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Abstract

The reliable estimation of animal location, and its associated error is fundamental to animal ecology. There are many
existing techniques for handling location error, but these are often ad hoc or are used in isolation from each other. In this
study we present a Bayesian framework for determining location that uses all the data available, is flexible to all tagging
techniques, and provides location estimates with built-in measures of uncertainty. Bayesian methods allow the
contributions of multiple data sources to be decomposed into manageable components. We illustrate with two examples
for two different location methods: satellite tracking and light level geo-location. We show that many of the problems with
uncertainty involved are reduced and quantified by our approach. This approach can use any available information, such as
existing knowledge of the animal’s potential range, light levels or direct location estimates, auxiliary data, and movement
models. The approach provides a substantial contribution to the handling uncertainty in archival tag and satellite tracking
data using readily available tools.
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Introduction

Estimating the movements of animals is a fundamental
requirement for many ecological questions. These include
elucidating migratory patterns, quantifying behavior in terms of
the physical environment and understanding the determinants of
foraging success, all of which can influence larger population
processes [1–3]. Types of movement data can range from simple
mapping of positions to behavioral models that attempt to account
for unlikely estimates, provide estimates of behavioral states and
predict latent variables.
There are two common methods for obtaining position

estimates, which can be broadly categorized as remote and
archival. Remote methods use techniques such as radio or satellite
telemetry to locate a tag attached to an animal. Archival methods
require the tag to record aspects of the animal’s environment over
time (such as light levels and water temperature) which are then
processed to infer location [1,4,5].
Before any analysis can be done, position estimates require

some quantification of precision and accuracy to provide statistical
confidence in results [6–8]. Quantification of location precision,
and crucially, the incorporation of these into synoptic spatial
representations of animal movement, is an important problem
common to both methods that many authors have attempted to
address in recent studies [9–14].
Location precision is generally lower in archival methods due

both to the theoretical basis and practical problems of the location
estimation [15,16]. To overcome this limitation, archival methods

routinely integrate primary location estimation with auxiliary data
sets [4,12,17,18]. In principle this enables the integration of the
estimation and error estimation processes but this remains an
under-utilized opportunity: published uses of archival methods
usually separate the estimation of the quality of position estimates
from their derivation. Satellite-derived estimates provide less
opportunity in this regard, as the process is proprietary and
information regarding error is minimal. However, satellite
locations still require a modeling framework to incorporate
auxiliary information and provide the best possible estimates
[11] including a quantification of precision.
The simplest analysis of movement data is to visualize the

sequence of locations visited by the animal. It is slightly more
complex to provide a path estimate of the animal, which requires
the ability to determine position both from available data as well as
for latent times where no data were measured. An obvious simple
model is to ‘‘join the dots’’, assuming that movement is both linear
and regular between measured positions. A more realistic
approach demands that estimates of an animal’s path consider
both direct and latent location estimates, because in general there
are open-ended scenarios that could occur between direct
estimates. There are a multitude of methods for achieving this
[14,19–22], but none have been directly integrated with the
estimation process from raw data.
Once an estimate of an animal’s path is obtained biologists often

need to calculate speed of and distance of travel, generate spatial
representations of an animal’s use of space in terms of time spent
in geographic regions, metabolic effort or other measure of
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resource allocation. More sophisticated analyses aim to determine
behavioral states more exactly [11,23], or to differentiate
migration from foraging behavior. These aims are beyond the
present work, where we will be focusing on the first step in the
process—description of an animal’s path and the precision with
which this can be estimated.
Earlier work has attempted to account for spatial uncertainty by

choosing a scale for interpreting location data [14], or spatial
smoothing [24]. These techniques fail to estimate statistical
uncertainty for individual estimates, and provide only an overall
average of precision. Other techniques are used to estimate latent
position by interpolation or similar technique [21], but these must
assume that positions are known.
Given the diversity of questions asked of movement data, there

are understandably many approaches to data analysis. Many
existing techniques are specific to particular questions and species
and have little scope outside the given application. Further, each
application has its own problems of scale, location error, data
quality and summarizing of behavior. In this context, sophisticated
model approaches are seeing greater use in tracking studies [13],
but these have only been applied to pre-derived positions and
leave the problem of location estimation from raw data
unaddressed. No study has yet provided a general approach to
dealing with the twin issues of estimate precision and accuracy for
both archival and satellite location data. There is a growing need
for just such an approach as more large multi-species studies are
being undertaken [25–27]. Such multi-species studies inevitably
utilize a range of tracking techniques as no one method is suitable
for all species. For example, fish which rarely come to the surface
are not usually suitable for satellite tracking [28].
Here we present a Bayesian framework for the analysis of

movement data that directly addresses the estimation of location
from raw data collected by archival tags and can also be applied to
other datasets of pre-derived position estimates such as Argos
locations. We apply the approach to both an archival tag dataset
and a satellite tag dataset. Our primary goal is to integrate all
available sources of information for estimating location. Using all
available information may sound obvious, but it is a missed feature
of many applications. Secondarily, we aim to integrate the location
estimation and the estimation of location precision. The approach
should also be able to provide all of the desired end-uses of
tracking data as mentioned above. In the Bayesian context, each of
these measures, including appropriate confidence intervals (CI)
[29,30], can be determined by specifying appropriate priors and
distributions for each data source and calculating the posterior.

