Introduction	The Data	Models	Results	Conclusions

Movement Up and Down: Modeling Dive Depth of Harbor Seals from Time Depth Recorders

Jay Ver Hoef¹, Megan Higgs², and Josh London¹

¹NOAA National Marine Mammal Lab NMFS Alaska Fisheries Science Center Seattle, Washington, USA
²Department of Statistics, Montana State University Bozeman, Montana, USA

Introduction	The Data	Models	Results	Conclusions
●○○	000	ooooo	0000	
Introduction				

Acknowledgements

This project received financial support from the NOAA Alaska Fisheries Science Center and the US Department of Interior Mineral Management Service.

Introduction	The Data 000	Models	Results 0000	Conclusions
Introduction				

- We would like a continuous record of dive depth in meters, but...
- Logistical constraints of satellite time-depth-recorders (TDRs)
 - Data storage aboard the mammal
 - Transmission of data to satellite

Introduction	The Data 000	Models	Results 0000	Conclusions
Introduction				

- We would like a continuous record of dive depth in meters, but...
- Logistical constraints of satellite time-depth-recorders (TDRs)
 - Data storage aboard the mammal
 - Transmission of data to satellite

Introduction	The Data 000	Models	Results 0000	Conclusions
Introduction				

- We would like a continuous record of dive depth in meters, but...
- Logistical constraints of satellite time-depth-recorders (TDRs)
 - Data storage aboard the mammal
 - Transmission of data to satellite

Introduction	The Data 000	Models	Results 0000	Conclusions
Introduction				

- We would like a continuous record of dive depth in meters, but...
- Logistical constraints of satellite time-depth-recorders (TDRs)
 - Data storage aboard the mammal
 - Transmission of data to satellite

Introduction 00●	The Data 000	Models 00000	Results 0000	Conclusions
Introduction				

- Our main goal: quantify and describe relationships between covariates and the categorical response.
- Also interested in predicting missing data
- Covariates of interest:
 - Time of Day (4 categories)
 - Day of Year
 - Season (Fall, Spring, Pupping)
 - Ocean depth?
 - Sex
 - Age (3 categories)

Introduction ○○●	The Data ০০০	Models 00000	Results 0000	Conclusions
Introduction				

- Our main goal: quantify and describe relationships between covariates and the categorical response.
- Also interested in predicting missing data
- Covariates of interest:
 - Time of Day (4 categories)
 - Day of Year
 - Season (Fall, Spring, Pupping)
 - Ocean depth?
 - Sex
 - Age (3 categories)

Introduction 00●	The Data ooo	Models 00000	Results 0000	Conclusions
Introduction				ſ

- Our main goal: quantify and describe relationships between covariates and the categorical response.
- Also interested in predicting missing data
- Covariates of interest:
 - Time of Day (4 categories)
 - Day of Year
 - Season (Fall, Spring, Pupping)
 - Ocean depth?
 - Sex
 - Age (3 categories)

Introduction 00●	The Data ooo	Models 00000	Results 0000	Conclusions
Introduction				ſ

- Our main goal: quantify and describe relationships between covariates and the categorical response.
- Also interested in predicting missing data
- Covariates of interest:
 - Time of Day (4 categories)
 - Day of Year
 - Season (Fall, Spring, Pupping)
 - Ocean depth?
 - Sex
 - Age (3 categories)

