3949847f;
   v:data_max = 0.2956595f;
```

```
short amp(time, depth_cell) ;
   amp:missing_value = 32767s ;
   amp:long_name = "Received signal strength";
   amp:C_format = "%d" ;
   amp:data_min = 14s ;
   amp:data_max = 160s ;
byte pg(time, depth_cell) ;
   pg:missing_value = -1b ;
   pg:long_name = "Percent good pings";
   pg:C_format = "%d" ;
   pg:data_min = 0b ;
   pg:data_max = 100b;
byte pflag(time, depth_cell) ;
   pflag:long_name = "Editing flags";
   pflag:C_format = "%d" ;
   pflag:data_min = 0b ;
   pflag:data_max = 7b ;
float heading(time);
   heading:missing_value = 1.e+38f ;
   heading:long_name = "Ship heading";
   heading:units = "degrees";
   heading:C_format = "%6.1f" ;
   heading:data_min = -47.80347f;
   heading:data_max = -28.7739f;
float tr_temp(time) ;
   tr_temp:missing_value = 1.e+38f ;
   tr_temp:long_name = "ADCP transducer temperature" ;
   tr_temp:units = "Celsius";
   tr_temp:C_format = "%4.1f" ;
   tr_temp:data_min = 13.90192f ;
   tr_temp:data_max = 15.46288f;
byte num_pings(time);
   num_pings:long_name = "Number of pings averaged per ensemble" ;
   num_pings:units = "None";
   num_pings:C_format = "%d" ;
   num_pings:data_min = 73b ;
   num_pings:data_max = 74b ;
float uship(time);
   uship:missing_value = 1.e+38f ;
   uship:long_name = "Ship zonal velocity component" ;
```

```
uship:units = "meter second-1" ;
      uship:C_format = "%9.4f" ;
      uship:data_min = -4.097877f;
      uship:data_max = -2.849149f;
   float vship(time);
      vship:missing_value = 1.e+38f ;
      vship:long_name = "Ship meridional velocity component" ;
      vship:units = "meter second-1" ;
      vship:C_format = "%9.4f";
      vship:data_min = 3.412646f ;
      vship:data_max = 4.548467f;
// global attributes:
      :featureType = "trajectoryProfile";
      :history = "Created: 2019-05-16 02:24:54 UTC";
      :Conventions = "COARDS";
      :software = "pycurrents";
      :hg_changeset = "2417:49ecfa0cc6c5";
      :title = "Shipboard ADCP velocity profiles" ;
      :description = "Shipboard ADCP velocity profiles from in2019_t01 using instrument os75bb";
      :cruise_id = "in2019_t01" ;
      :sonar = "os75bb";
      :yearbase = 2019;
      :CODAS variables = "\n",
        "Variables in this CODAS short-form Netcdf file are intended for most end-user\n",
       "scientific analysis and display purposes. For additional information see\n",
        "the CODAS processing note global attribute and the attributes of each\n",
        "of the variables.\n",
        "\n",
        "\n",
        "-----\n",
        "time
                      Time at the end of the ensemble, days from start of year.\n",
        "lon, lat
                      Longitude, Latitude from GPS at the end of the ensemble.\n",
        "u,∨
                      Ocean zonal and meridional velocity component profiles.\n",
        "uship, vship Zonal and meridional velocity components of the ship.\n",
        "heading
                      Mean ship heading during the ensemble.\n",
        "depth
                      Bin centers in nominal meters (no sound speed profile correction).\n",
        "tr_temp
                      ADCP transducer temperature.\n",
        "pg
                      Percent Good pings for u, v averaging after editing.\n",
        "pflag
                      Profile Flags based on editing, used to mask u, v.\n",
```