Materials and Methods

Ethics Statement
Data were collected under permits from the University of

Tasmania Animal Ethics Committee (A6790 and A6711).

Assumptions
We propose a Bayesian approach to the tag location problem

that uses Markov Chain Monte Carlo methods to approximate the
posterior.
There are three main elements to the process of Bayesian

estimation; the prior, the likelihood and the posterior. The prior
distribution p hð Þ represents our knowledge of the parameters h
before any data is observed. The likelihood p yjhð Þ is the probability
of observing data y for a given set of parameters h, and represents
our knowledge of the data collection process. From these we
calculate the posterior distribution p h jyð Þ via Bayes’ rule

p h jyð Þ~ p yjhð Þp hð ÞÐ
p yjhð Þp hð Þdh

: ð1Þ

The posterior p h jyð Þ represents our knowledge of the
parameters after the data y have been observed. In essence,
Bayes’ rule provides a consistent mechanism for updating our
knowledge based on observed data.
The data available for forming location estimates can be

classified into four broad types.
Prior knowledge of the animal’s movements. Invariably

something is known of an animal’s home range, migratory pattern
or habitat preference, and any location estimate should be
consistent with this information. This information can range
from being quite specific such as the species generally stays over
the continental shelf (e.g. shy albatross [31]) or more vague such as
the species often heads south (e.g. southern elephant seals [32]).

Primary location data. The primary location data y is data
collected primarily for the purposes of location estimation, and
directly inform about the locations x~ x1,x2, . . . ,xnf g of the tag at
a sequence of (possibly irregular) times t~ t1,t2, . . . ,tnf g.
Examples include the light levels recorded by an archival tag, or
for an Argos tag the locations provided by the Argos service.

Auxiliary environmental data. Many tags also record
additional environmental data q, and this data may be
compared to external databases to further constrain location
estimates [4,12,13,17,18]. For example, in the marine context
depth and temperature measurements can be compared to
remotely sensed or modelled sea surface temperature (SST) data
to confine locations to regions where SST is consistent with the
temperatures observed by the tag.

Movement models. Movement models constrain the
trajectory of the animal, reducing or removing the occurrence of
location estimates that correspond to improbable or impossible
trajectories. Several forms of movement models appear in the
literature; at the simplest level is speed filtering which prohibits
estimates that imply impossible speeds of travel [33,34], while
other authors propose more complex state space approaches that
model correlation between successive legs of the trajectory [11,23].
Several authors have noted the advantages of Bayesian methods

in complex problems in ecological research [35–39]; for the tag
location problem one principal advantage is that four disparate
data sources can be systematically incorporated into a single
unified estimator of location.
The novel aspect of the method we propose is the adoption of a

simple yet powerful representation of the movement model that
not only constrains the animal’s trajectory, but also allows this
trajectory to be estimated. Between each pair of successive
locations xi and xiz1, introduce a new latent point zi representing
the location of the tag at a time ti uniformly distributed in the
interval ti,tiz1½ $, and let di be the length of the dog-leg path from
xi through zi to xiz1. The movement model then simply
prescribes the joint distribution p d j tð Þ of the dog-leg distances
d~ d1,d2, . . . ,dn{1f g. For example, adopting a model where the
di are independently uniformly distributed

di*U 0,s tiz1{tið Þð Þ

implements a simple speed filter that limits the maximum speed of
travel to s. Alternately, migration and large scale consistency of
motion can be modelled by adopting a distribution that allows for
more complex patterns of dependence between the successive di.

Estimation of Animal Movement
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Note there is no explicit expression for the zi, they are defined
implicitly through the dog-leg distances di. However, any choice of
p d jtð Þ that places realistic bounds on each di is sufficient to ensure
that the zi are estimable (in a Bayesian sense), while also
constraining location estimates. Most importantly, as ti is
uniformly distributed in the interval ti,tiz1½ $, the posterior
distribution for zi describes the possible paths between xi and
xiz1. In a sense, zi is not intended to refer to the tag location at
one particular time in the interval ti,tiz1½ $, but all times in the
interval ti,tiz1½ $.
The second key assumption of the method is that the primary

location data, the auxiliary environmental data and the behav-
ioural model are all independent, and so the likelihood
p y,q,d jx,t,Eð Þ reduces to a product of contributions from each
of these three sources

p y,q,d jx,t,Eð Þ~p y jx,tð Þp q jx,t,Eð Þp d jtð Þ:

