



voyagesummaryss2013\_v01

# SS2013\_v01

**Voyage:** Submarine landslides offshore northern New South Wales and southern Queensland: their geomechanical characteristics, timing and triggers

## Voyage period

Start: 17/01/2013 End: 04/02/2013 Port of departure: Brisbane, Australia Port of return: Brisbane, Australia

### **Responsible laboratory**

School of Geosciences – The University of Sydney NSW 2006, Australia

# **Chief Scientist**

Associate Professor Tom Hubble School of Geosciences – The University of Sydney NSW 2006, Australia

## **Scientific Objectives**

An extensive region of the continental slope located offshore Northern New South Wales and Southern Queensland between Byron Bay and Noosa Heads was demonstrated to have experienced intense submarine erosion dominated by submarine landsliding in 2008 (ss12/2008, Boyd, Keene, Gardner, Exon, Hubble et al.). Major questions about the geographic extent of the area affected by these processes, the geomechanics and dynamics of sliding; the timing and frequency of sliding; and the potential trigger mechanism for slide initiation have arisen from the analysis of the material collected by the scientists who participated in the ss12/2008 voyage. These workers and their colleagues (Hubble, Airey, Clarke, Yu, Keene, Boyd et al.) have demonstrated that submarine landsliding on Eastern Australia's continental margin is unexpectedly young and frequent at geological timescales. They have also developed geological and geotechnical models which attempt to explain the apparent youth and unexpected frequency of submarine landsliding in this area of the Eastern Australian continental margin.

This project was designed to extend the findings of the ss12/2008 voyage by collecting additional core and dredge samples in the original study area and by extending the coverage of detailed seafloor bathymetry to the north of the 2008 study area as well as by sampling appropriate features in the newly mapped area. This data that will help to validate or modify the models developed to explain the areas submarine erosion and landsliding developed since the ss12/2008 voyage.

## **Voyage Objectives**

 Extend the area of detailed bathymetric mapping of the outer continental shelf and continental slope to the north of the ss12/2008 survey area offshore Fraser Island and identify further submarine landslides and erosional features such as failure scars and scarps. Included in this objective were two specific targets, these were to:

a ) determine the specific location and characterization of the site (or possible sites) from which an enormous olistostromic block was shed with the intent of establishing the trajectory of this slide block and the dynamics of its motion in this area – the general location that this block will have been derived from offshore the southern third of Fraser Island; and

b) connect the heads of canyons to outer shelf sand-bodies that are suspected to be cascading downslope and contribute to incising the canyons and/or abrading and modifying the slope morphology (e.g. near the southern boundary of the Fraser Island swath map area).

- 2) Collect geological and geotechnical samples (core and dredge) offshore Fraser Island to enlarge the geological material available for geotechnical testing and dating.
- Collect cores and dredge samples from the ss12/2008 survey area to improve our knowledge about the frequency of submarine landslides (dating) and the landslide processes (geotechnical samples).

Additional undisturbed material from currently identified but as yet not sampled slides will be used to better characterise the timing of failure and the causes, mechanics and dynamics of sliding so that the influence of the two more-likely suggested causal factors for sliding (lowered sea-level and earthquake shaking) can be assessed.

#### **Results**

 This objective was met with a high degree of success. The continental slope between 200 m water depth and the abyssal plain was mapped to the east the Queensland coast between Caloundra in the south and the northern tip of Fraser Island. The mapped area is approximately five thousand square kilometres in extent (200 km long, north to south by 25km wide, east to west) and provides data appropriate to satisfying objectives 1a) and 1b) described above; that is a) identifying potential source sites for the known giant slide block and b) investigating shelf to canyon transport mechanisms – particularly the delivery of shelf sediments to the Noosa Canyons.

In addition to the seafloor mapping offshore Fraser Island swath mapping was undertaken during transit legs to the Yamba and Byron Bay Area which extended the mapped seafloor coverage of an area to the east and south of the SS12/2008 voyage. In particular the middle continental slope in a region offshore Yamba was mapped in order to contextualise the subsurface submarine landslide structures evident in a high-quality deep seismic reflection line acquired by Geoscience Australia in the mid-1990's.

- 2) This objective was met with a very high degree of success. Thirty-four attempts to recover geological and geotechnical samples were made offshore Fraser Island of which 15 were gravity cores (all successful) and 18 were dredge hauls (16 successful) one unsuccessful grab sample was also attempted.
- 3) This objective was met with a very high degree of success. Twenty-nine additional attempts to recover geological and geotechnical samples were made in the ss12/2008 area between the Noosa Canyons and Yamba of which 24 were gravity cores (17 successful) and 6 were dredge hauls (all successful). Coring in the Yamba Slides and Byron Bay Slide was particularly successful and a large number of submarine landslide surfaces (at least five and possibly many more not all cores were split on board) are thought to have been sampled.

## **Voyage Narrative**

## Leg One - day one to day three

18th of January 2013 to the 21st of January 2013 Swath Mapping of Barwon Bank and the Continental Slope Between Caloundra and the Northern Tip of Fraser Island

# Embarked Port of Brisbane 8 am, 18th Jan Arrived Caloundra Pilot Station 2 pm, Commenced Scientific Operations 5 pm

#### **Operating Conditions**

The sea-state was generally very good throughout this period of the voyage with fine weather and light to moderate winds. Strong northerly currents (between two and three knots) which set ship to the south were experienced during the northerly and southerly bathymetric survey legs offshore Fraser Island. These strong currents remained active throughout the voyage.

#### **Scientific Operations**

Swath Mapping with the multibeam system and sub-bottom profiling with the Topas system of the Barwon Bank sedimentary deposits.

The sea-state was generally very good throughout this period of the voyage with fine weather and light to moderate winds. Strong northerly currents (between two and three knots) which set ship to the south were experienced during the northerly and southerly bathymetric survey legs offshore Fraser Island. These strong currents remained active throughout the voyage.

#### Achieved Targets

- Bathymetric mapping and sub-bottom profiling of the Barwon Bank complex. Survey Lines 1 to 8 on the adjacent Map – survey commenced at approximately 3 pm on day one and was completed at approximately midnight on day One.
- Swath-mapping east of Fraser Island in northerly and southerly directions in the area delineated by the yellow lines on the adjacent map (Figure One).



#### Leg Two – day four to day eight

22nd of January 2013 to the 25th of January 2013 Coring and Dredging Operations – Indian Head to Wide Bay Canyons Swath Mapping Lower Continental Slope

### **Operating Conditions**

The sea-state was generally very good (Beaufort Three) at the beginning of this period of the voyage but the influence of the 'coast-hugging' ex-Cyclone Oswald was becoming increasingly evident as it moved south from northern Queensland towards our study area during days six and seven. By the end of day seven conditions had deteriorated to a Beaufort Six/Seven sea state and sampling operations ceased as conditions deteriorated and to the extent that it was no longer possible to safely deploy the coring equipment or dredges. Strong northerly currents (between two and three knots) which set ship to the south continued during this period.

### **Scientific Operations**

Given that the weather and sea-state would worsen through days six and seven the focus of the scientific operations was changed to the collection of core and dredge samples in this northern portion of the project's study area. By the beginning of day four sufficient multibeam data had been acquired to enable good sampling targets to be identified on the upper and middle continental slope. The operational strategy employed was dredging and coring operations were undertaken during an extended working day (8 am to midnight) followed by appropriate swath-mapping to either connect well-understood shelf-sediment systems to the upper slope (e.g. Gardner Bank) or to map the canyon heads and shelf-edge (e.g. Wide Bay Canyon).

## Achieved Targets

- Coring and dredging of slides and scarps in the Fraser Island Canyon Complex (black dashed box, Figure Two).
- Swath mapping and sub-bottom profiling of the Gardner Bank Area (white boxed area, Figure Two)
- Coring and dredging of slides and scarps to the north and south of the Wide Bay Canyon and coring in the axis of the Wide Bay Canyon (black boxed area, Figure Two).
- Bathymetric mapping and sub-bottom profiling of lower slope and mouth of the Wide Bay Canyon the Barwon Bank complex (white dashed box area, Figure Two).



#### Leg Three – day nine to day eleven

25th of January 2013 to the 28th of January 2013 Swath Mapping Middle and Lower Slope – Noosa Canyon Area and Wide Bay Area

#### **Operating Conditions**

The sea-state was generally poor to bad (Beaufort Seven and Eight) and relatively unpleasant during this period due to the persistence and intensification of the 'coast-hugging' ex-Cyclone Oswald. This tropical storm caused widespread flooding and a one-metre storm surge throughout southern Queensland some 50 nautical miles or so to our west and even triggered coastal tornadoes near Bundaberg.