```
"amp
               Received signal strength in ADCP-specific units; no correction\n",
               for spreading or attenuation.\n",
 "\n",
 "";
:CODAS processing note = "\n",
 "CODAS processing note:\n",
 "======\n",
 "\n",
 "Overview\n",
 "----\n",
 "The CODAS database is a specialized storage format designed for\n",
 "shipboard ADCP data. \"CODAS processing\" uses this format to hold\n",
 "averaged shipboard ADCP velocities and other variables, during the \n",
 "stages of data processing. The CODAS database stores velocity\n",
 "profiles relative to the ship as east and north components along with\n",
 "position, ship speed, heading, and other variables. The netCDF *short*\n",
 "form contains ocean velocities relative to earth, time, position,\n",
 "transducer temperature, and ship heading; these are designed to be\n",
 "\"ready for immediate use\". The netCDF *long* form is just a dump of\n",
 "the entire CODAS database. Some variables are no longer used, and all\n",
 "have names derived from their original CODAS names, dating back to the \n",
 "late 1980\'s.\n",
 "\n",
 "Post-processing\n",
 "-----\n",
 "CODAS post-processing, i.e. that which occurs after the single-ping\n",
 "profiles have been vector-averaged and loaded into the CODAS database, \n",
 "includes editing (using automated algorithms and manual tools), \n",
 "rotation and scaling of the measured velocities, and application of a\n",
 "time-varying heading correction. Additional algorithms developed more\n",
 "recently include translation of the GPS positions to the transducer\n",
 "location, and averaging of ship\'s speed over the times of valid pings\n",
 "when Percent Good is reduced. Such post-processing is needed prior to\n",
 "submission of \"processed ADCP data\" to JASADCP or other archives.\n",
 "\n",
 "Full CODAS processing\n",
 "-----\n",
 "Whenever single-ping data have been recorded, full CODAS processing\n",
 "provides the best end product.\n",
```

```
"\n",
"Full CODAS processing starts with the single-ping velocities in beam\n",
"coordinates. Based on the transducer orientation relative to the \n",
"hull, the beam velocities are transformed to horizontal, vertical, and \n",
"\"error velocity\" components. Using a reliable heading (typically from\n",
"the ship\'s gyro compass), the velocities in ship coordinates are\n",
"rotated into earth coordinates.\n",
"\n",
"Pings are grouped into an \"ensemble\" (usually 2-5 minutes duration)\n",
"and undergo a suite of automated editing algorithms (removal of\n",
"acoustic interference; identification of the bottom; editing based on\n",
"thresholds; and specialized editing that targets CTD wire interference\n",
"and \"weak, biased profiles\". The ensemble of single-ping velocities\n",
"is then averaged using an iterative reference layer averaging scheme.\n",
"Each ensemble is approximated as a single function of depth, with a\n",
"zero-average over a reference layer plus a reference layer velocity\n",
"for each ping. Adding the average of the single-ping reference layer\n",
"velocities to the function of depth yields the ensemble-average\n",
"velocity profile. These averaged profiles, along with ancillary\n",
"measurements, are written to disk, and subsequently loaded into the \n",
"CODAS database. Everything after this stage is \"post-processing\".\n",
"\n",
"note (time):\n",
"----\n",
"Time is stored in the database using UTC Year, Month, Day, Hour, \n",
"Minute, Seconds. Floating point time \"Decimal Day\" is the floating\n",
"point interval in days since the start of the year, usually the year\n",
"of the first day of the cruise.\n",
"\n",
"\n",
"note (heading):\n",
"-----\n",
"CODAS processing uses heading from a reliable device, and (if\n",
"available) uses a time-dependent correction by an accurate heading\n",
"device. The reliable heading device is typically a gyro compass (for\n",
"example, the Bridge gyro). Accurate heading devices can be POSMV,\n",
"Seapath, Phins, Hydrins, MAHRS, or various Ashtech devices; this\n",
"varies with the technology of the time. It is always confusing to\n",
"keep track of the sign of the heading correction. Headings are written\n",
"degrees, positive clockwise. setting up some variables:\n",
```

```
"\n",
"X = transducer angle (CONFIG1_heading_bias)\n",
    positive clockwise (beam 3 angle relative to ship)\n",
"G = Reliable heading (gyrocompass)\n",
"A = Accurate heading\n",
"dh = G - A = time-dependent heading correction (ANCIL2 watrk hd misalign)\n",
"\n",
"Rotation of the measured velocities into the correct coordinate system\n",
"amounts to (u+i*v)*(exp(i*theta)) where theta is the sum of the\n",
"corrected heading and the transducer angle.\n",
"\n",
"theta = X + (G - dh) = X + G - dh n",
"\n",
"\n",
"Watertrack and Bottomtrack calibrations give an indication of the \n",
"residual angle offset to apply, for example if mean and median of the \n",
"phase are all 0.5 (then R=0.5). Using the \"rotate\" command,\n",
"the value of R is added to \"ANCIL2_watrk_hd_misalign\".\n",
"\n",
"new_dh = dh + R\n",
"\n",
"Therefore the total angle used in rotation is\n",
"\n",
"new_theta = X + G - dh_new n",
          = X + G - (dh + R) \setminus n",
          = (X - R) + (G - dh)\n",
"\n",
"The new estimate of the transducer angle is: X - R n",
"ANCIL2_watrk_hd_misalign contains: dh + R\n",
"\n",
"-----\n",
"\n",
"Profile flags\n",
"----\n",
"Profile editing flags are provided for each depth cell:\n",
"\n",
"binary
          decimal
                    below
                            Percent\n",
"value
          value
                    bottom Good
                                      bin\n",
"-----+\n",
"000
           0\n",
```