Here p y jx,tð Þ is the likelihood of observing the primary location
data y given locations x at times t, p q jx,tð Þ is the likelihood of
observing the environmental data q given locations x at times t
and a database E of known environmental data, and p d j tð Þ is the
distribution of dog-leg distances between the successive locations
described above. The exact form of p y jx,tð Þ and p q jx,tð Þ will
depend on the precise nature of the data collected by the tag, and
several common examples are discussed below.
The prior for x and z reflects knowledge of the animal’s home

range, habitat preference, migratory patterns or other fundamen-
tal environmental considerations. For example, a known home
range can be modelled by adopting a prior of the form

p x,zð Þ!P
n

i
I xi[Vð ÞP

n{1

i
I zi[Vð Þ

where V is the known home range and I is the indicator function

I xð Þ~
1 if A is true

0 if A is false:

"

Migration can be accommodated by allowing V to vary with
season, while habitat preference can be incorporated by assigning
greater probability density to more favourable habitat. We must
also supply a prior for t that simply reflects our assumption that
ti U ti,tiz1ð Þ. The form of p y jx,tð Þ as the contribution of the
primary location data to the total likelihood depends on the nature
of the tag in question.

Satellite tags
For satellite tracked tags, the primary location data y consists of

direct estimates X~ X1,X2, . . . ,Xnf g of the true tag locations
x~ x1,x2, . . . ,xnf g at times t~ t1,t2, . . . ,tnf g provided by a
remote sensing service, possibly augmented with some indicators
of location reliability r1,r2, . . . ,rnf g. In this case the contribution
p y jx,tð Þ to the total likelihood is determined by assuming the
observed locations Xi are bivariate Normally distributed about the
true locations xi,

Xi*N xi,s
2 rið Þ

# $

with a variance s2 that is a function of the reliabilities ri. For less

consistent services, longer tailed distributions such as the bivariate
t can be used to accommodate the occasional erroneous location
[29].

Archival tags
For archival tags there are no initial estimates of tag location;

the primary location data consists of light intensities recorded by
the tag at regular intervals over the day. The tags’ location can be
estimated from the light level data by the methods of [40] and
[15]. We use a version of the template-fitting method [40] to
provide a location estimate for each twilight. The full computa-
tional details are complex and will be the subject of a future
publication, but in essence the method is as follows. The time
series of light levels corresponding to each twilight recorded by the
tag is extracted, and for marine applications, corrected for
attenuation due to depth. This yields a sequence of time series;
one time series li~ li1,li2, . . . ,limf g for each twilight, where lik is
the corrected light level recorded at time tik. A function l hð Þ that
maps solar elevation h to the (unattenuated) log light level l
recorded by the tag is determined by laboratory calibration. The
contribution p y jx,tð Þ to the total likelihood is determined by
assuming the log corrected light levels are distributed as

loglik*N logl h xi,tikð Þð Þzki,s
2

# $
,

where h x,tð Þ is the Sun’s elevation at location x and time t, and ki
is a constant to allow for attenuation due to cloud. The variance s2

is determined by the recording error in the tag.
Similarly, the contribution p q jx,t,Eð Þ the auxiliary environ-

mental data q makes to the total likelihood will depend on the
nature of the data recorded by the tag and the availability of a
suitable reference database E with which to compare.
For example, for marine tags that record both water

temperature and depth, for each xi an estimate si of the SST
can be derived from the temperature and depth data recorded by
the tag in some small time interval ti{Dt,tizDt½ $ surrounding ti.
This estimate might then be assumed to be Normally distributed
about a reference temperature S xið Þ determined from a remotely
sensed SST database E,

si*N S xið Þ,s2s
# $

where the variance s2s is determined by the accuracy of both the
tag and the remotely sensed database. Alternately, a more
conservative approach similar to that employed by [41] is to
suppose that the temperature si measured by the tag is a very poor
indicator of average SST, but could be no greater than an upper
limit S xið ÞzDS and no lower than S xið Þ{DS and assume si is
uniformly distributed in this interval

si*U S xið Þ{DS,S xið ÞzDSð Þ:

Again DS is determined by both the accuracy of the tag and
database.
As a second example, for marine applications the depth data

recorded by a tag can be exploited by noting that the maximum
depth recorded in a time interval ti{Dt,tizDt½ $ surrounding ti
provides a lower bound hi for the depth of the water column at xi.
We can then refine the estimate of xi comparing hi xð Þ to a high
resolution topography database E and excluding regions that are
too shallow by including in the likelihood a factor of the form

Estimation of Animal Movement
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P
n

i~0
I hivHh xið Þð Þ

whereHh is the bottom depth determined from the database and I
is again the indicator function.

