Marine
 National Facility

RV Investigator

ADCP Processing Report

Voyage \#:	IN2017_V02
Voyage title:	Southern Ocean Time Series
Depart:	Hobart, 2200 Thursday, 16 March 2017 UTC
Return:	Hobart, 2200 Monday, 27 March 2017 UTC
Chief Scientist:	Tom Trull
Affiliation:	CSIRO/ ACE CRC
Report compiled by:	Steven Van Graas

Contents

1 Summary 3
2 Processing Background 3
3 Processing Notes 3
4 Data Header 3

1 Summary

Data was collected during in2017_v02 for the duration of the voyage. Data was collected using UHDAS and post-processed using CODAS. Only the OS75 was in operation for this voyage, due to a fault with the OS150 pending repair.

See the voyage computing and electronics report for more details regarding data acquisition. Drop keels were both deployed at mid extension, approx. 8.5 m below the waterline.

Data coverage and quality is generally good. The ADCP was switched off during transits through marine parks to and from the SOTS site.

2 Processing Background

The University of Hawaii's CODAS software was used for data post-processing.

3 Processing Notes

See summary.

4 netCDF Data Headers

```
netcdf os75nb {
dimensions:
    time = 3563 ;
    depth_cell = 60 ;
variables:
    int trajectory ;
        trajectory:standard_name = "trajectory_id" ;
    double time(time);
                time:long_name = "Decimal day" ;
                time:units = "days since 2017-01-01 00:00:00" ;
                time:C_format = "%12.5f" ;
                time:standard_name = "time" ;
                time:data_min = 266.471423611111 ;
                time:data_max = 279.695127314815 ;
    double lon(time) ;
                lon:missing_value = 1.e+38 ;
                lon:long_name = "Longitude" ;
                lon:units = "degrees_east" ;
                lon:C_format = "%9.4f" ;
                lon:standard_name = "longitude" ;
                lon:data_min = 121.650527777778;
                lon:data_max = 153.968922222222 ;
    double lat(time);
                lat:missing_value = 1.e+38 ;
                lat:long_name = "Latitude" ;
                lat:units = "degrees_north" ;
                lat:C_format = "%9.4f" ;
                lat:standard_name = "latitude" ;
                lat:data_min = -33.8575055555556 ;
                lat:data_max = -9.19756666666667 ;
    float depth(time, depth_cell) ;
            depth:missing_value = 1.e+38f ;
            depth:long_name = "Depth" ;
            depth:units = "meter" ;
            depth:C_format = "%8.2f" ;
            depth:positive = "down" ;
            depth:data_min = 29.93f ;
            depth:data_max = 974.f ;
```

```
float u(time, depth_cell) ;
    u:missing_value = 1.e+38f ;
    u:long_name = "Zonal velocity component" ;
    u:units = "meter second-1" ;
    u:C_format = "%7.2f" ;
    u:data_min = -0.8379568f ;
    u:data_max = 1.00542f ;
float v(time, depth_cell) ;
    v:missing_value = 1.e+38f ;
    v:long_name = "Meridional velocity component" ;
    v:units = "meter second-1" ;
    v:C_format = "%7.2f" ;
    v:data_min = -1.472153f ;
    v:data_max = 0.7072812f ;
short amp(time, depth_cell) ;
    amp:missing_value = 32767s ;
    amp:long_name = "Received signal strength" ;
    amp:C_format = "%d" ;
    amp:data_min = 8s ;
    amp:data_max = 218s ;
byte pg(time, depth_cell) ;
    pg:missing_value = -1b ;
    pg:long_name = "Percent good pings" ;
    pg:C_format = "%d" ;
    pg:data_min = 0b ;
    pg:data_max = 100b ;
byte pflag(time, depth_cell) ;
    pflag:long_name = "Editing flags" ;
    pflag:C_format = "%d" ;
    pflag:data_min = 0b ;
    pflag:data_max = 7b ;
float heading(time) ;
    heading:missing_value = 1.e+38f ;
    heading:long_name = "Ship heading" ;
    heading:units = "degrees" ;
    heading:C_format = "%6.1f" ;
    heading:data_min = -179.3536f ;
    heading:data_max = 179.0416f ;
float tr_temp(time) ;
    tr_temp:missing_value = 1.e+38f ;
    tr_temp:long_name = "ADCP transducer temperature" ;
    tr_temp:units = "Celsius" ;
    tr_temp:C_format = "%4.1f" ;
    tr_temp:data_min = 17.29371f ;
    tr_temp:data_max = 30.2162f ;
short num_pings(time) ;
    num_pings:long_name = "Number of pings averaged per ensemble" ;
    num_pings:units = "None" ;
    num_pings:C_format = "%d" ;
    num_pings:data_min = 33s ;
    num_pings:data_max = 142s ;
float uship(time) ;
    uship:missing_value = 1.e+38f ;
    uship:long_name = "Ship zonal velocity component" ;
    uship:units = "meter second-1" ;
    uship:C_format = "%9.4f" ;
    uship:data_min = -7.369224f ;
    uship:data_max = 5.645175f ;
float vship(time) ;
    vship:missing_value = 1.e+38f ;
    vship:long_name = "Ship meridional velocity component" ;
    vship:units = "meter second-1" ;
    vship:C_format = "%9.4f" ;
    vship:data_min = -5.674532f ;
    vship:data_max = 6.497535f ;
