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Summary

1. Linking the movement and behaviour of animals to their environment is a central problem in

ecology. Through the use of electronic tagging and tracking (ETT), collection of in situ data from

free-roaming animals is now commonplace, yet statistical approaches enabling direct relation of

movement observations to environmental conditions are still in development.

2. In this study, we examine the hiddenMarkov model (HMM) for behavioural analysis of track-

ing data. HMMs allow for prediction of latent behavioural states while directly accounting for the

serial dependence prevalent in ETT data. Updating the probability of behavioural switches with

tag or remote-sensing data provides a statistical method that links environmental data to behav-

iour in a direct and integrated manner.

3. It is important to assess the reliability of state categorization over the range of time-series

lengths typically collected from field instruments and when movement behaviours are similar

between movement states. Simulation with varying lengths of times series data and contrast

between averagemovements within each state was used to test theHMMs ability to estimatemove-

ment parameters.

4. To demonstrate the methods in a realistic setting, the HMMs were used to categorize resident

and migratory phases and the relationship between movement behaviour and ocean temperature

using electronic tagging data from southern bluefin tuna (Thunnus maccoyii). Diagnostic tools to

evaluate the suitability of different models and inferential methods for investigating differences in

behaviour between individuals are also demonstrated.

Key-words: archival and satellite tags, behavioural analysis, bluefin tuna, hidden Markov

models.

Introduction

Understanding how individual animals alter their move-

ments in relation to habitat is an important problem in forag-

ing ecology (e.g. Bestley et al. 2008), habitat selection studies

(e.g. Aarts et al. 2008) and spatial population ecology (Bow-

ler & Benton 2005). An important starting point for all these

branches of ecology is that animals should maximize their

time in productive areas (Charnov 1976). However, foraging

itself is rarely observed so changes in individuals’ movement

patterns are widely interpreted as indicating switching

between different underlying behavioural states (Nathan

et al. 2008). Thus, episodes of slow and variable movement

are interpreted as the visible consequence of intensive forag-

ing (Barraquand & Benhamou 2008). Faster, directed move-

ments are taken to indicate either inter-patch movements or

searching behaviour and are often viewed as responses to

factors like habitat change or food availability (see Bowler &

Benton 2005 for a review).

Understanding how habitat alters behaviour is important

because collective individual behaviour, by definition, has

population-level consequences; influencing spatial distribu-

tion (Morales & Ellner 2002); causing aggregations of preda-

tors in areas of high prey density (i.e. prey taxis Kareiva &

Odell 1987); and in influencing the spread of invasive species

and diseases (Haydon 2008). Classifying important regions

for conservation on the basis of the relationship between

individuals’ space usage and the environment is also becom-

ing more common (e.g. Hyrenbach et al. 2006; Shillinger

et al. 2008).

Relating individual movement and behaviour to habitat

requires adequate data. Bio-logging technology (Hooker

et al. 2007), via electronic tagging and telemetry (ETT),

enables collection of high-resolution data of movement

and environment. However, a weak link in understanding

the relationship between habitat and behaviour is that*Correspondence author. E-mail: toby.patterson@csiro.au
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ETT devices typically measure basic physical data – e.g.

pressure, temperature and salinity – and not quantities

which directly influence the foraging behaviour of animals.

Putative behaviours identified from movement data must

instead be related to physical proxies (Hindell et al. 2003;

Teo, Boustany & Block 2007; Gremillet et al. 2008). Indi-

rect data of foraging success such as stomach temperature

(Austin et al. 2006; Bestley et al. 2008) or body condition

such as buoyancy (Biuw et al. 2003) have been collected.

However, direct measures of say, feeding success or

spawning behaviour are rare and in situ data of prey

availability is even less common.

Therefore, both behaviour and its probable drivers are hid-

den to the observer with most types of ETT technology and

uncovering hidden behaviour becomes a statistical problem.

Many recent studies have sought to uncover hidden behav-

iour solely from the geometry of the movement path.

Amongst these are first-passage time methods (FPT; Fauch-

ald & Tveraa 2003), Lévy flight analysis (Sims et al. 2008)

and state-space models (SSM; Jonsen, Myers & James 2007).

However, these recent approaches have some limitations.

Lévy methods are limited by their lack of predictive capacity,

making them unsuited to behavioural categorization. FPT

and SSM studies to date have mostly considered the move-

ment data in isolation, without reference to habitat data, to

categorize behaviour (also see Barraquand & Benhamou

2008 for a discussion of further issues with FPT). Some anal-

yses have used pre-calculated sinuosity indices to reduce the

track to bouts of behaviour which are taken as input into a

statistical model in order to infer relationships to habitat

variables (e.g. Bailleul et al. 2007). In general, methods which

first classify behaviour before relating these to habitat in a

separate analysis faces two problems; first, uncertainty in the

behavioural classification is either not calculated (e.g. FPT)

or unused (e.g. SSM analyses by Jonsen et al. 2007; Shillinger

et al. 2008); second, habitat data is not able to influence the

behavioural categorization despite our expectation that

behaviour should be heavily influenced by the environment.