Oswald was quite disruptive to the scientific operations and required that the ship decrease speed to three knots and 'heave-to' in order to ride out the worst of the weather. The swell was at its largest during day nine and was between seven and eight metres at worst of the weather. The strong northerly currents (between two and three knots) which set ship to the south continued during this period.

### Scientific Operations

In view of the arrival of poor weather conditions and the requirement of a NNE or SSW course to provide relative comfort for the scientists and crew it was only possible to swath-map with the multi-beam system. Initially this was undertaken in an area offshore from Caloundra while we waited for the storm to head east across the Tasman, subsequently we steamed north through the edge of the storm to map an area of the lower slope offshore central Fraser Island to be followed by an area of the lower slope to the north of the Wide Bay Canyon.

## Achieved Targets

- Bathymetric mapping of lower slope to the north of the Noosa Canyons offshore Caloundra, the southerly boxed area (solid white line) shown in Figure Three.
- Bathymetric mapping of lower slope offshore central Fraser Island near the mouth of the Wide Bay Canyon, the central boxed area (dashed white line) shown in Figure Three.
- Bathymetric mapping of lower slope to the north of the mouth of Wide Bay Canyon the northern boxed area (dotted white line) shown in Figure Three.



#### Leg Four - days twelve and thirteen

30th of January 2013 and 31st of January 2013 Coring and Dredging Operations Noosa Canyon Complex Transit to Yamba

## **Operating Conditions**

The sea-state began to improve towards the end of day eleven to a Beaufort 3 to 4 as the wind backed away into the north-west and the barometer gradually rose. It was possible to increase the ships speed gradually back to normal operating speed of 10 knots through the water by the late-afternoon of day twelve with no restriction on the heading although NNE and SSW was more comfortable. We returned to the south to recommence the planned sampling program in the southern half of the project area. The swell gradually dropped throughout this time but a constant, moderate swell persisted as a challenge to sampling. The three metre swell dominantly approached the coast from the east but with a cross-swell from the south. These calmer conditions were more favourable to scientific operations and enabled a transit back to the Noosa Canyons offshore Caloundra and the sampling program recommenced.

### Scientific Operations

Completion of the shelf-bathymetry mapping and dredging of the continental slope materials to the north and south of Noosa Canyon and coring in the axis of the Noosa Canyons (white boxed area shown in Figure Four). These operations were followed by a southerly transit to sites offshore Yamba in northern New South Wales.

## **Achieved Targets**

- Bathymetric Mapping of shelf and upper slope adjacent to the Noosa Canyon complex directly offshore Caloundra.
- 2) Dredging of the upper continental slope materials from the crests of slump scars evident to the north and south of the Noosa canyons
- 3) Coring of the Noosa Canyon Axis.



#### Leg Five – days fourteen to seventeen and disembarkation

1st of February 2013 to 4th of February 2013

Coring and Dredging Operations Yamba to Tweed Canyon and Barwon Bank Transit to Barwon Bank and then transit to Brisbane Pilot and Voyage Completion

#### **Operating Conditions**

The weather during this final part of the voyage was generally good and condusive to the full range of ship's operations. Skies were generally clear or moderately cloudy with light to moderate northerly and NNE winds of up to 20 knots. This produced sea- states between Beaufort 3 and 4 but the swell remained moderate for the remainder of the voyage with brief large 3 metre swell sets from the east and the south rising above the general 2 metre swells producing a somewhat confused swell. Stronger than usual northerly currents (between three and four knots) were experienced during this leg of the voyage.

#### **Scientific Operations**

This final section of the voyage was particularly productive and contributed greatly to achieving one of the voyages objectives of collecting cores from the upper continental slope's landslides. A significant number of these cores demonstrably penetrated recently deposited sediment drapes and accessed older compacted material from suspected landslide surfaces in the Yamba Area and Byron Slide. After completion of this sampling and the transit back to Brisbane against very strong southerly currents there was still some time available which was used by sampling and sub-bottom profiling the Barwon Bank feature after which we met the Brisbane Pilot at 6am.

#### Achieved Targets

- Bathymetric mapping of the middle and upper slope offshore Yamba. This additional surveying to the south of the SS 2008-V01 survey area provides bathymetric context for a high quality seismic reflection survey undertaken by Geoscience Australia in the 1990's – a number of submarine landslide features are evident in this data (white dashed box area, Figure Five)
- Coring of the Yamba Slide Complex (4); upper slope slides between Yamba and Clarence Canyon (10) and in the Clarence (1) and the Byron Slide (4) complexes, as well as dredging of the lower Byron Slide (1) (White Box area, Figure Five)
- Confirmed the location of wreck of the MV *Limerick* which was sunk by a Japanese submarine in World War Two.
- Bathymetric mapping, Topas profiling and sampling of the Barwon Bank Complex (Black Boxed area, Figure Five).



## **Summary**

The Southern Surveyor research voyage, ss2013\_v01 collected regional bathymetric data for the seabed of the continental margin and slope of southern Queensland in a region bounded by Caloundra in the south and Indian Head, Fraser Island in the north. The newly mapped area presents a particularly steep portion of continental slope which is dissected by three large submarine canyons offshore northern Fraser Island, Wide Bay and Caloundra (i.e. the Fraser Canyons, the Wide Bay Canyon and the Noosa Canyons). Dredge and core samples have been collected from the northern, central and southern areas of the bathymetric survey area's continental slope and from the central axes of the Wide Bay and Noosa canyons. The initial examination of these three sets of data indicate that the area has been subject to several large submarine slides and is currently subject to active canyon incision, as well as experiencing currently active mass gravity flow (turbidite-style) sedimentary processes. It is apparent from the morphology of this portion of the continental slope that the large, landslide block thought to have been generated from a site located near the south of Fraser Island was more likely to have been shed from this slope in the relatively distant geologic past rather than in relatively recent geologic time.

The voyage also collected a relatively large number of sediment cores from a region of the upper continental slope of New South Wales between Yamba and Byron Bay. These cores indicate that there are a relatively large number of small to medium sized landslides are present in this area; and that these landslides are probably relatively young in geological terms. The results of the voyage confirm the view that sediment transport from the shelf to deep water on this margin is controlled by gravity mass transport, resulting in a degradational margin.

The scientific objectives of the voyage were achieved with a high degree of success. The entire range of investigations into submarine landsliding and mass wasting in this geologic terrain described in this voyage's voyage proposal are all enabled by the samples and data that have been collected during the ss201\_v01 research voyage and will be undertaken.

## PRINCIPAL INVESTIGATORS

- A. Associate Professor Tom Hubble School of Geosciences The University of Sydney
- B. Dr Jody Webster School of Geosciences The University of Sydney
- C. Professor David Airey Department of Civil Engineering The University of Sydney



GEOGRAPHIC COVERAGE - INSERT 'X' IN EACH SQUARE IN WHICH DATA WERE COLLECTED

| SUMMARY OF MEASUREMENTS AND SAMPLES TAKEN |                   |     |                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|-------------------------------------------|-------------------|-----|------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Item No.                                  | PI                | No. | Units                              | Data<br>Type | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 1                                         | A, B,<br>and<br>C | 39  | Gravity<br>Core<br>Stations        | G04          | Gravity Core Deployment (six metre) – station position, depth,<br>core recovery information as well as an initial description<br>if the core was split and logged on board ship is provided<br>in Appendix Two. Almost all deployments were successful,<br>three lost samples due to overfilling and failure of the core<br>catcher. Several others recovered small samples when corer<br>ceased penetration when hard material was encountered |  |  |  |  |
| 2                                         | A, B,<br>and<br>C | 24  | Box and Pipe<br>Dredge<br>Stations | G01          | Box and pipe dredge deployment – position,<br>depth, samples recovered as well as initial<br>descriptions are provided in Appendix Two                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 3                                         | A                 | 2   | Grab Stations                      | G02          | Smith-MacIntyre Grab Deployment – position, depth, samples recovered as well as initial descriptions are provided in Appendix Two (both attempts were unsuccessful)                                                                                                                                                                                                                                                                             |  |  |  |  |
| 4                                         | A                 | 1   | CTD Cast                           | H10          | CTD001, Position 29°08.134'S, 153°56.343'E, depth 1875<br>metres. General Location: offshore the mouth of the Clarence<br>River, northern New South Wales, full oceanic depth cast.                                                                                                                                                                                                                                                             |  |  |  |  |
| 5                                         | A<br>and<br>B     | 1   | Lines                              | G74          | Regional Multibeam Bathymetry: for location see the ship's track plots                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 6                                         | A<br>and<br>B     | 1   | Lines                              | G75          | Single Channel Sub-bottom profiles (Topas): for location see the ship's track plot – note generally only effective on the shelf and upper slope in shallow water depths (between 30 and 1000 metres)                                                                                                                                                                                                                                            |  |  |  |  |