```
"001
                1
                                       bad\n",
                2
      "010
                               bad\n",
      "011
                3
                               bad
                                       bad\n",
      "100
                        bad\n",
      "101
                5
                        bad
                                       bad\n",
                        bad
                               bad\n",
      "111
                7
                               bad
                                       bad\n",
                        bad
      "-----+\n",
}
```

4.3 in2019_t01_ os150nb

```
netcdf in2019_t01_os150nb {
dimensions:
   time = 2557;
   depth_cell = 60 ;
variables:
   int trajectory;
      trajectory:standard_name = "trajectory_id" ;
   double time(time) ;
      time:long_name = "Decimal day" ;
      time:units = "days since 2019-01-01 00:00:00";
      time:C_format = "%12.5f" ;
      time:standard_name = "time" ;
      time:data_min = 117.955127314815;
      time:data_max = 127.953229166667;
   double lon(time) ;
      lon:missing_value = 1.e+38 ;
      lon:long_name = "Longitude" ;
      lon:units = "degrees_east" ;
      lon:C_format = "%9.4f" ;
      lon:standard_name = "longitude" ;
      lon:data_min = 114.679430555556 ;
      lon:data_max = 147.513644444444;
   double lat(time) ;
      lat:missing_value = 1.e+38 ;
      lat:long_name = "Latitude" ;
      lat:units = "degrees_north";
      lat:C_format = "%9.4f" ;
      lat:standard_name = "latitude" ;
```

```
lat:data_min = -43.7898166666667;
   lat:data_max = -31.80153611111111;
float depth(time, depth_cell);
   depth:missing_value = 1.e+38f ;
   depth:long_name = "Depth" ;
   depth:units = "meter";
   depth:C_format = "%8.2f" ;
   depth:positive = "down" ;
   depth:data_min = 17.93f;
   depth:data_max = 489.99f ;
float u(time, depth_cell) ;
   u:missing_value = 1.e+38f ;
   u:long_name = "Zonal velocity component";
   u:units = "meter second-1" ;
   u:C_format = "%7.2f";
   u:data_min = -0.6207581f;
   u:data_max = 0.934855f;
float v(time, depth_cell) ;
   v:missing_value = 1.e+38f ;
   v:long_name = "Meridional velocity component" ;
   v:units = "meter second-1";
   v:C_format = "%7.2f" ;
   v:data_min = -0.6545281f;
   v:data_max = 0.8825722f ;
short amp(time, depth_cell) ;
   amp:missing_value = 32767s ;
   amp:long_name = "Received signal strength";
   amp:C_format = "%d" ;
   amp:data_min = 20s ;
   amp:data_max = 229s ;
byte pg(time, depth_cell) ;
   pg:missing_value = -1b ;
   pg:long_name = "Percent good pings" ;
   pg:C_format = "%d" ;
   pg:data_min = 0b ;
   pg:data_max = 100b ;
byte pflag(time, depth_cell) ;
   pflag:long_name = "Editing flags";
   pflag:C_format = "%d" ;
   pflag:data_min = 0b ;
```