Either issue could lead to spuriously precise predictions of

the behavioural response to habitat or worse, incorrect infer-

ences about the relationship between habitat and behaviour.

In this paper, we investigate hidden Markov models

(HMM; MacDonald & Zucchini 1997) as an alternative

method for behavioural analysis of ETTdata capable of cate-

gorizing movement modes and linking these to physical de-

scriptors of habitat. Our approach is consistent with the fact

that neither behaviour nor its drivers are ever directly

observed. HMMs are state-space models which assume that

the observed distribution of the observations is conditional

on a finite number of unobservable or hidden discrete states

(Cappe, Moulines & Ryden 2005). While SSM are increas-

ingly being applied to ETT data as they are a natural way to

handle location error and behavioural switching (Patterson

et al. 2008), in this paper, we concentrate on their use in

behavioural classification only. We show how HMMs pro-

vide a statistically rigorous framework for incorporating co-

variates, for allowing for the autocorrelation commonly

encountered in ETT data, and for making inferences about

behavioural states.

Materials andMethods

To introduce HMM, we first develop a simple simulation and then

provide details of the HMM machinery applied to the simulated

data.

Consider an idealized foraging tuna. Assume that our tuna can be

in two possible behavioural states, searching (S) and foraging (F). At

each time step of the simulation a distance yt is moved. These dis-

tances are random variables generated from separate probability

functions pertaining to each state. Movement distances were

drawn from two separate exponential distributions Pðytjstate ¼
jÞ ¼ kje�kjyt although other distributions could be used. The average

distance moved is given by 1=kj so the parameters kj were chosen to

mimic the situation where a larger distance is expected for searching

moves and a smaller distance with foraging moves ð1=k1>1=k2Þ.
This reflects decreased likelihood of large movements when foraging

is successful on a particular patch. Switching between behaviours is a

Markov process governed by a 2 · 2 transitionmatrix s,

sðX; hÞ ¼
F! F F! S

S! F S! S

� �

¼
PðFjFÞ 1� PðFjFÞ

1� PðSjSÞ PðSjSÞ

� �

¼ Pðst ¼ jjst�1 ¼ k;X; hÞ

ð1Þ

Here, the elements of the transition matrix are sk,j=P(st= j | st-1=

k, X, h), st = j denotes the state (F or S) at time t. The variable X

could be any covariate of interest, but throughout this paper we set

this to be a temperature anomaly calculated as daily mean tempera-

ture from the tag record subtracted from the global mean across all

samples. Hereafter, we denote this anomaly as Xh i to differentiate it

from a generic covariateX.

Equation 1 states that probability of switching from one state

to another is a function of a covariate X and parameters h. In

our model, this is given by P(st = j|st-1 = j) = logit)1(aj + bjX)
and P(st = j|st-1 = k) = 1 – P(st = j|st-1 = j). The inverse logit

transform ex ⁄ (1 + ex) maps x 2 �1;þ1f g ! 0; 1½ � and thereby

constrains the transition matrix entries to be probabilities. Tempera-

tures used in simulations were taken from real data from electronic

tags implanted in southern bluefin tuna (SBT) (further details

follow).

ESTIMATING STATE PROBABIL IT IES AND LIKEL IHOOD

CALCULATIONS

The problem we address is estimating the parameters governing the

hidden Markov process described above, knowing only the distance

moved, yt and the temperature anomaly Xh it. Maximum likelihood

estimation was used to estimate the parameters h ¼ ðk1; k2; a1;
a2;b1;b2Þ. From these and the data we can estimate the probability

of the behavioural state.

Foraging and searching behaviours occur in bouts that persist

through time. Therefore, we assume that the data are not temporally

independent (although see the Supporting Information, Appendix B

for alternative models). Therefore, the likelihood is formed from the

probabilities of the observed data conditional on the previous state.

This means that if we really did know the hidden state we could treat

all data pertaining to this state as independent draws from a (in this
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case, exponential) probability distribution. As we in fact, do not

know the true state wemust estimate it from the data.