Posterior estimation
Once the prior and likelihood have been defined, the posterior

p x,z,t jy,q,t,Eð Þ is determined by Bayes’ rule

p x,z,t jy,q,t,Eð Þ~ p y,q,d jx,t,Eð Þp x,zð Þp tð ÞÐ
p y,q,d jx,t,Eð Þp x,zð Þp tð Þdxdzdt

:

Typically however, the integral in the denominator is
computationally intractable, and instead we resort to Markov
Chain Monte Carlo (MCMC) to approximate the posterior.
MCMC [30] is a family of methods that allows us to draw

random samples from the posterior distribution. Summarizing
these samples approximates the properties of the posterior, in the
same way that a sample mean is an approximation to a population
mean. In principle, the approximation can be made arbitrarily
accurate by increasing the number of samples drawn.
For the tag location problem we use a block update Metropolis

algorithm based on a multivariate Normal proposal distribution
[30]. The Metropolis algorithm was chosen for its simplicity and
genericity – it is easily implemented and the implementation is not
strongly tied to particular choices of likelihood and prior. We have
used a block update variant of the algorithm, where each xi and
each zi are updated separately. Using a block update improves
computational efficiency provided parameters from separate
blocks are not strongly correlated. For the time intervals between
locations typical of satellite and geolocation data and reasonable
choices of movement model p d jtð Þ, we have not found the
correlation between successive locations estimates to be so great as
to greatly impede the mixing of the chain.

Examples
To illustrate this basic framework, we present two simple

examples.
The first example is a Weddell seal tagged at the Vestfold Hills

(78oE, 68oS) tracked with a satellite tag (9000X SRDL; Sea
Mammal Research Unit, St. Andrews, Scotland) with locations
provided by the Argos service [42].
The Argos service provides approximate locations X~
X1,X2, . . . ,Xnf g and corresponding location qualities r1,r2, . . . ,rnf g
for a sequence of times t~ t1,t2, . . . ,tnf g. This forms the primary
location data. Each ri categorizes the corresponding Xi into one of
seven quality classes based on the number of satellites used in its
determination [42]. We translate the ri into approximate positional
variances s2 rið Þ based on the results of [43] and assume

Xi*N xi,s
2 rið Þ

# $
:

So that the contribution to the likelihood from the primary
location data is

p y jx,tð Þ~ P
n

i~1
2ps2 rið Þ
# ${1

exp
{ Xi{xið ÞT Xi{xið Þ

2s2 rið Þ

 !

:

This particular tag recorded no environmental data, and so the
corresponding contribution to the likelihood is p q jx,t,Eð Þ~1.
For this example a very simple movement model was adopted.

We choose p d j tð Þ so that the mean speeds di= tiz1{tið Þ between
successive locations are independently log Normally distributed

p d jtð Þ~ P
n{1

i
2ps2s
# ${1=2

exp
{ log di= tiz1{tið Þð Þ{msð Þ2

2s2s

 !

with ms~0:25ms{1 and ss~0:8ms{1, where these figures were
chosen conservatively based on an examination of Argos data of
the highest quality class.
Finally, we adopted a prior p x,zð Þ for x and z that was uniform

over the ocean, that is

p x,zð Þ!P
n

i
I xi [Vð Þ P

n{1

i
I zi [Vð Þ

where V is the ocean. This was implemented by comparing x and
z to a high resolution land/sea raster mask generated from A
Global Self-consistent, Hierarchical, High-resolution Shoreline
Database [44]. Creating a raster mask to indicate sea/land allows
the prior to be computed very efficiently by avoiding complicated
point-in-polygon tests.
The second example is a mature southern elephant seal (Mirounga

leonina) tagged at Macquarie Island (158o 579E, 54o 309 S), with data
from a time-depth-recorder (Mk9 TDR; Wildlife Computers,
Seattle, WA, USA). The data were collected using methods
described by [45]. This tag provides regular time series of measure-
ments of depth, water temperature, and ambient light level.
In this case the primary location data consist of the time series of

depth and ambient light level. As outlined above, the depth adjusted
light level is assumed to be log Normally distributed about the log
expected light level for the sun elevation adjusted for cloud cover so that

p y jx,tð Þ~ P
n

i~1
P
ni

k~1
2ps2
# ${1=2

exp
{ loglik{logl h xi,tikð Þð Þzkið Þ2

2s2

 !
:

For this example, the depth and water temperatures recorded
by the tag were used to estimate sea surface temperatures that
were then compared to NCEP Reynolds Optimally Interpolated
SST. For each twilight, estimates of minimum Li and maximum
Ui SST observed in the surrounding 12 hour period were derived
from the depth and water temperature records. These estimates
form the auxiliary environmental data q, and p q jx,t,Eð Þ was then
chosen as

p q jx,t,Eð Þ~ P
n

i~1
p Li,Ui jxi,ti,Eð Þ

where

p Li,Ui jxi,ti,Eð Þ~
1 if LiƒS xi,tið ÞƒUi

0 otherwise

"

and S x,tð Þ is the NCEP Reynolds Optimally Interpolated SST.

This example shows the great difficulty in choosing p q jx,t,Eð Þ –
typically the data from the tag and the data from the reference
database are recorded on wildly disparate spatial and temporal scales,
making it very difficult to make any reasonable comparison of the two.