Introduction	The Data ●○○	Models 00000	Results 0000	Conclusions
The Data				

Jay M. Ver Hoef

Introduction	The Data ●00	Models 00000	Results 0000	Conclusions
The Data				

NOAA National Marine Mammal Lab

Jay M. Ver Hoef

Introduction	The Data ●00	Models 00000	Results 0000	Conclusions
The Data				

Introduction	The Data ●○○	Models 00000	Results 0000	Conclusions
The Data				

NOAA National Marine Mammal Lab

Jay M. Ver Hoef

Introduction	The Data ●00	Models 00000	Results 0000	Conclusions
The Data				

Introduction	The Data ●○○	Models 00000	Results 0000	Conclusions
The Data				

Introduction	The Data ●○○	Models 00000	Results 0000	Conclusions
The Data				

Introduction	The Data ●00	Models 00000	Results 0000	Conclusions
The Data				

Introduction	The Data ●00	Models 00000	Results 0000	Conclusions
The Data				

Introduction	The Data ●○○	Models 00000	Results 0000	Conclusions
The Data				

Introduction	The Data ●○○	Models 00000	Results 0000	Conclusions
The Data				

Introduction	The Data ●oo	Models ooooo	Results 0000	Conclusions
The Data				

Introduction	The Data ●oo	Models ooooo	Results 0000	Conclusions
The Data				

Introduction	The Data ●oo	Models ooooo	Results 0000	Conclusions
The Data				

Introduction	The Data ●oo	Models ooooo	Results 0000	Conclusions
The Data				

Jay M. Ver Hoef

Introduction	The Data o●o	Models 00000	Results 0000	Conclusions
The Data				

Motivating Data

Introduction	The Data o●o	Models ooooo	Results 0000	Conclusions
The Data				

Motivating Data

Adult Female

Introduction	The Data o●o	Models ooooo	Results 0000	Conclusions
The Data				

Motivating Data

Juvenile Male

Introduction	The Data ○○●	Models ooooo	Results 0000	Conclusions
The Data				

- Continuous dive depth is categorized into ordered categories with a practically meaningful set of bin boundaries
 - Ordinal data discretized from continuous behavior
- Aggregated over time (6 hr. intervals) into *multi-category counts*
- Time series of multi-category counts for each animal
- Multiple animals and years

Introduction	The Data ○○●	Models 00000	Results 0000	Conclusions
The Data				

- Continuous dive depth is categorized into ordered categories with a practically meaningful set of bin boundaries
 - Ordinal data discretized from continuous behavior
- Aggregated over time (6 hr. intervals) into *multi-category counts*
- Time series of multi-category counts for each animal
- Multiple animals and years

Introduction	The Data ○○●	Models ooooo	Results 0000	Conclusions
The Data				

- Continuous dive depth is categorized into ordered categories with a practically meaningful set of bin boundaries
 - Ordinal data discretized from continuous behavior
- Aggregated over time (6 hr. intervals) into *multi-category counts*
- Time series of multi-category counts for each animal
- Multiple animals and years

Introduction	The Data ○○●	Models 00000	Results 0000	Conclusions
The Data				

- Continuous dive depth is categorized into ordered categories with a practically meaningful set of bin boundaries
 - Ordinal data discretized from continuous behavior
- Aggregated over time (6 hr. intervals) into *multi-category counts*
- Time series of multi-category counts for each animal
- Multiple animals and years

Introduction	The Data ○○●	Models ooooo	Results 0000	Conclusions
The Data				

- Continuous dive depth is categorized into ordered categories with a practically meaningful set of bin boundaries
 - Ordinal data discretized from continuous behavior
- Aggregated over time (6 hr. intervals) into *multi-category counts*
- Time series of multi-category counts for each animal
- Multiple animals and years

Introduction	The Data ooo	Models ●○○○○	Results 0000	Conclusions
Models				

Hierarchical Model

Total Number of Dives

- $n_i \sim [(\text{Total Number Dives})_i | \text{covariates}_i] = \text{Poi}(\lambda_i)$
- $\bullet \log(\lambda_i) = \mathbf{x}_i' \boldsymbol{\beta} + \epsilon_i$
- $\{\epsilon_i\}$ are temporally autocorrelated
- Categorical Counts
 - $\mathbf{y}_i \sim [(\text{Counts per Category})_i | n_i, \text{covariates}_i] = \text{Mult}(n_i, \mathbf{p}_i)$
 - $\blacktriangleright f(\mathbf{p}_i); \mathbf{x}_i, \delta_{i,k}$?
 - $\delta_{i,k}$ are temporally autocorrelated for fixed k

Introduction	The Data ooo	Models ●○○○○	Results 0000	Conclusions
Models				

Hierarchical Model

Total Number of Dives

- $n_i \sim [(\text{Total Number Dives})_i | \text{covariates}_i] = \text{Poi}(\lambda_i)$
- $\bullet \log(\lambda_i) = \mathbf{x}'_i \boldsymbol{\beta} + \epsilon_i$
- $\{\epsilon_i\}$ are temporally autocorrelated