Let Y1:T be a set of movement observations (in this case distances

moved) over t = 1,…,T from two hidden states st 2 1; 2f g which are

governed by a Markov process with the transition matrix s. Let
f(yt + 1|Yt) refer to the likelihood of observing yt + 1 conditional on

Yt, the set of observations of y from the first to the tth time step. The

overall likelihood is given by

LðY; hÞ ¼
YT�1
t¼0

fðytþ1jY1:t; hÞ ð2Þ

We show in Supporting Information, Appendix A that, given the first

term in the likelihood f(y1|Y0, h) a recursive scheme can be used to

calculate each subsequent term. Using eqn 2, the parameters ĥ can be

estimated by numerical minimization of )log[L(Y,h)]. This was per-
formed using quasi-Newtonminimization in r (RDevelopment Core

Team 2008).

Computation of ĥ requires only that we compute the distribution

of a state at time t, given all previous observations. To compute the

full posterior state probability at t, i.e. incorporating observations

from t onwards (Wikle & Berliner 2007), we can apply the smoothing

algorithm described in Supporting Information, Appendix A.2.

States are categorized by choosing the state with the highest posterior

(smoothed) probability.

Diagnostics

For a HMM no strict analog to a residual exists as the value of a

residual depends on the state (MacDonald & Zucchini 1997), which

is unobservable. Pseudo-residuals (described in Supporting Informa-

tion, Appendix B) were used to assess the goodness-of-fit graphically.

We also used diagnostics to consider two simpler candidate mod-

els, both special cases of the two-state HMM. The first hypothesizes

that the data are generated from a single behavioural state. Given

that an assumption of the HMM is conditional independence of the

observations given state, a one-state model is simply the exponential

density. This model can be seen to be a special case of the two-state

HMM by setting the transition matrix to be one in the first column

and zero in the second. The secondmodel considered was a ‘memory-

less’ model (aka. a mixture model – McLachlan & Peel 2000). In this

case, the probability of states are a function of temperature but pro-

cess has no memory of its previous state and each observation is

considered independent. This is a special case of the HMMwhere the

rows of s are set to be identical (e.g. F fi F = S fi F). QQ-plots,

trends of pseudo-residuals through time and pseudo-residual auto-

correlation functions were used to assess the goodness of fits of each

model.

STATIONARY DISTRIBUTIONS WITH RESPECT TO

COVARIATES

It is not intuitive to see how particular a and b values influence the

transition probabilities. One way to summarize their implications for

the predicted behaviour is to examine the equilibrium state (station-

ary distribution) of the estimated Markov process which gives the

marginal probability of a state assuming the covariate is fixed at a

given value. This requires calculating the dominant eigenvector of

the transition matrix s at some temperature anomaly of interest, e.g.

Xh i ¼ 2�C. Mathematically, we seek the vector p* such that

p� ¼ sð Xh i; ĥÞp� where
P

p* = 1. This summarizes the marginal

behaviour of themodel given a value of the covariateX and estimated

parameters ĥ. The delta method (Oehlert, 1992) was used to calculate

a confidence interval on this stationary distribution:

VarðXÞ � s0ðX; ĥÞ>VarðĥÞs0ðX; ĥÞ ð3Þ

The derivatives s0ðX; ĥÞ were calculated numerically and VarðĥÞ was
calculated from the inverse Hessianmatrix of the parameters.

Figure 1 shows that for a = (3,3) and b = ()0Æ4,1Æ3), the values
used in the simulation (see below), the transition probabilities are

asymmetrical with respect to the zero temperature anomaly with high

probability of switching from state 2 to state 1 at negative tempera-

ture anomalies. However, the stationary probabilities of being in

state given an anomaly shows a symmetrical preference for state 1 at

negative anomalies and state 2 at positive anomalies. This highlights

the difference between the probability of a state transition given co-

variates and the stationary distribution of a state.

SIMULATIONS

It is important to determine the necessary time-series length required

for reliable inference of animal behaviour. To investigate this we sim-

ulated 100 datasets of 2000 time steps and chose subsets of the data

of varying lengths from 100, 200, 300, 400, 700, 1000 and the full

time-series of 2000 time steps. Also, if the average move distance in a

α β

Fig. 1. Left hand panel: Probability of transition from state 2 to state 1 (solid line) or state 1 to 2 (dashed line) as a function of temperature anom-

aly (SST) given transitionmatrix parameters ai and bi shown. Right hand panel: Probability of being in state 1 (solid line) or state 2 (dashed line)

at a given temperature anomaly and the same values of ai and bi.
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feeding state is similar to average move distance in a searching state

accurate estimation may be difficult. Therefore, we also explored the

implications of states where the distances moved are similar (see

Table 2). One hundred realizations were used in these simulations as

we were primarily interested in the average behaviour of estimates.

Results

SIMULATION RESULTS

The true parameter values used in the simulation and the esti-

mated values from a time series of length 2000 are given in

Table 1. Parameters are generally well estimated, particularly

1 ⁄ k, although we note that the clear difference between the

true k values implies strong contrast in the (simulated) data

on distancemoved.We explore this further below.