# **Curation Report**

| ltem<br>No. | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1           | Gravity cores will be stored in the cold storage facility at the School of Geosciences, Madsen Building University of Sydney while they are described, logged and subsampled for sedimentological analysis and geotechnical testing.<br>On final completion of geological and geotechnical testing it is intended that these samples will be transfered to the permanent curation facilities of Geoscience Australia in Canberra. It is envisioned that this transfer will take place in several years time – but the transfer should take place no later than 2020.                           |
| 2           | Box and pipe dredge samples will be stored in the cold storage facility at the School of<br>Geosciences, Madsen Building University of Sydney while they are described, logged<br>and subsampled for sedimentological analysis and geotechnical testing.<br>On final completion of geological and geotechnical testing it is intended that these samples will be<br>transfered to the permanent curation facilities of Geoscience Australia in Canberra. It is envisioned that this<br>transfer will take place in several years time – but the transfer should take place no later than 2020. |
| 3           | No samples were recovered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4           | This results of the CTD cast were logged digitally and the information is stored in the MNF's publically accessible digital archive at CSIRO Hobart                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5           | Digital multibeam echo sounder data archived in the MNF's publically accessible digital archive data base at CSIRO Hobart and by Tom Hubble and Jody Webster on permanent digital data storage facillities maintained by the University of Sydney's ICT unit.                                                                                                                                                                                                                                                                                                                                  |
| 6           | Digital Topas data archived in the MNF's publically accessible digital archive data base at CSIRO Hobart and by Tom Hubble and Jody Webster on permanent digital data storage facillities maintained by the University of Sydney's ICT unit.                                                                                                                                                                                                                                                                                                                                                   |





## **Personnel list**

## **Scientific Participants**

| Name                | Affiliation     | Role                        |
|---------------------|-----------------|-----------------------------|
| Tom Hubble          | USYD            | Chief Scientist             |
| Jody Webster        | USYD            | Co-Chief Scientist /        |
|                     |                 | Marine Geologist            |
| David Airey         | USYD            | Geotechnical Engineer       |
| Floyd Howard        | GA              | Geoscientist                |
| David Mitchell      | USYD            | Marine Technician           |
| Angel Puga Bernabeu | Univ of Granada | Marine Geologist            |
| David Voelker       | GEOMAR Kiel     | Marine Geologist            |
| Melissa Fletcher    | USYD-student    | MSc student on this project |
| Samantha Clarke     | USYD-student    | PhD student on this project |
| Mike Kinsela        | USYD            | Geoscientist                |
| Phyllis Yu          | USYD            | PhD student on this project |
| Aaron Shorthouse    | CMAR            | MNF Voyage Manager          |
| Tara Martin         | CMAR            | MNF Swath Mapping Support   |
| Pamela Brodie       | CMAR            | MNF Computing Support /     |
|                     |                 | Deputy Voyage Manager       |
| Karl Forcey         | CMAR            | MNF Electronics Support     |

# **Marine Crew**

| Name              | Role            |
|-------------------|-----------------|
| John Barr         | Master          |
| Michael Tuck      | 1st Officer     |
| Tom Watson        | 2nd Officer     |
| Nick Fleming      | Chief Engineer  |
| Seamus Elder      | First Engineer  |
| Graham McDougall  | Boatswain       |
| Bill Hollingworth | Second Engineer |
| Kel Lewis         | IR              |
| Peter Taylor      | IR              |
| Rod Langham       | IR              |
| Michael Chalk     | IR              |
| Warren Leary      | Chief Cook      |
| Jason Wall        | First Cook      |
| Charmayne Aylett  | Chief Steward   |

# **Acknowledgements**

The scientific party wishes to thank the Universities of Sydney and the University of Granada and GEOMAR for enabling and providing the resources for undertaking the voyage and for the MNF and CSIRO for providing us with time on the RV *Southern Surveyor*. The Master and crew of the RV *Southern Surveyor* and the MNF support staff are also thanked for providing an efficient, effective and enjoyable working environment.

Associate Professor Tom Hubble Chief Scientist



Figure 6: Main Areas of Operations – ss2013\_v01, as enclosed by white boxes.

# **APPENDICES**

# Appendix 1 – Sample Locations and Descriptions

| Table A2.1. Summary of gravity core deployments |                           |                                                                                   |                                                                                                                                                 |            |             |                              |  |  |  |  |
|-------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|------------------------------|--|--|--|--|
| Station<br>No.                                  | Gravity<br>Core<br>Number | Locality                                                                          | Target                                                                                                                                          | Latitude   | Longitude   | Actual<br>Water<br>Depth (m) |  |  |  |  |
| 1                                               | GC001                     | Offshore Indian Head,<br>Fraser Island                                            | Near the crest of a slide<br>adjacent to a scarp on<br>the northern side                                                                        | 24°43.445S | 153°36.231E | 1092.30                      |  |  |  |  |
| 2                                               | GC002                     | Offshore Fraser Island<br>(Sandy Cape)                                            | Slope within box slide                                                                                                                          | 24°45.116S | 153°36.696E | 1092.30                      |  |  |  |  |
| 5                                               | GC003                     | North of the Wide<br>Bay Canyon, offshore<br>the southern tip of<br>Fraser Island | Within the upper portion<br>of a slide developed in<br>the midslope deposits<br>on a plateau like area                                          | 25°21.187S | 153°57.937E | 1508.60                      |  |  |  |  |
| 6                                               | GC004                     | North of Wide Bay<br>Canyon, offshore<br>the southern tip of<br>Fraser Island     | Slope adjacent<br>to box slide                                                                                                                  | 25°20.003S | 153°57.503E | 1429.40                      |  |  |  |  |
| 10                                              | GC005                     | Wide Bay Canyon,<br>offshore the southern<br>tip of Fraser Island                 | Canyon floor, towards<br>the mouth of Wide<br>Bay Canyon                                                                                        | 25°28.497S | 154°06.408E | 3422.00                      |  |  |  |  |
| 11                                              | GC006                     | Offshore Fraser Island<br>Wide Bay Canyon                                         | Canyon floor, mid<br>of canyon axis                                                                                                             | 25°28.805S | 154°02.292E | 2926.10                      |  |  |  |  |
| 12                                              | GC007                     | Offshore Fraser Island<br>Wide Bay Canyon                                         | Canyon floor, mid<br>of canyon axis                                                                                                             | 25°30.503S | 153°58.820E | 2399.00                      |  |  |  |  |
| 13                                              | GC008                     | Offshore Fraser Island<br>Wide Bay Canyon                                         | Canyon floor, below head of canyon                                                                                                              | 25°31.910S | 153°57.398E | 2196.60                      |  |  |  |  |
| 14                                              | GC009                     | Wide Bay Canyon,<br>offshore the southern<br>tip of Fraser Island                 | Spill-over splay from<br>a small upper slope<br>canyon incised adjacent<br>to a crestal scarp in the<br>northern wall of the<br>Wide Bay Canyon | 25°26.193S | 153°56.215E | 1214.00                      |  |  |  |  |
| 15                                              | GC010                     | Offshore Fraser Island                                                            | Plateau above Scarp                                                                                                                             | 25°25.498S | 153°55.705E | 943.00                       |  |  |  |  |
| 16                                              | GC011                     | Offshore Fraser Island                                                            | Channel SE and adjacent to scarp                                                                                                                | 25°26.01S  | 153°55.987E | 1180.00                      |  |  |  |  |
| 28                                              | GC012                     | Offshore Noosa                                                                    | Just north of the Noosa<br>Canyon head on shelf<br>(hardgrounds?)                                                                               | 26°13.57S  | 153°53.966E | 249.40                       |  |  |  |  |
| 29                                              | GC013                     | Offshore Noosa                                                                    | Noosa Canyon floor, axis of canyon                                                                                                              | 26°19.199S | 153°57.122E | 2463.10                      |  |  |  |  |
| 30                                              | GC014                     | Offshore Noosa                                                                    | Noosa Canyon floor,<br>axis of canyon                                                                                                           | 26°20.568S | 153°57.815E | 2755.20                      |  |  |  |  |
| 31                                              | GC015                     | Offshore Noosa                                                                    | Noosa Canyon floor,<br>axis of canyon                                                                                                           | 26°22.167S | 153°59.525E | 2902.10                      |  |  |  |  |
| 35                                              | GC016                     | Yamba Plateau                                                                     | Yamba Plateau slide<br>on upper slope,<br>within slide feature                                                                                  | 29°42.962S | 153°48.729E | 1018.80                      |  |  |  |  |
| 36                                              | GC017                     | Yamba Plateau                                                                     | Yamba Plateau slide<br>on upper slope,<br>within slide feature                                                                                  | 29°41.399S | 153°48.902E | 970.10                       |  |  |  |  |