// global attributes:
    :featureType = "trajectoryProfile" ;
    :history = "Created: 2019-01-03 00:33:55 UTC" ;
```



```
"Whenever single-ping data have been recorded, full CODAS processing \(\backslash n\) ",
"provides the best end product. \(\ \mathrm{n}\) ",
"\n",
"Full CODAS processing starts with the single-ping velocities in beam\n",
"coordinates. Based on the transducer orientation relative to the \(\backslash n\) ",
"hull, the beam velocities are transformed to horizontal, vertical, and \(\backslash n\) ",
"\"error velocity\" components. Using a reliable heading (typically from\n",
"the ship\'s gyro compass), the velocities in ship coordinates are\n",
"rotated into earth coordinates. \(\backslash n\) ",
"\n",
"Pings are grouped into an \"ensemble\" (usually 2-5 minutes duration) \n",
"and undergo a suite of automated editing algorithms (removal of \(\backslash n\) ",
"acoustic interference; identification of the bottom; editing based on \(\backslash n\) ",
"thresholds; and specialized editing that targets CTD wire interference \(\backslash n\) ",
"and \"weak, biased profiles\". The ensemble of single-ping velocities \(\backslash n\) ",
"is then averaged using an iterative reference layer averaging scheme. \(\backslash n\) ",
"Each ensemble is approximated as a single function of depth, with a n ",
"zero-average over a reference layer plus a reference layer velocity \(\backslash n\) ",
"for each ping. Adding the average of the single-ping reference layer \(\backslash n\) ",
"velocities to the function of depth yields the ensemble-average \(\backslash n\) ",
"velocity profile. These averaged profiles, along with ancillary n ",
"measurements, are written to disk, and subsequently loaded into the \(\backslash n\) ",
"CODAS database. Everything after this stage is \"post-processing\". \n",
"\n",
"note (time):\n",
"------------\n",
"Time is stored in the database using UTC Year, Month, Day, Hour, \n",
"Minute, Seconds. Floating point time \"Decimal Day\" is the floating\n",
"point interval in days since the start of the year, usually the year \(\backslash n\) ",
"of the first day of the cruise. \(\backslash n\) ",
"\n",
"\n",
"note (heading):\n",
"--------------\n",
"CODAS processing uses heading from a reliable device, and (if \(\backslash n\) ",
"available) uses a time-dependent correction by an accurate heading \(\backslash \mathrm{n}\) ",
"device. The reliable heading device is typically a gyro compass (for \(\backslash n\) ",
"example, the Bridge gyro). Accurate heading devices can be POSMV, \n",
"Seapath, Phins, Hydrins, MAHRS, or various Ashtech devices; this \n",
"varies with the technology of the time. It is always confusing to n ",
"keep track of the sign of the heading correction. Headings are written \(\backslash n\) ",
"degrees, positive clockwise. setting up some variables:\n",
" n ",
"X = transducer angle (CONFIG1_heading_bias) \n",
positive clockwise (beam 3 angle relative to ship) \(\backslash n\) ",
"G = Reliable heading (gyrocompass) \n",
" \(\mathrm{A}=\) Accurate heading \(\backslash n\) ",
"dh = G - A = time-dependent heading correction (ANCIL2_watrk_hd_misalign) \n",
"\n",
"Rotation of the measured velocities into the correct coordinate system \(\backslash n\) ",
"amounts to \(\left(u+i^{*} v\right) *\left(\exp \left(i^{*} t h e t a\right)\right)\) where theta is the sum of the \(\backslash n\) ",
"corrected heading and the transducer angle. n ",
"\n",
"theta \(=X+(G-d h)=X+G-d h \backslash n "\),
"\n",
"\n",
"Watertrack and Bottomtrack calibrations give an indication of the \(\backslash n\) ",
"residual angle offset to apply, for example if mean and median of the \(\backslash n\) ",
"phase are all 0.5 (then \(R=0.5\) ). Using the \"rotate\" command, \(\backslash n\) ",
"the value of \(R\) is added to \"ANCIL2_watrk_hd_misalign\". \({ }^{\prime} n\) ",
"\n",
"new_dh = dh + R\n",
"\n",
"Therefore the total angle used in rotation is \(\backslash n\) ",
" \(\backslash n\) ",
"new_theta \(=\) X + G - dh_new \(n\) ",
" \(=X+G-(d \bar{h}+R) \backslash n "\),
" \(\quad=(X-R)+(G-d h) \backslash n "\),
" \(\ n\) ",
```

"The new estimate of the transducer angle is: X - R\n", "ANCIL2_watrk_hd_misalign contains: dh + R\n",
"\n",
"===2n",
"\n",
"Profile flags $\backslash n$ ",
"------------\n",
"Profile editing flags are provided for each depth cell:\n",
"\n",
"binary decimal below Percent\n",
"value value bottom Good bin\n",
"-------+----------+-------+----------+------+\n",

"000	$0 \backslash \mathrm{n}$ ",			
"001	1			bad $\mathrm{n}^{\prime \prime}$,
"010	2		bad $\mathrm{n}^{\prime \prime}$,	
"011	3		bad	bad $\mathrm{n}^{\prime \prime}$,
"100	4	bad $\mathrm{n}^{\prime \prime}$,		
"101	5	bad		bad\n",
"110	6	bad	bad $\mathrm{n}^{\prime \prime}$,	
"111	7	bad	bad	bad $\ n$ ",