Estimation of Animal Movement
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Again the movement model p d jtð Þ is chosen so that the mean
speeds di= tiz1{tið Þ between successive locations are indepen-
dently log Normally distributed

p d j tð Þ~ P
n{1

i
2ps2s
# ${1=2

exp
{ log di= tiz1{tið Þð Þ{msð Þ2

2s2s

 !

In this case we use ms~1:4ms{1 and ss~0:8ms{1, and these
figures were chosen conservatively based on knowledge of elephant
seal behaviour.
Finally, just as for the satellite tag example a prior p x,zð Þ

uniform on the ocean was adopted x and z, but in this case the
land/sea raster mask generated from the 2-Minute Gridded
Global Relief Data (ETOPO2).

Figure 1. Satellite tag data and estimates. Panel A: The sequence of original Argos estimates for an adult female Weddell seal tagged in the
Vestfold Hills, with time scale from red to blue. All location classes are shown. The different length scale bars for north and east represent
10 kilometers. Panel B: Posterior means for x from the Argos dataset plotted spatially, with time scale from red to blue as in panel A. The sequence is
far more realistic, without the noise and positions on land. Panel C: Map of time spent from full path estimates from the Argos dataset. The density
represents a measure of time spent per area incorporating the spatial uncertainty inherent in the model. Bin size is 150 m by 140 m.
doi:10.1371/journal.pone.0007324.g001
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The primary rationale behind our choices for examples was to
show the application of our approach to both satellite locations
and archival tag data. Further to this, for the satellite example we
wish to demonstrate the use of our approach for a situation
involving a complex inshore coastline and the handling of existing
estimates that occur on land. We are not attempting to show the
best possible application for our examples, but demonstrating a
consistent approach that is able to use all available sources of data.

Results

For the satellite tag example an initial 10,000 samples were
drawn and discarded to allow for both burn-in and tuning of the

proposal distribution [30]. A further 300,000 samples were then
drawn, and standard convergence tests applied [46]. The same
strategy was adopted for the archival tag example, with 30,000
samples drawn for burn-in, and a further 800,000 samples drawn.
In neither case was there any evidence that the chains had failed to
converge, but it must be realized that these are problems of
extremely high dimension, and as such a subtle convergence
problem may be difficult to detect.
The provided Argos Service locations for the satellite tag

example are displayed in Figure 1a, showing the primary location
data. This includes all raw positions from Argos, including every
location quality class. The time-series of locations, is quite noisy
and many of the positions fall on land. The sequence suggests that

Figure 2. Estimates and time spent for archival dataset. Panel A: Posterior means for x from the archival dataset plotted spatially, with time
scale from red to blue. The sequence provides a realistic trajectory for an elephant seal. The dashed grey line shows the (approximate) position of the
Southern Boundary of the Antarctic Circumpolar Current. Panel B: Map of time spent from full path estimates from the archival dataset. Bin size is
5.5 km by 9.3 km at 54 S and 3 km by 9.3 km at 72 S.
doi:10.1371/journal.pone.0007324.g002

Estimation of Animal Movement
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the animal has begun in the southern region of the area, with
excursions into and out of various inlets, traveling to the north
overall, but with an excursion returning to the south somewhat
offshore. The record ends in the northern region. From this plot it
is clear that there are many unlikely locations given the presence
on land and the implied tortuous path. The outputs of our
modelled estimates for this data set are discussed below. Posterior
mean locations for x from the archival tag dataset may be seen in
Figure 2a. Unlike the Argos example, there are no ‘raw locations’
to present as the primary location data are light level measure-

ments. The range of the track estimate has no local topographic
features (coastline or bathymetry) that constrains the locations, as
the area visited is for the most part deeper than 22000 m [44].
However, we know that these locations are consistent with the
matching sea surface temperature data, under the assumptions of
our model.

Argos tag dataset
In Figure 3 the posterior means for x are plotted separately for

longitude and latitude with the sequence of original Argos Service

Figure 3. Individual longitude, latitude estimates for Argos. Posterior means for x from the Argos dataset for longitude and latitude, with
time scale from red to blue as in Figure 1. The grey line shows the implied sequence of the original Argos estimates. Also shown is the range of the
95% CI of each estimate (km), determined with the mean by directly summarizing the posterior.
doi:10.1371/journal.pone.0007324.g003