|                | Table A2.1. Summary of gravity core deployments (continued) |                                            |                                                                                                       |                  |             |                              |  |  |  |  |  |
|----------------|-------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------|-------------|------------------------------|--|--|--|--|--|
| Station<br>No. | Gravity<br>Core<br>Number                                   | Locality                                   | Target                                                                                                | Latitude         | Longitude   | Actual<br>Water<br>Depth (m) |  |  |  |  |  |
| 37             | GC018                                                       | Yamba Plateau                              | Yamba Plateau slide<br>on upper slope,<br>within slide feature                                        | 29°40.995S       | 153°47.287E | 730.30                       |  |  |  |  |  |
| 38             | GC019                                                       | Yamba Plateau                              | Yamba Plateau reference<br>core(?), adjacent to<br>slide feature (actually<br>in small slide feature) | 29°40.358S       | 153°47.029E | 652.10                       |  |  |  |  |  |
| 39             | GC020                                                       | Offshore Clarence                          | Within slide feature on the upper slope                                                               | 29°34.800S       | 153°48.565E | 731.80                       |  |  |  |  |  |
| 40             | GC021                                                       | Offshore Freeburn Rock                     | Within slide feature<br>on the upper slope                                                            | 29°32.093S       | 153°48.973E | 709.00                       |  |  |  |  |  |
| 41             | GC022                                                       | Offshore Freeburn Rock                     | Within slide feature<br>on the upper slope                                                            | 29°28.716S       | 153°49.988E | 863.60                       |  |  |  |  |  |
| 42             | GC023                                                       | Offshore Clarence Head<br>(Clarence River) | Within slide feature<br>on the upper slope                                                            | 29°25.476S       | 153°51.576E | 983.40                       |  |  |  |  |  |
| 43             | GC024                                                       | Offshore Clarence Head<br>(Clarence River) | Within slide feature on the upper slope                                                               | 29°24.213S       | 153°51.344E | 884.30                       |  |  |  |  |  |
| 44             | GC025                                                       | Offshore Clarence Head<br>(Clarence River) | Within slide feature<br>on the upper slope                                                            | ature 29°23.275S |             | 763.50                       |  |  |  |  |  |
| 45             | GC026                                                       | Offshore Clarence Head<br>(Clarence River) | Within slide feature<br>on the upper slope 29°20.917S                                                 |                  | 153°51.984E | 839.00                       |  |  |  |  |  |
| 49             | GC027                                                       | Offshore Clarence Head<br>(Clarence River) | Within slide feature on the upper slope                                                               | 29°23.304S       | 153°51.202E | 763.90                       |  |  |  |  |  |
| 50             | GC028                                                       | Offshore Clarence Head<br>(Clarence River) | Within slide feature on the upper slope                                                               | 29°16.370S       | 153°52.862E | 1000.48                      |  |  |  |  |  |
| 51             | GC029                                                       | Offshore Clarence Head<br>(Clarence River) | Within slide feature<br>on the upper slope                                                            | 29°14.669S       | 153°53.087E | 956.10                       |  |  |  |  |  |
| 52             | GC030                                                       | Clarence Canyon                            | Top of slide block<br>at the base of the<br>Clarence Canyon                                           | 29°10.414S       | 154°00.983E | 2299.00                      |  |  |  |  |  |
| 54             | GC031                                                       | Byron Slide,<br>offshore Byron             | Within slide feature on the upper slope                                                               | 28°37.468S       | 153°56.817E | 893.20                       |  |  |  |  |  |
| 55             | GC032                                                       | Byron Slide,<br>offshore Byron             | Within slide feature<br>on the upper slope                                                            | 28°36.793S       | 153°56.418E | 734.00                       |  |  |  |  |  |
| 56             | GC033                                                       | Byron Slide,<br>offshore Byron             | Within slide feature<br>on the upper slope                                                            | 28°36.807S       | 153°56.406E | 731.30                       |  |  |  |  |  |
| 57             | GC034                                                       | Byron Slide,<br>offshore Byron             | Within slide feature on the upper slope                                                               | 28°36.894S       | 153°57.206E | 977.20                       |  |  |  |  |  |
| 58             | GC035                                                       | Byron Slide,<br>offshore Byron             | Within slide feature on the upper slope                                                               | 28°36.686S       | 153°57.887E | 1072.60                      |  |  |  |  |  |
| 59             | GC036                                                       | Tweed Canyon                               | Within cayon axis                                                                                     | 28°31.140S       | 154°09.739E | 3065.00                      |  |  |  |  |  |
| 60             | GC037                                                       | Tweed Canyon                               | Within cayon axis                                                                                     | 28°31.762S       | 154°06.254E | 2784.00                      |  |  |  |  |  |
| 62             | GC038                                                       | Offshore Noosa -<br>Barwon Bank            | Barwon Bank                                                                                           | 26°23.834S       | 153°47.192E | 131.70                       |  |  |  |  |  |
| 63             | GC039                                                       | Offshore Noosa -<br>Barwon Bank            | Barwon Bank                                                                                           | 26°23.693S       | 153°46.857E | 128.20                       |  |  |  |  |  |

|                | Table A2.2. Summary of sediment gravity core recovery |                          |                    |                 |                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|----------------|-------------------------------------------------------|--------------------------|--------------------|-----------------|---------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Station<br>No. | Gravity<br>Core<br>Number                             | Total<br>Recovery<br>(m) | Penetration<br>(m) | No. of sections | Onboard<br>Analysis | Stratigraphy                     | Comments (e.g. recovery/lithology)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 1              | GC001                                                 | 1.33                     | 1.5                | 2               | Split,<br>logged    | 4 units                          | Core: 1.33 m long: yellow-brown sand grading<br>into orange brown sandy mud at the surface<br>(to 0.4m); light olive grey mud (0.4m to 1.2m)<br>and stiff sand (1.2 m to 1.3 m). Ships geologists<br>initially identify the materials as a turbidite (top of<br>core), hemipelagic, bioclastic (with foraminifera<br>dominant) mud, and slope sand (base of core).<br>Note the 'turbidite'graded sand eroded into or<br>deposited onto the hemipelagic slope muds and<br>the stiff coarser sandy on which the hemipelagic<br>muds are deposited - the contact between the two<br>units presents core artefacts or apparent load.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 2              | GC002                                                 | 5.71                     | 6+                 | 6               | Not split           | -                                | 6 m long medium to dark grey and slightly<br>olive grey sandy-silty-mud and clay (this<br>core not split). Near full recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 5              | GC003                                                 | 3.62                     | 6                  | 6               | Split,<br>logged    | Single<br>conformable<br>section | Core: 3.62 m long generally homogenous,<br>hemipelagic, bioturbated, bioclastic, grey and slightly<br>olive grey sandy-silty-mud. The sandy material is<br>comprised of foraminifera, shell fragments and<br>other carbonate detritus. The whole unit is faintly<br>laminated, probably due to burrowing. Black flecks<br>of organic (?) matter down the whole core (small<br>amounts). Fe oxide staining near the surface (~21<br>cm depth). Note: the undisturbed triaxial samples<br>were cut from this core (unsplit sections).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 6              | GC004                                                 | 0.42                     | 1.5                | 1               | Not split           | -                                | Low penetration and recovery. Firm sandy mud,<br>compacted and dry in parts. Core cutter full -<br>sample pushed through to upper section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 10             | GC005                                                 | 1.95                     | 0.48               | 2               | Split,<br>logged    | 4 units                          | Penetration on core barrel only 0.48 m despite<br>returning ~2 m of core. Bottom 0.1 m of core 1B<br>empty/lost in core catcher on way out of section. 1B<br>is <1 m in length. Top of core was foraminifeous mud<br>of sand size, quite abudant. Section between 1B and<br>2A contained adundant terapod fossils.<br>A 1.95 m long core:<br><b>Unit 1</b> : oxidised surface layer of yellow-brown<br>sand grading into greyish yellow, bioclastic,<br>foraminiferal sandy mud at the surface (to 0.1m)<br>Unit 2: light yellow mud fine sands (0.1 m to 0.52 m)<br>moving to yellowish grey coarse sand (0.52 m to 0.68<br>m) - fining upwards. Sandy material is comprised of<br>foraminifera, shell fragments and other carbonate<br>detritus.<br><b>Unit 3</b> : grey to greyish olive hemipelagic silty clays<br>with mottling and black flecks (organics?) (0.68 m<br>to 0.89 m). Faint mottling is evident. The sediment<br>is dominantly biogenic carbonate mud, with some<br>terrigenous silt and clay.<br><b>Unit 4</b> : light grey to grey coarse to very coase<br>sands with possible load stucture and black<br>discolouration at boundary, sheel frags, spines,<br>gastropods etc throughout layer (0.89 m to 1.18 m) |  |  |  |  |  |