Parameter estimates (Fig. 2) stabilized to values close to

the true values at time-series lengths of 300 or more time

steps. We explored several other examples with different a, b
and k values, and results for these examples were very similar

to those shown in Fig. 2. Generally, estimates of k remained

accurate with less than 300 data points if good starting values

were used in theMLEprocess.

A direct comparison of results for a case with k = (20,0Æ5),
and a case with k = (2,0Æ5) is shown in Fig. 2. True values of

a and b were the same for both examples. In both examples,

estimates again converged to values close to the true values at

time-series lengths of about 300 time steps (Fig. 2). Even for

long time series, the mean squared errors of some parameter

estimates were higher for the case where the k values in the

two states were more similar. This is not surprising, but illus-

trates the potential value of simulation trials as part of the

process of analysing actual data.

Estimates from the HMM of the most likely state at each

time step are of particular interest. Knowing the ‘true’ state

in the simulated data allows model estimates of state to be

summarized into a percentage of incorrect state identifica-

tions. Table 2 shows results of the mean number of misidenti-

fied states for the two simulation examples discussed above.

As expected, when k values were more similar, the percentage

misidentified states was higher than when the two k were fur-

ther apart. The actual percentage misidentified states was rel-

atively low in these examples. Other cases, for example where

the stationary probabilities were more similar for the two

states over the range of SST anomalies, lead to higher levels

of misidentified states, as shown for Case 2 (Table 2).

APPLICATION TO REAL DATA

Background

Having evaluated the model with simulated data, we

applied it to data from three juvenile SBT (Thunnus mac-

coyyi, Castelnau, 1872) carrying archival tags. Our test

data set is kept small purely for brevity but each track

contained roughly data over 1 year (Table 3). We do not

aim to provide a thorough analysis of SBT movement and

behaviour here but simply to demonstrate the potential of

the technique.

Again, we examined horizontal movements in relation to

the daily average ambient temperature anomaly, aiming to

detect switches in movement behaviour. Juvenile SBT under-

take large migrations from the Great Australian Bight

(GAB), south of the Australian mainland, into the Indian

Ocean (IO) every year (Gunn & Block 2001) and return to

the GAB the next summer. The reasons for these migrations

are unknown (Gunn & Block 2001; Bestley et al. 2008).

Movements of SBT appear to indicate resident periods punc-

tuated with episodes of rapid directional movement (Bestley

et al. 2008), a process possibly driven by oceanographic forc-

ing. Therefore, the following analysis assumes that tempera-

ture is a proxy for favourable environmental conditions in

some unknown way. While tunas do respond to ocean tem-

peratures (Laurs, Yuen & Johnson 1977; Bertignac, Lehodey

&Hampton 1998; Brill et al. 1999, 2002), the scenario consid-

ered here is a simplification of the ecophysiological processes

driving tunamovement and behaviour.

Following the simulation, we assume that the SBT occupy

one of two possible states, although here we do not infer for-

aging behaviour. This is because Bestley et al. (2008) exam-

ined SBT-feeding behaviour and found that residence

periods can sometimes coincide with periods of fasting.

Therefore, we simply aim to detect changes in the movement

behaviour and label these as either ‘resident’ or ‘migratory’.

While this categorization is simple, two modes of movement

have been noted in bluefin tuna (Newlands, Lutcavage &

Pitcher 2004; Teo et al. 2007). We consider data from three

fish implanted with archival tags that measured depth, ambi-

ent light and internal and external temperature (Wildlife

Computers Mk7 model archival tags; Wildlife Computers,

Redmond, WA, USA) every 4 min. The fish were tagged as

part of CSIRO Marine Research tagging operations in the

GAB in the austral summer of 1998 [see Gunn & Block

(2001) and Bestley et al. (2008) for details]. Position data here

are a subset of those used by Bestley et al. (2008) and were

estimated by combining light-based methods to estimate lon-

gitude (Hill & Braun 2001) and matching the onboard tem-

perature sensor measurements to sea surface temperature

(Teo et al. 2004). Estimates of position are calculated daily

and the average daily temperate anomaly is calculated from

the 4 min temperature record for each 24 h period. There-

fore, the HMM input data consists of fti; yi; Xh iig where ti is
the day of the track, yi is the distance between subsequent

position estimates and Xh ii is the temperature anomaly.