Estimation of Animal Movement
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positions overplotted as a line. Also shown are the individual
confidence interval (CI) estimates (95% level, presented as a range
in kilometers). The sequence of estimates is clearly more realistic
than the original Argos locations in terms of likely movement, even
though no time steps have been discarded. The confidence
intervals in Figure 3 are summarized from their 2-dimensional
versions and plotted here with longitude and latitude separated to
easily show the relative precision of each. Most of the estimates
have a range of less than 5 km, with a maximum above 30 km.
This simple plotting of individual parameters with CIs leaves out a
lot more information than exists in two dimensions. A supporting
information file (Figure S1) provides an animation of the full path
with the implied path of the original Argos locations to illustrate
the improvement provided by our approach. The posterior means
for x longitude and latitude are presented spatially in Figure 1b.
The main differences with the raw estimates is that there are now
no estimates that fall on land, and the sequence of positions is far
more realistic in terms of likely movement. The 1124 original
Argos locations included 179 that fell within the bounds of the
coastline data used. The overall travel to the north can be seen in
more detail, with an excursion into the main large inlet and then
movement around the bay into the region of islands to the north.
There are two large excursions when the animal has returned
briefly to the southern region, first to the large inlet, then to an
island further south, but the more extreme outliers are no longer
present. This journey is typical for these seals, as shown by [47].
(We do not present the points connected by lines as this would be
visually messy and also imply impossible trajectories based on the
simplistic ‘‘join the dots’’ model. The connectivity, or full-path, of
estimates is provided by the intermediate estimates.) A map of time
spent per unit area is shown in Figure 1c. This density plot shows
the ‘‘full path’’ estimate using the intermediate locations,
summarized by binning the posterior and weighting each segment
by the time difference between each original Argos time step. The
full track estimate is shown here providing a single view of the
entire trip. Again, this neglects a lot of information that is available
from the posterior, as any segment of the path may be
interrogated, down to the level of individual estimates. The bin
size here is 150 m by 140 m, simply chosen for convenience given
the image plot size. This image portrays the areas of most time
spent by the animal, with the spatial precision of estimates implicit
in the spread of time-spent density. Importantly, the transition
between time in the water and the position of land is smooth as the
estimation takes the presence of land into account as it proceeds.
There is no artificial clipping of the distribution as would be
required if a simple spatial smoother was used on raw estimates.
This achieves the shared goals of smoothing techniques such as
kernel density [48] and cell gridding.
A summary of the precision of estimates for longitude and

latitude for each original Argos class estimate is presented in
Table 1. This summary shows that our estimates are consistent
with and often better than the expected precision given by the
Argos class and, while that point is slightly circular given our use of
the class information in the model, our approach is able to
combine the contribution of the Argos class with other information
and show that the precision of estimates is not necessarily directly
related to the class assigned.
Finally in Figure 4 we can see the relationship between the direct

estimates (plotted individually with CI ranges) and CI range of
intermediate estimates (plotted as a continuous band) for a short
period between 23–26 February 2006. The intermediate estimates
provide a continuous path estimate, with latent times of no data
‘‘filled in’’ with estimates constrained only by the movement model
and the environmental data. This figure also shows the utility of the

method in terms of providing overall full path estimates, as well as
individual point estimates with a measure of precision. Figure 4 also
shows a deficiency of the assumed movement model - the estimated
path at each ti tends to be more variable than the corresponding xi.
This is because there is no constraint on the individual legs of the
dog-leg path from xi to xiz1. So it is possible for zi to be a great
distance from xi an instant after ti or from xiz1 an instant before
tiz1, provided the total distance traversed over the dog-leg path is
reasonable. It is difficult to resolve this issue without requiring a
much more detailed understanding of the animal’s behaviour.

Archival tag dataset
Posterior means for x longitude and latitude are plotted

separately with accompanying confidence intervals Figure 5. This
includes a location for every local twilight, as seen in the raw
light data. The sequence seems consistent with the time steps
involved (12 hourly, on average), with no extreme or obviously
problematic movements. The confidence interval of each
estimate is also plotted, with a spatial range that is usually less
than 30 km for longitude and 40 km for latitude. A summary of
the precision of estimates for longitude and latitude is presented
in Table 2.
These estimated location are plotted spatially in Figure 2a. This

animal has left Macqurie Island (1 February, 2005) and traveled
directly to the southeast to a region north of the Ross Sea. Here it
spends the period from early March to mid September with a
short excursion to the south during April. Finally the animal
reverses its outward journey, returning to Macquarie Island on 8
October 2005. The sequence of locations seems reasonable, with
no obviously extreme estimates, and this is a fairly typical journey
for these seals [32]. In Figure 2b a density map shows more clearly
the spatial precision of the estimates and the areas where most

Table 1. Estimate precision for Argos dataset.