```
pflag:data_max = 7b ;
   float heading(time);
      heading:missing_value = 1.e+38f ;
      heading:long_name = "Ship heading" ;
      heading:units = "degrees";
      heading:C_format = "%6.1f" ;
      heading:data_min = -179.1117f ;
      heading:data_max = 176.9392f ;
   float tr_temp(time) ;
      tr_temp:missing_value = 1.e+38f ;
      tr_temp:long_name = "ADCP transducer temperature" ;
      tr_temp:units = "Celsius" ;
      tr_temp:C_format = "%4.1f" ;
      tr_temp:data_min = 13.57823f ;
      tr_temp:data_max = 22.9795f;
   byte num_pings(time) ;
      num_pings:long_name = "Number of pings averaged per ensemble" ;
      num_pings:units = "None";
      num_pings:C_format = "%d" ;
      num_pings:data_min = -128b ;
      num_pings:data_max = 127b ;
   float uship(time);
      uship:missing_value = 1.e+38f ;
      uship:long_name = "Ship zonal velocity component";
      uship:units = "meter second-1" ;
      uship:C_format = "%9.4f" ;
      uship:data_min = -6.124633f;
      uship:data_max = 4.955589f;
   float vship(time) ;
      vship:missing_value = 1.e+38f ;
      vship:long_name = "Ship meridional velocity component";
      vship:units = "meter second-1" ;
      vship:C_format = "%9.4f";
      vship:data_min = -6.210098f;
      vship:data_max = 6.345541f ;
// global attributes:
      :featureType = "trajectoryProfile";
      :history = "Created: 2019-05-16 02:20:23 UTC";
      :Conventions = "COARDS";
```

```
:software = "pycurrents";
:hg_changeset = "2417:49ecfa0cc6c5";
:title = "Shipboard ADCP velocity profiles";
:description = "Shipboard ADCP velocity profiles from in2019_t01 using instrument os150nb";
:cruise_id = "in2019_t01" ;
:sonar = "os150nb" ;
:yearbase = 2019;
:CODAS_variables = "\n",
 "Variables in this CODAS short-form Netcdf file are intended for most end-user\n",
 "scientific analysis and display purposes. For additional information see\n",
 "the CODAS_processing_note global attribute and the attributes of each\n",
 "of the variables.\n",
 "\n",
 "\n",
 "-----\n",
 "time
              Time at the end of the ensemble, days from start of year.\n",
 "lon, lat
              Longitude, Latitude from GPS at the end of the ensemble.\n",
 "u,∨
               Ocean zonal and meridional velocity component profiles.\n",
 "uship, vship Zonal and meridional velocity components of the ship.\n",
 "heading
               Mean ship heading during the ensemble.\n",
 "depth
               Bin centers in nominal meters (no sound speed profile correction).\n",
 "tr_temp
              ADCP transducer temperature.\n",
              Percent Good pings for u, v averaging after editing.\n",
 "pg
 "pflag
              Profile Flags based on editing, used to mask u, v.\n",
 "amp
               Received signal strength in ADCP-specific units; no correction \n",
               for spreading or attenuation.\n",
 "------\n",
 "\n",
 "";
:CODAS processing note = "\n",
 "CODAS processing note:\n",
 "======\n",
 "\n",
 "Overview\n",
 "----\n",
 "The CODAS database is a specialized storage format designed for\n",
 "shipboard ADCP data. \"CODAS processing\" uses this format to hold\n",
 "averaged shipboard ADCP velocities and other variables, during the \n",
 "stages of data processing. The CODAS database stores velocity\n",
 "profiles relative to the ship as east and north components along with\n",
```

```
"position, ship speed, heading, and other variables. The netCDF *short*\n",
"form contains ocean velocities relative to earth, time, position, \n",
"transducer temperature, and ship heading; these are designed to be\n",
"\"ready for immediate use\". The netCDF *long* form is just a dump of\n",
"the entire CODAS database. Some variables are no longer used, and all\n",
"have names derived from their original CODAS names, dating back to the \n",
"late 1980\'s.\n",
"\n",
"Post-processing\n",
"-----\n",
"CODAS post-processing, i.e. that which occurs after the single-ping\n",
"profiles have been vector-averaged and loaded into the CODAS database, \n",
"includes editing (using automated algorithms and manual tools), \n",
"rotation and scaling of the measured velocities, and application of a\n",
"time-varying heading correction. Additional algorithms developed more\n",
"recently include translation of the GPS positions to the transducer\n",
"location, and averaging of ship\'s speed over the times of valid pings\n",
"when Percent Good is reduced. Such post-processing is needed prior to\n",
"submission of \"processed ADCP data\" to JASADCP or other archives.\n",
"\n",
"Full CODAS processing\n",
"-----\n",
"Whenever single-ping data have been recorded, full CODAS processing\n",
"provides the best end product.\n",
"\n",
"Full CODAS processing starts with the single-ping velocities in beam\n",
"coordinates. Based on the transducer orientation relative to the \n",
"hull, the beam velocities are transformed to horizontal, vertical, and \n",
"\"error velocity\" components. Using a reliable heading (typically from\n",
"the ship\'s gyro compass), the velocities in ship coordinates are\n",
"rotated into earth coordinates.\n",
"Pings are grouped into an \"ensemble\" (usually 2-5 minutes duration)\n",
"and undergo a suite of automated editing algorithms (removal of\n",
"acoustic interference; identification of the bottom; editing based on\n",
"thresholds; and specialized editing that targets CTD wire interference\n",
"and \"weak, biased profiles\". The ensemble of single-ping velocities\n",
"is then averaged using an iterative reference layer averaging scheme.\n",
"Each ensemble is approximated as a single function of depth, with a\n",
"zero-average over a reference layer plus a reference layer velocity\n",
```