Table 1. Summary results of parameter estimates from 100

simulations, each with a time-series of 2000 time steps

Truth

Median

estimated value MSE

Relative

error

1 ⁄ k1 0Æ05 0Æ0497 2 · 10)6 )0Æ56 k1 = 20

1 ⁄ k2 2 1Æ994 0Æ005 )0Æ096 k2 = 0Æ5
a1 3 2Æ988 0Æ004 )0Æ8
a2 3 3Æ013 0Æ069 0Æ85
b1 )0Æ4 )0Æ417 0Æ021 6Æ46
b2 1Æ3 1Æ324 0Æ044 3Æ46
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Testing for differences between individuals

We applied standard likelihood ratio methods (Buse 1982) to

test for differences between SBTs behaviour with respect to

temperature. This is done by comparing the log likelihoods

from models fitted to individual data sets, Lseparate, to the log

likelihood of a global model fitted to all animals simulta-

neously, Ljoint. Then 2D ¼ Ljoint � Lseparate is asymptotically

distributed as v2nðhÞ, where n (h) is the number of parameters

in the global model. Hence individuals are significantly differ-

ent at p if 2D � v2nðhÞðpÞ.

MODEL RESULTS

The diagnostic QQ-plots (Fig. 3) of pseudo residuals (Sup-

porting Information, Appendix B) showed that the models fit

reasonably well, although in some states the QQ-plots

departed from the 1 : 1 relationship. This might indicate the

(a)

(b)

Fig. 2. (a) Parameter estimates for 100 datasets of different time-series lengths (x-axis). The horizontal line indicates the true value, solid dots are

the median estimates and the grey circles show the lower and upper quantiles of the 100 estimates. Note that the 1 ⁄ k (average distance within

state) is shown in the first two panels. (b) Log mean squared error (log MSE) for each of the six estimated parameters as a function of the time-

series length of data, and for two examples: black line, open circles has true 1=ki ¼ ð0 � 05; 2Þ and red line, open triangles 1=ki ¼ ð0 � 5; 2Þ. True
ai = (3, 3) and b = ()0Æ4,1Æ3) in both examples.
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need for another state to be incorporated into the models, or

that the exponential model of movements was at times inade-

quate. Diagnostics for the one-state model and the memory-

less two-state model indicated sizable trends and significant

autocorrelation in the residuals (see Supporting Information,

Appendix B). The diagnostics for the two-state HMM were

much improved with no apparent trend in the residuals and

much reduced auto correlation. Hence, we consider the two-

state HMM to be the best of the models considered and that

simpler models were unable tomodel the data adequately.

The HMM predicted quite different average movement

distances in each state. However, estimates of these (1 ⁄ k)
were quite similar between the three fish considered. In the

resident state, SBT moved between 38 and 49 nm day)1

(nm = nautical mile, 1 nm = 1Æ852 km) and in the migra-

tory state from 69 to 88 nm day)1 (Table 3). The time spent

in each state varied between the tuna (Fig. 4); 59Æ1% (99267),

66% (98007) and 35% (99629). By using the posterior proba-

bility of being in a state as an indicator that a tuna is in the

resident or searching state, we mapped the positions where

states occurred (Fig. 4). For example, theHMM inferred that

SBT 97627 was in resident mode in the GAB and also around

the boundary of the Northern Subtropical Front (Kostianoy

et al. 2004). This tuna was also categorized as resident in the

area to the southwest ofWestern Australia.

A likelihood-ratio test comparing a global model (shared

parameters between SBT compared to individual parameters

for each fish, Table 3) to the individual model fits found no

significant differences between individuals ðv2nðhÞ¼6 ¼ 9 � 791;
p ¼ 0 � 866Þ. Under the assumption of shared parameters

between all fish, the SBTwere expected to move 79 km day)1

in whilst in amigratorymode and 43Æ9 km day)1 in a resident

mode. Additionally, pairwise comparisons between tuna also

found no significant differences. This result was qualitatively

supported by the stationary distribution of the transition

matrix with respect to the mean temperature anomaly. These

predict similar responses from each fish with SBTs 98007 and

99267 predicted to flip state about the mean ambient temper-

ature anomaly (i.e. Xh i ¼ 0) (Fig. 5). SBT 99629 varied

slightly, with the inflection point in the ogive occurring at a

temperature anomaly around )3 �C. Note that the confi-

dence intervals on these fits are wide, indicating considerable

uncertainty in these results. This is likely to reflect the sim-

plicity of the model and may indicate that other covariates

are required to better capture the relationship between move-

ment and temperature.