Longitude

class Min: 1stQu: Median 3rdQu Max

Z 0.27 1.09 1.90 2.99 22.05

B 0.27 0.95 1.77 3.95 36.20

A 0.27 1.09 2.18 3.78 15.38

0 0.13 1.36 2.30 4.08 25.86

1 0.27 0.82 1.23 2.04 5.99

2 0.14 0.41 0.61 0.95 2.31

3 0.14 0.27 0.41 0.54 1.50

Latitude

class Min: 1stQu: Median 3rdQu Max

Z 0.45 1.21 1.97 3.79 17.13

B 0.15 1.21 2.12 4.40 37.75

A 0.30 1.52 2.27 4.40 13.64

0 0.15 1.52 2.50 4.66 19.56

1 0.15 1.06 1.67 2.73 14.86

2 0.15 0.60 0.99 1.67 5.00

3 0.15 0.45 0.61 1.06 3.03

Summary of precision calculated from the posterior for x by original Argos class

(km). Each row presents a quantile summary for the CI ranges (95%) from each

Argos class for longitude and latitude. The seven classes are an attribute

provided with the original Argos locations [42].
doi:10.1371/journal.pone.0007324.t001
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time has been spent. It is clear that this region south of the
Southern Boundary of the Antarctic Circumpolar Current [49] is
an important feeding area for this animal.
A summary of the precision of estimates for longitude and

latitude is presented in Table 2. We can see the distinction
between the direct and intermediate estimates plotted in Figure 6.
This time the difference between the direct and intermediate
estimates is less than with the satellite tag example.

Discussion

The flexibility provided by Bayesian methods for complex
problems [36,38,50] proved fruitful in this study. We have
demonstrated a general approach for estimating true locations
from both archival tag data and satellite fixes, accepting either
source as raw data. This approach handles erroneous existing
location estimates and other problems by incorporating all
available sources of information in one unified process. We have
shown how this approach can be used to obtain all of the common
measures of interest in tracking studies by summarizing the
posterior. These are path estimates, estimate precision, latent
estimates, combinations and diagnostics of location estimates.

Path
The likely (posterior mean) path for a basic representation of

position over time. These can be used to plot simple tracks, or to
query other datasets (such as productivity measures) for corre-
sponding information at that location and time.

Precision
For each estimate we can obtain precision estimates (CI). These

probability densities are bivariate and can be obtained separately
for each time step in the sequence, or for combined durations as
required. This information can be used for more nuanced
interrogation of other datasets to obtain representative values
based on the spatial precision of the estimate.

Latent estimates
Estimates of latent locations can be obtained, representing the

intermediate positions between those explicitly measured. These
represent each period between Argos locations or times between
each twilight for archival tags: in general they represent periods
between those of (primary) data collection relevant to location
estimation. Latent estimates may also be summarized as a mean and
CI, and used to provide estimates of the full path between individual
time steps. The density of intermediate locations provides a model of
the possible range of the track, similar in intention to the spatial
smoothing mechanisms employed in other studies.
While direct estimates are constrained by likely movement

regimes as well as the available data, the latent estimates represent
the residual possible movement in-between.
Unlike some studies using techniques that require subsequent

clipping [14,25], time spent estimates can be made without
spurious presence on land or other out-of-bounds areas. Also,
there is a more realistic probability transition from land to marine
areas even for complexly shaped coastlines.

Figure 4. Intermediate estimates for Argos Posterior means for x of longitude and latitude for a short period (23–26 Feb 2006) with
CI ranges shown. The CI range for intermediate estimates (full path) is shown as a continuous band.
doi:10.1371/journal.pone.0007324.g004
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The use of latent estimates utilization distributions is better than
either cell gridding or kernel density as there is no dependence on
the choice of grain size or kernel. The final step to quantize values
into a density grid can be done directly from the posterior, without
intermediate processing.

Combinations
The structure of our estimates enables us to combine estimates

from different animals for spatial measures of resource usage. This
may be done for arbitrary time periods and groups of individuals.

Also raw coordinates may be projected for summaries based on an
appropriate coordinate system for particular groups or areas of
interest.

Updating the models
Time spent maps and track summaries (mean and CI values)

were generated by summarizing the posterior for each example.
The intermediate locations represent the ‘full path’ and hence are
appropriate for time spent maps and similar spatial summaries.
The direct locations are estimates for each time step from the raw

Figure 5. Posterior means for archival dataset. Posterior means for x from the archival dataset for longitude and latitude, with time scale from
red to blue as in Figure 2a. Also shown is the range of the 95% CI of each estimate (km), determined with the mean by directly summarizing the
posterior.
doi:10.1371/journal.pone.0007324.g005
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location data - individual twilights for the archival tag, Argos times
for the satellite tag. Interrogating individual x or z estimates
provides feedback on the performance of the model run that may
be used to identify problems or areas that require improvement.
An example of this feedback was discussed with Figure 4 where we
see how the movement model requires an improved implemen-
tation for the satellite tag. This is one of the most powerful aspects
of our approach, more important than the results presented here
as it provides a foundation from which remaining problems with
location estimates may be identified and related to deficiencies in
source data, model specification or model assumptions.
Other studies have successfully applied Bayesian methods to

tracking problems with similar success [11,51], but applied only to

pre-derived location estimates, and it is not clear how archival tag
data could be incorporated in such an approach. The quantities of
data involved and the non-linear complexity of the models
involved are difficult to implement with more efficient statistical
sampling regimes such as Gibb’s sampling. Our approach enables
the use of the raw archival tag data and incorporation of
independent environmental databases. High quality location
methods such as satellite tracking can also benefit from our
approach. For example: similar to the satellite example presented
here, [52] also report dealing with large numbers of Argos
locations that were clearly deficient as they place marine animals
on the land. Our approach allows the systematic use of the
appropriate coastline to data account for this inconsistency.
The advantages of our approach are relevant to all users of

tracking data including tag manufacturers, ecological researchers
and environmental decision makers. The key benefits are:

1. A convenient mechanism for separating large complex
problems into manageable components, enabling the use of
all available information sources.