```
"for each ping. Adding the average of the single-ping reference layer\n",
"velocities to the function of depth yields the ensemble-average\n",
"velocity profile. These averaged profiles, along with ancillary\n",
"measurements, are written to disk, and subsequently loaded into the \n",
"CODAS database. Everything after this stage is \"post-processing\".\n",
"\n",
"note (time):\n",
"----\n",
"Time is stored in the database using UTC Year, Month, Day, Hour, \n",
"Minute, Seconds. Floating point time \"Decimal Day\" is the floating\n",
"point interval in days since the start of the year, usually the year\n",
"of the first day of the cruise.\n",
"\n",
"\n",
"note (heading):\n",
"-----\n",
"CODAS processing uses heading from a reliable device, and (if\n",
"available) uses a time-dependent correction by an accurate heading\n",
"device. The reliable heading device is typically a gyro compass (for\n",
"example, the Bridge gyro). Accurate heading devices can be POSMV,\n",
"Seapath, Phins, Hydrins, MAHRS, or various Ashtech devices; this\n",
"varies with the technology of the time. It is always confusing to\n",
"keep track of the sign of the heading correction. Headings are written\n",
"degrees, positive clockwise. setting up some variables:\n",
"\n",
"X = transducer angle (CONFIG1_heading_bias)\n",
    positive clockwise (beam 3 angle relative to ship)\n",
"G = Reliable heading (gyrocompass)\n",
"A = Accurate heading\n",
"dh = G - A = time-dependent heading correction (ANCIL2 watrk hd misalign)\n",
"\n",
"Rotation of the measured velocities into the correct coordinate system\n",
"amounts to (u+i*v)*(exp(i*theta)) where theta is the sum of the\n",
"corrected heading and the transducer angle.\n",
"\n",
"theta = X + (G - dh) = X + G - dh n",
"\n",
"\n",
"Watertrack and Bottomtrack calibrations give an indication of the \n",
"residual angle offset to apply, for example if mean and median of the\n",
```

```
"phase are all 0.5 (then R=0.5). Using the \"rotate\" command,\n",
"the value of R is added to \"ANCIL2_watrk_hd_misalign\".\n",
"\n",
"new_dh = dh + R\n",
"\n",
"Therefore the total angle used in rotation is\n",
"\n",
"new_theta = X + G - dh_new n",
         = X + G - (dh + R) \n",
         = (X - R) + (G - dh) \n",
"\n",
"The new estimate of the transducer angle is: X - R n",
"ANCIL2_watrk_hd_misalign contains: dh + R\n",
"\n",
"=======\n",
"\n",
"Profile flags\n",
"----\n",
"Profile editing flags are provided for each depth cell:\n",
"\n",
"binary
         decimal
                   below
                          Percent\n",
"value
         value
                   bottom
                          Good
                                   bin\n",
"-----+\n",
"000
          0\n",
"001
           1
                                    bad\n",
"010
           2
                           bad\n",
"011
           3
                           bad
                                    bad\n",
"100
           4
                   bad\n",
"101
           5
                   bad
                                    bad\n",
"110
           6
                   bad
                           bad\n",
                                    bad\n",
"111
          7
                   bad
                           bad
"-----+\n",
"";
```

}