| Table A2.2. Summary of sediment gravity core recovery (continued) |                           |                          |                    |                 |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|-------------------------------------------------------------------|---------------------------|--------------------------|--------------------|-----------------|---------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Station<br>No.                                                    | Gravity<br>Core<br>Number | Total<br>Recovery<br>(m) | Penetration<br>(m) | No. of sections | Onboard<br>Analysis | Stratigraphy                          | Comments (e.g. recovery/lithology)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 10                                                                | GC005                     | 1.95                     | 0.48               | 2               | Split,<br>logged    | 4 units                               | Unit 5: Grey mottled hemipelagic silty clays (1.18<br>m to 1.68 m), band of black (organic??) matter<br>~1mm thick at 1.47 m - possible erosion surface?<br>The laminations present as very faint horizontal<br>stripes but in general it is difficult to detect obvious<br>grainsize variation within laminae or between<br>laminae. This unit is mildly to moderately bioturbated<br>which has tended to homogenise the sediment.<br>Unit 6: Hemipelgic grey to olive grey muds (1.68<br>m to 1.95 m). Less silty than above units, with<br>4+ blocks(?) distinguished by colour changes<br>at random orientations within the unit.<br>Note the two 'turbidites' (normally graded sands<br>eroded into or deposited onto the hemipelagic<br>slope muds and the two distinct stiff mud<br>layers evident at the base of the core. |  |  |  |
| 11                                                                | GC006                     | 1                        | 3.5                | 1               | Not split           | -                                     | A one metre long core. Grey mud at base is recovered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 12                                                                | GC007                     | catcher                  | 0.2                | 0               | NA                  | Surface<br>sample, no<br>stratigraphy | Corer penetrated surface only to depth of catcher<br>- firm compacted sandy mud extracted from core<br>cutter. Winch operator suspects corer fell on<br>side after lodging in seabed. Core cutter, catcher<br>and top of core (surficial) samples returned.<br>Core catcher contains 10 cm thick jammed in<br>sample of compacted mid-slope stiff mud.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 13                                                                | GC008                     | 0.83                     | 2                  | 1               | Not split           | -                                     | A 0.83 metre long core of yellow brown<br>sandy mud on upper core, core penetration<br>ceased in firm medium grey clay unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 14                                                                | GC009                     | 4.7                      | 5                  | 5               | Split               |                                       | A 4.7 metre long core: 30 cm thick normally<br>graded foraminferal sand at the top of the core<br>which overlies a stiff medium grey, bioclastic,<br>silty mud and several, separate approximately 0.7<br>metre thick, different coloured mud layers. The<br>sandy material is comprised of foraminifera, shell<br>fragments and other carbonate detritus. Probably<br>a turbidite that has spilled over the channel<br>margin. Note the 'turbidite' graded sand eroded<br>into or deposited onto the hemipelagic slope muds.                                                                                                                                                                                                                                                                                                      |  |  |  |
| 15                                                                | GC010                     | 4.35                     | 4.5                | 5               | Not split           | NA                                    | Good penetration and recovery. Nil core catcher.<br>An approximately five metre long core is<br>recovered. Details to be provided on splitting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 16                                                                | GC011                     | 2.79                     | 6+                 | 3               | Not split           | NA                                    | 6+ m penetration - weight disc and entire<br>barrel covered with mud. Core catcher medium<br>grey stiff mud. An 2.79 metre long core is<br>recovered. Details to be provided on splitting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 28                                                                | GC012                     | 0                        | 0                  | 0               | No<br>return        | NA                                    | No return in core. Located above carbonate<br>hardgounds(?) so not unexpected. Heavy swell,<br>may have landed on side or hard ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 29                                                                | GC013                     | 0.9                      | 1                  | 1               | Not split           | NA                                    | Core catchers: saved for goetech sample.<br>Dark olive grey semi comsolidated muds. Low<br>sand content in the cc. Hemipelagic silts/<br>clays. Small subsample of cc taken in bag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

| Table A2.2. Summary of sediment gravity core recovery (continued) |                           |                          |                    |                 |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|-------------------------------------------------------------------|---------------------------|--------------------------|--------------------|-----------------|---------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Station<br>No.                                                    | Gravity<br>Core<br>Number | Total<br>Recovery<br>(m) | Penetration<br>(m) | No. of sections | Onboard<br>Analysis | Stratigraphy          | Comments (e.g. recovery/lithology)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 30                                                                | GC014                     | 0                        | 0                  | 0               | NA                  | Cutter<br>sample only | Volcanoclastics and basalt gravel fragments<br>retrieved from core cutter. Some organics including<br>gastropod and bivalve speciments. Biogenic<br>material extracte and taken as sub sample.<br>2 jars - 1 x biogenics, 1 x volcanoclastics                                                                                                                                             |  |  |  |
| 31                                                                | GC015                     | 3.87                     | 3+                 | 4               | Not split           | NA                    | First attempt did not hit the bottom. Second<br>attempt: approximately 3 m penetration<br>suggested by mud on core barrel. Firm<br>grey mud in core catcher and cutter.                                                                                                                                                                                                                   |  |  |  |
| 35                                                                | GC016                     | 2.11                     | 2.2                | 3               | Split               | 2 units               | Core catcher and cutter full of light grey stiff<br>mud. Appears much stiffer than previous core<br>sites. Geotech (vane shear) performed on<br>core catcher sample. Some silt/sand fractions<br>but majority stiff clays. Top section of core<br>softer than bottom. Suspected slide surface.<br>Boundary surface seem in split core.                                                    |  |  |  |
| 36                                                                | GC017                     | 2.33                     | 2.4                | 3               | Not split           | NA                    | Core catcher and cuter returned light grey sandy<br>clay silt. Not as stiff as GC016. More forams<br>in catcher sediments. Silt content higher.                                                                                                                                                                                                                                           |  |  |  |
| 37                                                                | GC018                     | 4.11                     | 5                  | 5               | Not split           | NA                    | Core catcher sample dark grey silty clay with low silt content. Little sand fraction.                                                                                                                                                                                                                                                                                                     |  |  |  |
| 38                                                                | GC019                     | 5.32                     | 6+                 | 6               | Not split           | NA                    | Subsamples taken.                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 39                                                                | GC020                     | 2.63                     | 3                  | 4               | Not split           | NA                    |                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 40                                                                | GC021                     | 1.34                     | unknown            | 2               | Not split           | NA                    | Firm grey mud in core catcher; no obvious<br>evidence of penetratin past 1 m. Echinoderm spine<br>in catcher sample (placed in sample jar for dating)                                                                                                                                                                                                                                     |  |  |  |
| 41                                                                | GC022                     | 4.18                     | 5                  | 5               | Not split           | NA                    | Firm grey mud in core catcher; brown hydrous mud on surface.                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 42                                                                | GC023                     | 5.5                      | 6+                 | 6               | Not split           | NA                    | Medium grey mud firm at base, hydrous at surface with brown colouring.                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 43                                                                | GC024                     | 5.5                      | 6+                 | 6               | Not split           | NA                    | Olive grey mud - firmer at the base.                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 44                                                                | GC025                     | -                        | -                  | -               | -                   | -                     | Failed - core catcher returned damaged.<br>Evidence core was captured. Perhaps<br>lost in contact with core cradle.                                                                                                                                                                                                                                                                       |  |  |  |
| 45                                                                | GC026                     | 4                        | ~4                 | 4               | Not split           | NA                    | Brown soft muds at top; stiff grey mud at bottom.                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 49                                                                | GC027                     | 4.72                     | ~4                 | 5               | Not split           | NA                    | Firm grey mud at base, oxidised hydrous<br>layer at surface - brown in colour.                                                                                                                                                                                                                                                                                                            |  |  |  |
| 50                                                                | GC028                     | 5.13                     | 5                  | 6               | Not split           | NA                    | Multi-beam depth out - used ships depth sounder.<br>Medium grey firm mud in core catcher.                                                                                                                                                                                                                                                                                                 |  |  |  |
| 51                                                                | GC029                     | 5.64                     | 6+                 | 6               | Not split           | NA                    | Medium grey mud semi firm at catcher.                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 52                                                                | GC030                     | -                        | -                  | -               | No<br>return        | -                     | Core catcher penetrated <30 cm of material.<br>Noth consolidated sediments and loose surfical<br>material were preserved in core cutter and<br>catcher/ Entire sample curated with catcher<br>and cutter in place. Small amount of surfical<br>sample also recovered in lower most section<br>of core barrel. 2 bottles of surficial material<br>from barrel and cutter & catcher sample. |  |  |  |