Discussion

STATIST ICALLY L INKING MOVEMENT AND HABITAT

DESCRIPTORS

The relationship between movement and habitat is shaped by

factors, such as foraging success or physiological constraints

placed by the environment. As these factors mediate animals’

ability to survive and reproduce, determining the relationship

between movement and environment is a critical part of

understanding population processes (Alerstam, Hedenstrom

& Akesson 2003; Bowler & Benton 2005) and spatial pattern

(Morales & Ellner 2002; Del Mar & Penteriani 2008). This

paper has demonstrated a statistical method for categorizing

behavioural modes in individual movement data. Impor-

tantly, the model we describe relates the behaviour directly to

covariate data – the relationship between partially observed

or hidden behaviours and descriptors of habitat is estimated

within the model. This avoids the need for post hoc analysis

(Shillinger et al. 2008) to examine the relationship with cova-

riates. Thus, direct estimation of the statistical relationship

betweenmovement and habitat is achievable.

The description ofmovement we have used is simple. How-

ever, it is biologically meaningful and provides a tractable

way to deal with a highly complex problem. Quantitative

investigation of individual movement requires a reasonable

(albeit often simple) model of the interaction between

Table 3. Parameter estimates and standard errors (SE) estimated

from three southern bluefin tuna

SBT ID

(Dataset

length) State â SE b̂ SE k̂�1 SE

Individual models

99267 Resident 3Æ06 0Æ959 0Æ413 0Æ516 38Æ3 0Æ00256
(354 d) Migratory 2Æ95 1Æ19 )1Æ26 0Æ803 88Æ1 0Æ00117
98007 Resident 2Æ29 0Æ492 1Æ87 2Æ06 48Æ8 0Æ00397
(385 d) Migratory 1Æ31 1Æ31 )0Æ483 5Æ56 82Æ8 0Æ00219
99629 Resident )2Æ86 5Æ5 3Æ21 2Æ79 43Æ1 0Æ00231
(263 d) Migratory 3Æ21 4Æ14 )0Æ722 1Æ09 68Æ9 0Æ00121

Global model

All Resident 2Æ622 0Æ638 3Æ263 1Æ54 43Æ9 0Æ000719
Migratory 0Æ48 0Æ356 )2Æ0395 2Æ18 79Æ37 0Æ00147

The parameters a and b are used in forming the transitionmatrix and

the k are the rate parameter of an exponential distribution used to

model movements. The table shows estimated parameters from

fitting to the individual data sets separately (labelled ‘Individual

Models’) andwhen using all data simultaneously to estimate the

parameters (labelled ‘GlobalModel’). Also shown in parentheses in

the left hand column is the length in days of each data series.

Table 2. Mean percentage of mis-identified states for four

simulations: two sets of k values crossed with two sets of a and b
values

Scenario

Different movement

1 ⁄ k = (0Æ05, 2)
Similarmovement

1 ⁄ k = (0Æ5, 2)

Case 1

a = (3,3), b = ()0Æ4,1Æ3)
N = 300 £1 6

N = 2000 £1 4

Case 2

a = (0,0), b = (0Æ8,0Æ8)
N = 300 3Æ50 20

N = 2000 3Æ00 16

Results are given for time-series lengths of 300 or 2000 time-steps.

Case 1 is the same as that shown in Table 1 andFigs 1 and 2. Case 2

has a and b values that imply stationary state probabilities of 0Æ5 at
all anomaly values.
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behaviour and habitat which may be estimated from data

(Patterson et al. 2008). While a specific hypothesis will often

be implied by the model, HMMs are useful for dealing with

unmodelled or unmeasured processes – which are all perva-

sive in movement analysis. For example, the factors driving

the ocean-basin scale, cyclic migrations shown by juvenile-

SBT are largely unknown (Gunn & Block 2001). Similarly,

which factors influence residency behaviour is poorly under-

stood, although for non-breeding animals, growth through

productive foraging is expected to be the primary impetus

(Bestley et al. 2008).

Extensions to our model could include improved descrip-

tions of the ocean state, individual data from the SBT (e.g.

size or year class) or productivity data (e.g. Gremillet et al.

2008). In addition, SBT are unusual in that direct indices of

feeding behaviour can be gained from archival tag data

(Gunn, Hartog & Rough 2001). A logical next step would be

to apply these models to a larger data set to develop more

precise inferences about juvenile SBT movement phases to

compare against empirical measures of feeding activity.

However, for most species, direct observations of feeding are

unavailable and models such as ours are required to detect

and categorize behaviour. Moreover, a suite of covariates at

multiple spatial and temporal scales are likely to influence

prey distributions and therefore most likely movement

behaviour. Untangling these multiple interactions is chal-

lenging. A strength of the approach we describe is the capac-

ity for quantitative inference linking movement and

observable habitat variables, even though they may only

indirectly influence behaviour via a set of unobserved pro-

cesses. This may aid in better understanding the direct biolog-

ical drivers of movement for many species, especially in

marine systems where observations of the biological compo-

nents of the system (e.g. forage distributions) are particularly

sparse.