2. Obviously incorrect locations are avoided, and when data are
absent or of poor quality the estimates will have a lower precision.

3. Estimates are continuous in the posterior and may be
summarized as required, rather than being discretized or
otherwise simplified.

While we have illustrated our approach using seals, these
techniques clearly have broader implications for the tracking of

Table 2. Estimate precision for archival dataset.

Longitude

Min: 1stQu: Median 3rdQu Max

3.74 15.52 18.51 21.42 57.03

Latitude

Min: 1stQu: Median 3rdQu Max

3.74 15.52 18.51 21.42 57.03

Summary of precision calculated from the posterior for x from the archival tag.

A quantile summary for the CI ranges for longitude and latitude.
doi:10.1371/journal.pone.0007324.t002

Figure 6. Intermediate estimates for archival dataset. Individual mean estimates of longitude and latitude for a 10 day period in February with
CI ranges shown, as well as the CI range for intermediate estimates (full path) shown as a continuous band.
doi:10.1371/journal.pone.0007324.g006
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other species and other tagging methods. This approach to
location estimation better enables multi-species ecosystems
comparisons irrespective of the methods used to collect data. A
particularly important area of application is in fishery studies,
which have large quantities of archival tag data e.g. [53] and [12],
or satellite data e.g. [25–27]. The improvement of location
estimation will enable further research aimed at relating fisheries
management to that of other marine species and processes.
While our approach can provide location estimates with

confidence intervals based on the data model, there remains the
need for independent validation of the techniques with known
locations. The assessment of accuracy of these techniques is crucial
to their use, and opportunities exist with double-tagging
experiments, recapture studies and experimental validation.
The relationship between tag-measured temperatures in near-

surface waters and remotely sensed surface temperature remains
largely unexplored in animal tracking studies [54]. This is due to the
discrepancy between traditional physical oceanographic interests
and those of biological studies. Access to hierarchical datasets of
SST [18], models of surface and at-depth water temperature and
sources of higher quality local environmental data will improve the
contributions from this auxiliary information. A more detailed
approach would match auxiliary data values in a probabilistic sense
similar to methods employed by [12], enabling the application of
distributions to account for error in all measurements.
The use of depth and temperature at depth also remains a

largely unexplored aspect, no further work has been published
since [4] and [41]. The utility of this data source obviously
depends on the environment visited and the animal’s diving
behavior, but also highlights the breadth of opportunities that are
available for various species.
Many of our implementation decisions have been deliberately

based on simplistic, first-pass practicalities in order to demonstrate
the generality of our approach to a wide range of problems. The
application of MCMC demands careful diagnosis of model
convergence [55] and we have omitted this important but onerous
aspect from the present work in order to focus on the primary goal
of integrating all the available data. While our movement model is
flexible it does not account for movement regimes that are auto-
correlated or seasonal. Auto-correlation of speed is recognized as
an important aspect of modelling movement, also missing from
our initial implementation. For example, in both examples we
have assumed that the successive di are independent. However, we
can model serial correlation in the track by choosing the joint
distribution of distances so that successive di are correlated. The

impact of a variety of correlation models could be explored
[11,56].
In this study we applied a single scheme to the derivation of

location estimates from two very different tracking datasets. Each
dataset was composed of separate sources of information
integrated using our four-part approach. This was used to derive
location estimates from raw archival tag data, as well as from pre-
derived location estimates from a satellite service. In each case,
where limitations from a particular source could have produced
problematic estimates, this was augmented by the strengths of
others.
This method is clearly practically applicable to the real-world

problem of analyzing behavior from many large archival tag
datasets employed by marine animal studies, and is appropriate for
the tracking data from many species. It is also useful for applying
behavioral constraints to the latent aspects of nearly error-free
location estimation such as GPS.

Supporting Information

Figure S1 Argos full path estimates with raw location track.
Animation of full path estimates constructed from the posterior for
z. The sequence consists of a rolling 2 day window for every
10 hour interval of the tagging period. The matching sequence of
original raw Argos locations is overlaid as a line.
Found at: doi:10.1371/journal.pone.0007324.s001 (0.47 MB GIF)
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6. Hays GC, Åkesson S, Godley BJ, Luschi P, Santidiran P (2001) The implications
of location accuracy for the interpretation of satellite-tracking data. Animal
Behaviour 61: 1035–1040.
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