| Table A2.2. Summary of sediment gravity core recovery (continued) |                           |                          |                    |                    |                     |              |                                                                                                                                                                                             |  |  |  |
|-------------------------------------------------------------------|---------------------------|--------------------------|--------------------|--------------------|---------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Station<br>No.                                                    | Gravity<br>Core<br>Number | Total<br>Recovery<br>(m) | Penetration<br>(m) | No. of<br>sections | Onboard<br>Analysis | Stratigraphy | Comments (e.g. recovery/lithology)                                                                                                                                                          |  |  |  |
| 54                                                                | GC031                     | 1.8                      | 2                  | 2                  | Not split           | NA           | Core catchers: stiff grey slightly sandy silty clay. Sand fraction composed of foram sand & shell material.                                                                                 |  |  |  |
| 55                                                                | GC032                     | 0                        | 2                  | -                  | No<br>return        | -            | Core was empty. Core catcher failed - too much<br>weight? Some medium grey semi stiff mud<br>with gritty tetrapod and shell fragment stuck<br>to outide of core cutter. Not enough to keep. |  |  |  |
| 56                                                                | GC033                     | 0                        | 2.5                | -                  | No<br>return        | -            | Evidence of full capture, core catcher<br>material broken and evidence of core was<br>lost following capture. Olive-grey firm<br>mud around outside of core cutter.                         |  |  |  |
| 57                                                                | GC034                     | 3.83                     | 3.4                | 4                  | Not split           | NA           | Medium grey firm mud at base,<br>oxidisd at top, little silt.                                                                                                                               |  |  |  |
| 58                                                                | GC035                     | 1.77                     | 2                  | 2                  | Not split           | NA           | Core catcher: stiff grey silty mud/clay. Some<br>foram sand but mostly stiff clay material. Top<br>of core is oxidised brown sandy muddy silt.                                              |  |  |  |
| 59                                                                | GC036                     | 0.44                     | 6+                 | 1                  | Not split           | NA           | Core catcher: stiff grey mud. Very low silt/sand content. Top section of core brown oxidised mud.                                                                                           |  |  |  |
| 60                                                                | GC037                     | 0                        | 2                  | 0                  | NA                  | NA           | Small amount of olive grey mud above<br>core catcher. Penetration suggests sample<br>lost although catcher returned in tact.                                                                |  |  |  |
| 62                                                                | GC038                     | 0.19                     | ?                  | 1                  | Not split           | NA           | Wire out not working.<br>Medium to coarse predominantly<br>biogenic sands, grey in colour. Coarser<br>material in catcher at base of core.                                                  |  |  |  |
| 63                                                                | GC039                     | -                        | -                  | -                  | No<br>return        | -            | No recovery.                                                                                                                                                                                |  |  |  |

| Table A2.3 Summary of dredge deployments |                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                             |                                                |                        |                         |                                            |  |  |
|------------------------------------------|------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|------------------------------------------------|------------------------|-------------------------|--------------------------------------------|--|--|
| Station<br>No.                           | Dredge<br>Number | Locality                                     | Target                                                                                                                                                                                                                                                                                                                                                                                             | Latitude<br>(on<br>bottom) | Longitude<br>(on<br>bottom) | Actual<br>Water<br>Depth<br>(m) (on<br>bottom) | Latitude<br>(start up) | Longitude<br>(start up) | Actual<br>Water<br>Depth (m)<br>(start up) |  |  |
| 3                                        | DR001            | Offshore<br>Fraser Island<br>(Sandy<br>Cape) | Northern sidewall<br>box slide                                                                                                                                                                                                                                                                                                                                                                     | 24°44.571′                 | 153°34.720′                 | 646                                            | 24°44.569'             | 153°34.709'             | 572.6                                      |  |  |
| 4                                        | DR002            | Offshore<br>Fraser Island                    | Northern sidewall<br>potenital slide(?)                                                                                                                                                                                                                                                                                                                                                            | 24°38.966'S                | 153°37.935'E                | 1935.2                                         | 24°38.676′S            | 153°37.988'E            | 1668.7                                     |  |  |
| 7                                        | DR003            | Offshore<br>Fraser Island                    | Dredge was<br>conducted to the<br>north west; directed<br>up the maximum<br>slope of the canyon<br>wall across the<br>'surface' of a<br>suspected large slide.                                                                                                                                                                                                                                     | 25°26.822′S                | 154°00.304′E                | 2272                                           | 25°26.804'S            | 154°00.242′E            | 2162.4                                     |  |  |
| 8                                        | DR004            | Offshore<br>Fraser Island                    | Dredge was<br>conducted to the<br>north west; directed<br>up the maximum<br>slope of the canyon<br>wall across the<br>'surface' of a<br>suspected large slide.                                                                                                                                                                                                                                     | 25°26.600'S                | 153°58.610′E                | 1784.5                                         | 25°26.421'S            | 153°58.478′E            | 1703.4                                     |  |  |
| 9                                        | DR005            | Offshore<br>Fraser Island                    | Dredge was<br>conducted to the<br>north; directed up<br>the maximum slope<br>of the crestal canyon<br>wall and then across<br>the adjacent slope<br>'surface'. The dredge<br>probably hooked up<br>on a ledge at the<br>top of the crestal<br>scarp structure<br>which is undoubtedly<br>represented in the<br>drege haual by the<br>sandstone block<br>and the other well-<br>lithified materials | ?                          | ?                           | ?                                              | 25°24.722'S            | 154°00.002'E            | 1800                                       |  |  |
| 17                                       | DR006            | Offshore<br>Fraser Island                    | North wall of<br>Wide Bay canyon<br>slide (between<br>GC11 and GC11)                                                                                                                                                                                                                                                                                                                               | ?                          | ?                           | ?                                              | 25°25.840'S            | 153°55.941'E            | 962                                        |  |  |
| 18                                       | DR007            | Offshore<br>Fraser Island                    | Head wall of potential slumping feature on the upper slope                                                                                                                                                                                                                                                                                                                                         | 25°22.848'S                | 153°51.038'E                | 461                                            | 25°22.529'S            | 153°50.791'E            | 382                                        |  |  |
| 19                                       | DR008            | Wide Bay                                     | North side wall of<br>slide feature on<br>slope between Wide<br>Bay canyon and<br>Tin Can canyon                                                                                                                                                                                                                                                                                                   | 25°35.416'S                | 153°58.505'E                | 1192.7                                         | 25°35.115'S            | 153°58.421′E            | 1223.5                                     |  |  |