SIMULATION TESTING

By conducting simulation tests, we demonstrated how the

length of the data series affects parameter estimation. Gener-

ally, the parameters were well estimated for data series longer

than 	300 time steps. However, this varied with the contrast

in the average distance moved within state. This gives a prac-

tical insight into the duration of time series required for effec-

tive inference and therefore which ETT data sets and

methods are amenable to HMM (and possibly other SSM)

analysis. Also, our results indicate that useful results can be

obtained for shorter data sets but with greater uncertainty.
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This is not surprising as detecting state switches is more diffi-

cult if each state ‘looks’ similar.

There was also an interaction between the average distance

moved (1 ⁄ k) and the transition matrix parameters (aj and bj)
and estimation was less accurate when the probability of

switching was uniform across the range of the covariate.

Understanding interactions between the implications of the

model and parameter estimability can be complex, even for

simple models such as this. Simulation testing of models

assists in understanding how models behave and thus influ-

ence biological inferences. To our knowledge, this analysis of

the interaction between the data series length and the reliabil-

ity of estimation has not been considered elsewhere. As the

modelling approaches to tracking and bio-logging data

increase in complexity, we suggest that simulation become a

routine analysis tool.

DIAGNOSTICS AND INFERENCE

A key part of the material we present here are the diagnostic

techniques (Supporting Information, Appendix B). Diagnos-

tics are an integral part of statistical modelling, but are lack-

ing in many analyses of animal movement with SSMs.

Morales et al. (2004) used the Deviance Information Crite-

rion to compare betweenmodels. This and other information

theoretic approaches are certainly useful, but still rely on the

likelihood coming from a well-fitting model, making the use

of residual plots etc. very useful. Those produced here sug-

gested reasonable fit to the data but possibly indicates the

need for more states or an error distribution other than the

exponential. Nonetheless, a two-state HMM was preferred

over simpler models. While a state switching model has

greater utility than a one-state model, and thus may be pre-

ferred a priori, it is worth determining if a more parsimonious

single-state model could explain the data equally well. That

the alternative models fitted poorly and failed to model both

long and short term autocorrelation informs us of persistence

in the observedmovement.

The inference methods we have presented are limited and

multiple comparisons are best avoided for large numbers of

animals due to increased type-I error rate. Hierarchi-

cal ⁄mixed-modelling (Jonsen, Myers & Flemming 2003)

frameworks are a more powerful approach to individual het-

erogeneity. However, the likelihood ratio test could be used

to compare between groups of animals with shared parame-

ters. Deciding which animals to group together may not be

straightforward – but sound biological hypotheses often

entail groupings (e.g. animals from the same popula-

tion ⁄ age ⁄ sex) where likelihood ratio methods may be appro-

priate. Recent Bayesian methods have demonstrated

automatic groupings of individuals with mark–recapture

data (Dorazio et al. 2008). Information theoretic criterion

such as Akiake’s information criterion (Burnham & Ander-

sen 2003) may also be useful for covariate selection.
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COMPARISONS TO RELATED APPROACHES

The treatment of temporal dependence in movement data

marks a major distinction between SSMand othermovement

analysis approaches (Patterson et al. 2008). For example

Lévy analyses (e.g. Viswanathan et al. 1996) mostly ignore

short-term temporal correlation potentially leading to spuri-

ously precise estimates of parameters (see also Edwards et al.

2007 for a discussion of the statistical issues with Levy

approaches). The state switching behaviour of HMMs is not

necessarily first order Markovian (MacDonald & Zucchini

1997), since using covariates to mediate switching between

states, dependence relates time in a behavioural mode to

other factors besides the previous state. This is important

when modelling movements where states are expected to per-

sist through time. Several SSMs have estimated a transition

matrix which is independent of covariates (Jonsen, Mills-

Flemming & Myers 2005; Bailey et al. 2008). Determining

the resulting differences between these models is an impor-

tant step required for further work.

A novel aspect of our paper is the characterization of

behavioural switching with respect to covariates via the

stationary distribution (Fig. 5). The simulation study

found that the nature of the stationary distribution with

respect to the covariate (temperature anomaly) was linked

to parameter estimability. We note that the stationary dis-

tribution should not be interpreted too literally. It is not

clear what biological interpretation should not be attached

to the quantity as animals’ behaviour may be unlikely to

be in equilibrium. Nevertheless, the technique can be con-

venient for summarizing covariate effects on estimated

switching probabilities.

Several studies have used statistical approaches similar to

the methods outlined here (Jonsen et al. 2003; Franke, Caelli

& Hudson 2004; Morales et al. 2004; Roberts et al. 2004; Ro-

yer, Fromentin & Gaspar 2005) The closest to our methods

are from the examples of Franke et al. (2004) using HMMs

to examine the movements of Caribou and analysis of elk by

Morales et al. (2004).

There are several technical differences between our

approach and these studies. Franke et al. used the expecta-

tion-maximization algorithm for parameter estimation

(MacDonald & Zucchini 1997). Roberts et al. used varia-

tional inference to categorize areas of high positional entropy

in the track. Morales et al. (2004) and Jonsen et al. (2003)

usedMarkov ChainMonte Carlo (MCMC). Amajor advan-

tage of the direct likelihood maximization approach we used

is speed – models were fit within a few seconds. Additionally,

our approach is not simply faster, it is also reliable. While

MCMC is without doubt an extremely powerful tool in

expert hands, it is hard to detect problems (e.g. Carlin &

Louis 1997, p177). Computation time can be a serious imped-

iment to fitting a variety of models (for model selection), for

verifying performance (through simulation testing) or when

analysing very large data sets. For these reasons, it is of great

practical value to have quick and reliable estimation

−5 0 5 

0·
0 

0·
2 

0·
4 

0·
6 

0·
8 

1·
0 

0·
0 

0·
2 

0·
4 

0·
6 

0·
8 

1·
0 

0·
0 

0·
2 

0·
4 

0·
6 

0·
8 

1·
0 

SBT − 99267(a) (b)

(c) (d)

<X> 

P
r 

(R
es

id
en

t)
 

−5 0 5 

0·
0 

0·
2 

0·
4 

0·
6 

0·
8 

1·
0 

SBT − 98007

<X> 

P
r 

(R
es

id
en

t)
 

−5 0 5 

SBT − 99629

<X> 

P
r 

(R
es

id
en

t)
 

−5 0 5 

Global model

<X> 

P
r 

(R
es

id
en

t)
 

Fig. 5. Stationary distributions of the state transition matrix formed from the estimates of a and b (see Table 3) at varying temperature anomaly

values ranging from )8 to 8 �C. Black lines are the expected probability and the dashed lines are 95% confidence intervals. (a–c) Results using

data from individual tuna. (d) Results from shared parameters estimated from all three data sets simultaneously.

HiddenMarkov models of movement 1121

� 2009 TheAuthors. Journal compilation� 2009 British Ecological Society, Journal of Animal Ecology, 78, 1113–1123



algorithms such as quasi-Newton maximization (used here),

particularly for users without extensive statistical expertise.

Note that the main issue here is one of practicality and

potential reliability, rather than of Bayesian vs. non-Bayesian

philosophy; state-space models are intrinsically Bayesian in

nature because of the unobservable random states, and the

issue of whether to handle the system parameters via prior

distributions (full Bayes) or via MLE (empirical Bayes, as in

this paper) is of secondary importance in systems with rea-

sonable amounts of data. However, using MLE methods

may also practically restrict the complexity of HMMs and

some problems may only be tractable with MCMCmethods.

For instance random effects or hierarchical model structures

may be easiest to implement using BayesianMCMC.

A further advantage of the Bayesian state-space approach

(Jonsen et al. 2003; Andersen et al. 2007; Patterson et al.

2008) is the ability to incorporate estimation of location error

– although often location error is estimated prior to estimat-

ing movement (see Pedersen et al. 2008 for a likelihood based

for an approach to location uncertainty with HMMs). While

the exponential distribution we used may be somewhat

robust to observation error, in this study we have focused on

models that examine biological process rather than estimate

likely position. It is likely that the current need to focus on

correcting location error (Vincent et al. 2002; Teo et al. 2004;

Royer & Lutcavage 2008) will lessen as technological

advances are made. Wider use of the global positioning sys-

tem is likely to reduce location error (Schofield et al. 2007).

However in some cases, (e.g. tracking pelagic fish), it is unli-

kely that the need to deal with observation error will disap-

pear. Nevertheless, we expect the focus to eventually shift

from estimating where an animal was to what it was doing

and what drove its movement.

Conclusions

Despite several recent publications detailing analogous sta-

tistical approaches, the application of HMM and related

models to telemetry data is in its infancy and much further

developmental work is required (Patterson et al. 2008). We

have identified several key areas to be pursued. Some of these

are straightforward such as increasing the number of covari-

ates or allowingmovement distribution parameters to also be

a function of covariates. Similarly, the number of states could

be increased. While each is a relatively simple extension of

the simple models demonstrated they entail estimation of

manymore parameters.

Further development and operationalization of the HMM

and allied methods will provide researchers with a robust sta-

tistical framework for the analysis of telemetry data and

investigation of the processes driving the movement and

behaviour. This paper has described in detail a useful model

for determining the relationship between behavioural state-

switching and environmental data. Building such integrative

models is a necessary step in being able to elucidate the links

between behaviour and the environment in free-ranging

animals.
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