|                | Table A2.3 Summary of dredge deployments (continued) |                                                    |                                                                                                                    |                            |                             |                                                |                        |                         |                                            |  |  |  |
|----------------|------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|------------------------------------------------|------------------------|-------------------------|--------------------------------------------|--|--|--|
| Station<br>No. | Dredge<br>Number                                     | Locality                                           | Target                                                                                                             | Latitude<br>(on<br>bottom) | Longitude<br>(on<br>bottom) | Actual<br>Water<br>Depth<br>(m) (on<br>bottom) | Latitude<br>(start up) | Longitude<br>(start up) | Actual<br>Water<br>Depth (m)<br>(start up) |  |  |  |
| 20             | DR009                                                | Wide Bay                                           | Within slide feature<br>on slope between<br>Wide Bay canyon<br>and Tin Can canyon                                  | 25°36.516'S                | 153°59.033'E                | 1514.7                                         | 25°36.415'S            | 153°58.827′E            | 1424                                       |  |  |  |
| 21             | DR010                                                | Wide Bay                                           | Head wall of slide<br>feature on slope<br>between Wide<br>Bay canyon and<br>Tin Can canyon                         | 25°38.696'S                | 153°56.982'E                | 1092.5                                         | 25°38.493'S            | 153°56.887′E            | 996.4                                      |  |  |  |
| 22             | DR011                                                | Wide Bay                                           | Head wall of slide<br>feature(?)/developing<br>canyon on slope<br>between Wide<br>Bay canyon and<br>Tin Can canyon | 25°43.260'S                | 153°57.117'E                | 1270                                           | 25°42.605'S            | 153°56.880'E            | 880                                        |  |  |  |
| 23             | DR012                                                | Wide Bay                                           | North wall of Tin<br>Can canyon                                                                                    | 25°47.413'S                | 153°54.848'E                | 524                                            | 25°47.147'S            | 153°54.714'E            | 358                                        |  |  |  |
| 24             | DR013                                                | Wide Bay                                           | North wall of Tin<br>Can canyon                                                                                    | 25°47.820'S                | 153°55.075'E                | 790                                            | 25°47.690'S            | 153°53.024'E            | 353                                        |  |  |  |
| 25             | DR014                                                | Wide Bay                                           | Within slide feature<br>on slope between<br>Wide Bay canyon<br>and Tin Can canyon                                  | 25°38.107'S                | 154°01.602'E                | 2069                                           | 25°37.843'S            | 154°01.560E             | 1843.5                                     |  |  |  |
| 26             | DR015                                                | Wide Bay                                           | Within slide feature<br>on slope between<br>Wide Bay canyon<br>and Tin Can canyon                                  | 25°38.595'S                | 154°03.176'E                | 2514                                           | 25°38.082'S            | 154°03.228'E            | 2357                                       |  |  |  |
| 32             | DR016                                                | Noosa<br>Canyon                                    | Slope on northern<br>axis of Noosa Canyon                                                                          | 26°19.119'S                | 154°00.410'E                | 2210.2                                         | 26°18.964'S            | 154°00.395'E            | 2051.6                                     |  |  |  |
| 33             | DR017                                                | Sth Noosa<br>Canyon<br>(Bribie<br>Slope)           | Slumps scarps<br>on slope below<br>Bribie Bowl slide                                                               | 26°27.218'S                | 153°54.327'E                | 1300                                           | 26°26.942'S            | 153°54.326'E            | 1352                                       |  |  |  |
| 34             | DR018                                                | Sth Noosa<br>Canyon<br>(Bribie<br>Slope)           | Slumps scarps<br>on slope below<br>Bribie Bowl slide                                                               | 26°31.882'S                | 153°55.378'E                | 1400                                           | 26°31.486'S            | 153°55.507'E            | 1400                                       |  |  |  |
| 46             | DR019                                                | Offshore<br>Clarence<br>Had<br>(Clarence<br>River) | Slump scarp below<br>Clarence Canyons                                                                              | 29°10.939'S                | 153°53.873'E                | 1326                                           | 29°10.607'S            | 153°53.629'E            | 1102                                       |  |  |  |
| 47             | DR020                                                | Offshore<br>Clarence<br>Had<br>(Clarence<br>River) | Slump scarp below<br>Clarence Canyons                                                                              | 29°07.146'S                | 153°55.698'E                | 1534                                           | 29°06.671'S            | 153°55.304'E            | 1317.3                                     |  |  |  |

| Table A2.3 Summary of dredge deployments (continued) |                  |                                      |                                       |                            |                             |                                                |                        |                         |                                            |  |
|------------------------------------------------------|------------------|--------------------------------------|---------------------------------------|----------------------------|-----------------------------|------------------------------------------------|------------------------|-------------------------|--------------------------------------------|--|
| Station<br>No.                                       | Dredge<br>Number | Locality                             | Target                                | Latitude<br>(on<br>bottom) | Longitude<br>(on<br>bottom) | Actual<br>Water<br>Depth<br>(m) (on<br>bottom) | Latitude<br>(start up) | Longitude<br>(start up) | Actual<br>Water<br>Depth (m)<br>(start up) |  |
| 53                                                   | DR021            | Byron Slide,<br>Offshore<br>Byron    | Scarp at the base of the Byron slide  | 28°37.234'S                | 153°58.268'E                | 1312.8                                         | 28°36.863'S            | 153°57.966'E            | 1126                                       |  |
| 64                                                   | DR022            | Barwon<br>Bank,<br>Offshore<br>Noosa | Dune feature in<br>Barwon Bank region | 26°21.244'S                | 153°41.465'E                | 93.8                                           | 26°21.238'S            | 153°41.395'E            | 98.1                                       |  |
| 65                                                   | DR023            | Barwon<br>Bank,<br>Offshore<br>Noosa | Dune feature in<br>Barwon Bank region | 26°24.640'S                | 153°34.636'E                | 69.6                                           | 26°24.735'S            | 153°34.672'E            | 63.6                                       |  |
| 66                                                   | DR024            | Barwon<br>Bank,<br>Offshore<br>Noosa | Dune feature in<br>Barwon Bank region | 26°24.887'S                | 153°35.077'E                | 71.6                                           | 26°24.802'S            | 153°34.006'E            | 63.9                                       |  |

| Table A2.4 Summary of Dredge Samples Retrieved |                                                                                   |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Station<br>No.                                 | Station<br>No. Dredge<br>Number Total Recovery Comments (e.g. recovery/lithology) |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| 3                                              | DR001                                                                             | 0.5 m <sup>3</sup>                                                                 | Dredge: light yellow grey sandy muds in pipe dredge with a ~1 kg angular<br>squarish block of yellow to pink phosphatite (probs micro-fossil besring) & hard.<br>Phosphorite - hard rock, light greyish yellow to pink phosohatised sediment                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 4                                              | DR002                                                                             | ~30 kg                                                                             | 3 lithofacies identified. Dredge: excellent recovery of compacted sandy muds 30kg (Boyd et al midslope materials) and one sample each (~1/2 kg) of partly lithified sandy mudstone and a chalky white mudstone. Pipe dredges both full of unconsolidated hemipelagic foraminferal sandy mud.                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 7                                              | DR003                                                                             | 0                                                                                  | No recovery in dredge – all dredges bright and clean. Suspect that the dredges have encountered loose sand.                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| 8                                              | DR004                                                                             | 4 m <sup>3</sup>                                                                   | Dredge: excellent recovery of compacted sandy muds 200 kg in total of which<br>about 80 kg was returned to the ocean (very similar to the softer of the Boyd et al<br>midslope materials) and one sample (~1/4 kg) of \ well-lithified medium-grained, well-<br>sorted, light-greyish yellow sandstone. Pipe dredges both full of unconsolidated,<br>very lightgrey (with an olive tinge) hemipelagic foraminferal sandy mud.                                                                                          |  |  |  |  |  |  |  |
| 9                                              | DR005                                                                             | ~100 kg<br>1 x nally bin<br>(chain bag)<br>1 x bucket<br>(mesh and<br>closed pipe) | Dredge: excellent recovery of a large 10 kg slab of well-lithified sandstone (last sample in the dredge), and several sandstone and siltstone cobbles a range of hard stiff to soft compacted sandy muds 100 kg – this very similar to the the Boyd et al midslope materials). Pipe dredges both full of unconsolidated, very light-grey (with an olive tinge) hemipelagic foraminferal sandy mud. Consolidated muds (with Mg crust and burrows) and deep water coral crust                                            |  |  |  |  |  |  |  |
| 17                                             | DR006                                                                             |                                                                                    | Good recovery of sandstones, siltones and stiff muds. Pipe dredges also yield yellowish-grey sandy muds.Sandstone ith Mg crust, featuring many bore holes and organics (hard surface at lip of slide scar?)                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| 18                                             | DR007                                                                             | ~30 kg                                                                             | Excellent Recovery of approximately 20 to 30 kg of phosphatised and dolomitised grainstones (reefal shallow-water carbonates with abundant benthic forams of probable late Miocene age). Mn crusted limestone, with foram fossils, shells etc - possible Miocenc limestone (?)                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| 19                                             | DR008                                                                             | 1 x nally bin<br>& 2 x bucket<br>(chain bag)<br>1 bucket<br>(pipes)                | Excellent recovery in all three dredges. The box dredge and open pipe dredge yields a number of manganese and carbonate encrusted stiff sandy muds with deep water coral 'hold fasts' present in the carbonate encrustations with an almost entire deepwater coral included in the dredge haul. Fine grained calcarenite (bubbled under HCI) and consolidated muds (pale offwhite to grey-yellow). An entire brittle star is also recovered and preserved in formaldehyde for delivery to colleagues in Marine Biology |  |  |  |  |  |  |  |
| 20                                             | DR009                                                                             |                                                                                    | Box dredge empty but cleaner up and bright. Pipe dredges return light yellowish grey sandy mud.                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| 21                                             | DR010                                                                             |                                                                                    | Good recovery of compacted sandy muds (very similar to the softer of the<br>Boyd et al midslope materials). Pipe dredges both full of unconsolidated,<br>very light-grey (olive tinge) hemipelagic foraminferal sandy mud.                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| 22                                             | DR011                                                                             |                                                                                    | Good recovery of compacted sandy muds (very similar to the softer of the Boyd et al midslope materials), some with Fe coating and boreholes. Pipe dredges both full of unconsolidated, very light-grey (with an olive tinge) hemipelagic foraminferal sandy mud.                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| 23                                             | DR012                                                                             |                                                                                    | Good recovery of unconsolidated sandy muds lumps filled one third of the bag of the dredge. The pipe dredges full of unconsolidated, light orange brown hemipelagic foraminferal sandy muds.                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 24                                             | DR013                                                                             |                                                                                    | Good recovery of unconsolidated sandy muds lumps filled one third of the bag of the dredge. The pipe dredge dredges full of unconsolidated, light orange brown sandysilty clay hemipelagic foraminferal sandy muds.                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 25                                             | DR014                                                                             | 200 kg                                                                             | Excellent recovery (dredge's chain bag 2/3 full) of compacted sandy muds (very similar to the softer of the Boyd et al midslope materials) – some blocks weigh 30+ kg.                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| 26                                             | DR015                                                                             |                                                                                    | Pipe dredges both full of unconsolidated, very light-grey (with an olive tinge) hemipelagic foraminferal sandy mud.                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 32                                             | DR016                                                                             |                                                                                    | Good recovery of compacted sandy muds (similar to DR014) Pipe dredges<br>both full of unconsolidated, very light-grey (with an olive tinge) hemipelagic<br>foraminferal sandy mud. A 1kg lump of compacted mud is also recovered                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |

| Table A2.4 Summary of Dredge Samples Retrieved (continued) |                  |                 |                                                                                                                                                                                                                                                                |  |  |  |  |
|------------------------------------------------------------|------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Station<br>No.                                             | Dredge<br>Number | Total Recovery  | Comments (e.g. recovery/lithology)                                                                                                                                                                                                                             |  |  |  |  |
| 33                                                         | DR017            |                 | EM300 & 12 khz not working during dredge                                                                                                                                                                                                                       |  |  |  |  |
| 34                                                         | DR018            |                 | EM300 & 12 khz not working during dredge                                                                                                                                                                                                                       |  |  |  |  |
| 46                                                         | DR019            |                 | No obvious tension spikes                                                                                                                                                                                                                                      |  |  |  |  |
| 47                                                         | DR020            | 1m <sup>3</sup> | Several tension spikes up to 3 tn. Unconsolidated-semiconsolidated mud                                                                                                                                                                                         |  |  |  |  |
| 53                                                         | DR021            |                 |                                                                                                                                                                                                                                                                |  |  |  |  |
| 64                                                         | DR022            | 2 pieces        | Dredge caught on bottom. Cemented medium to coarse sand with coarser pebbles in layers and generally throughout. Organics on cements surface indicate seafloor                                                                                                 |  |  |  |  |
| 65                                                         | DR023            |                 | Fine sandstone heavily encrusted with corals, bryozoa, encrusting algae.<br>Echinoderms and crustacea. Coarse sand in closed pipe with sandstone. Mesh<br>pipe: assorted sandstone rocks. Chain bag returned torn with one rock                                |  |  |  |  |
| 66                                                         | DR024            | 10-20 kg        | 10-20 kg of dark to light yellow sand with lots of shelly fragments. 1 nally bin full of coral material (living coat of reef). Chain bag contained corals, bryozoa, sea stars, sea fans. Closed pipe and mesh pipe contained muddy sands with shelly fragments |  |  |  |  |

| Table A2.5 Summary of grab deployments |                |                                        |            |             |                                 |                   |                                                                                                                       |  |  |
|----------------------------------------|----------------|----------------------------------------|------------|-------------|---------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| Station<br>No.                         | Grab<br>Number | Locality                               | Latitude   | Longitude   | Actual<br>Water<br>Depth<br>(m) | Total<br>Recovery | Comments (e.g. recovery/lithology)                                                                                    |  |  |
| 27                                     | 1              | Shelf edge<br>above<br>Noosa<br>Canyon | 26°13.699′ | 153°53.126′ | 258.8                           | None              | Four attempts - none successful. Wire out<br>and speed not working. Strong current<br>& may also have not landed flat |  |  |
| 61                                     | 2              | Shelf edge<br>above<br>Noosa<br>Canyon | 26°24.284′ | 153°47.235′ | 132.1                           | None              | Wire out not working                                                                                                  |  |  |

| Table A2.6 Summary of CTD deployments |               |                            |                  |                    |                  |                    |                           |  |  |  |
|---------------------------------------|---------------|----------------------------|------------------|--------------------|------------------|--------------------|---------------------------|--|--|--|
| Station<br>No.                        | CTD<br>Number | Locality                   | Latitude (start) | Longitude<br>(end) | Latitude (start) | Longitude<br>(end) | Actual Water<br>Depth (m) |  |  |  |
| 48                                    | CTD001        | Offshore<br>Clarence River | 29°08.134′S      | 153°56.343′E       | 29°08.832′S      | 153°56.524'E       | 1872                      |  |  |  |

## **CSR/ROSCOP PARAMETER CODES**

#### METEOROLOGY

- M01 Upper air observations
- M02 Incident radiation
- M05 Occasional standard measurements
- M06 Routine standard measurements
- M71 Atmospheric chemistry
- M90 Other meteorological measurements

#### PHYSICAL OCEANOGRAPHY

- H71 Surface measurements underway (T,S)
- H13 Bathythermograph
- H09 Water bottle stations
- H10 CTD stations
- H11 Subsurface measurements underway (T,S)
- H72 Thermistor chain
- H16 Transparency (eg transmissometer)
- H17 Optics (eg underwater light levels)
- H73 Geochemical tracers (eg freons)
- D01 Current meters
- D71 Current profiler (eg ADCP)
- D03 Currents measured from ship drift
- D04 GEK
- D05 Surface drifters/drifting buoys
- D06 Neutrally buoyant floats
- D09 Sea level (incl. Bottom pressure & inverted echosounder)
- D72 Instrumented wave measurements
- D90 Other physical oceanographic measurements

#### **CHEMICAL OCEANOGRAPHY**

- H21 Oxygen
- H74 Carbon dioxide
- H33 Other dissolved gases
- H22 Phosphate
- H23 Total P
- H24 Nitrate
- H25 Nitrite
- H75 Total N
- H76 Ammonia
- H26 Silicate
- H27 Alkalinity
- H28 PH
- H30 Trace elements
- H31 Radioactivity
- H32 Isotopes
- H90 Other chemical oceanographic measurements

## MARINE CONTAMINANTS/POLLUTION

- P01 Suspended matter
- P02 Trace metals
- P03 Petroleum residues
- P04 Chlorinated hydrocarbons
- P05 Other dissolved substances
- P12 Bottom deposits
- P13 Contaminants in organisms
- P90 Other contaminant measurements
- B01 Primary productivity
- B02 Phytoplankton pigments (eg chlorophyll, fluorescence)
- B71 Particulate organic matter (inc POC, PON)
- B06 Dissolved organic matter (inc DOC)
- B72 Biochemical measurements (eg lipids, amino acids)
- B73 Sediment traps
- B08 Phytoplankton
- B09 Zooplankton
- B03 Seston
- B10 Neuston
- B11 Nekton
- B13 Eggs & larvae
- B07 Pelagic bacteria/micro-organisms
- B16 Benthic bacteria/micro-organisms
- B17 Phytobenthos
- B18 Zoobenthos
- B25 Birds
- B26 Mammals & reptiles
- B14 Pelagic fish
- B19 Demersal fish
- B20 Molluscs
- B21 Crustaceans
- B28 Acoustic reflection on marine organisms
- B37 Taggings
- B64 Gear research
- B65 Exploratory fishing
- B90 Other biological/fisheries measurements

#### MARINE GEOLOGY/GEOPHYSICS

- G01 Dredge
- G02 Grab
- G03 Core rock
- G04 Core soft bottom
- G08 Bottom photography
- G71 In-situ seafloor measurement/sampling
- G72 Geophysical measurements made at depth
- G73 Single-beam echosounding
- G74 Multi-beam echosounding
- G24 Long/short range side scan sonar
- G75 Single channel seismic reflection
- G76 Multichannel seismic reflection
- G26 Seismic refraction
- G27 Gravity measurements
- G28 Magnetic measurements
- G90 Other geological/geophysical measurements