Categorical Counts

- y_i ~ [(Counts per Category)_i|n_i, covariates_i] = Mult(n_i, p_i)
 f(p_i):x_i, δ_i, ?
- $\delta_{i,k}$ are temporally autocorrelated for fixed k

Image: A matrix

Introduction	The Data ooo	Models ●○○○○	Results 0000	Conclusions
Models				

Hierarchical Model

Total Number of Dives

- ► $n_i \sim [(\text{Total Number Dives})_i | \text{covariates}_i] = \text{Poi}(\lambda_i)$
- $\triangleright \log(\lambda_i) = \mathbf{x}'_i \boldsymbol{\beta} + \epsilon_i$
- ► {ε_i} are temporally autocorrelated

Categorical Counts

- y_i ~ [(Counts per Category)_i|n_i, covariates_i] = Mult(n_i, p_i)
 f(p_i); x_i, δ_{i,k} ?
- $\delta_{i,k}$ are temporally autocorrelated for fixed k
| Introduction | The Data
০০০ | Models
●○○○○ | Results
0000 | Conclusions |
|--------------|-----------------|-----------------|-----------------|-------------|
| Models | | | | |

- Total Number of Dives
 - ► $n_i \sim [(\text{Total Number Dives})_i | \text{covariates}_i] = \text{Poi}(\lambda_i)$
 - $\blacktriangleright \log(\lambda_i) = \mathbf{x}'_i \boldsymbol{\beta} + \epsilon_i$
 - $\{\epsilon_i\}$ are temporally autocorrelated
 - Categorical Counts
 - $\mathbf{y}_i \sim [(\text{Counts per Category})_i | n_i, \text{covariates}_i] = \text{Mult}(n_i, \mathbf{p}_i)$ • $f(\mathbf{p}_i); \mathbf{x}_i, \delta_{i+1} ?$
 - $\delta_{i,k}$ are temporally autocorrelated for fixed k

Introduction	The Data ooo	Models ●○○○○	Results 0000	Conclusions
Models				

- Total Number of Dives
 - $n_i \sim [(\text{Total Number Dives})_i | \text{covariates}_i] = \text{Poi}(\lambda_i)$
 - $\triangleright \log(\lambda_i) = \mathbf{x}'_i \boldsymbol{\beta} + \epsilon_i$
 - $\{\epsilon_i\}$ are temporally autocorrelated
- Categorical Counts
 - $\mathbf{y}_i \sim [(\text{Counts per Category})_i | n_i, \text{covariates}_i] = \text{Mult}(n_i, \mathbf{p}_i)$
 - $\blacktriangleright f(\mathbf{p}_i); \mathbf{x}_i, \delta_{i,k}$?
 - $\delta_{i,k}$ are temporally autocorrelated for fixed k

Introduction	The Data ooo	Models ●○○○○	Results 0000	Conclusions
Models				

- Total Number of Dives
 - $n_i \sim [(\text{Total Number Dives})_i | \text{covariates}_i] = \text{Poi}(\lambda_i)$
 - $\triangleright \log(\lambda_i) = \mathbf{x}'_i \boldsymbol{\beta} + \epsilon_i$
 - $\{\epsilon_i\}$ are temporally autocorrelated
- Categorical Counts
 - $\mathbf{y}_i \sim [(\text{Counts per Category})_i | n_i, \text{covariates}_i] = \text{Mult}(n_i, \mathbf{p}_i)$
 - $f(\mathbf{p}_i); \mathbf{x}_i, \delta_{i,k}$?
 - $\delta_{i,k}$ are temporally autocorrelated for fixed k

Introduction	The Data 000	Models ●○○○○	Results 0000	Conclusions
Models				

- Total Number of Dives
 - $n_i \sim [(\text{Total Number Dives})_i | \text{covariates}_i] = \text{Poi}(\lambda_i)$
 - $\blacktriangleright \log(\lambda_i) = \mathbf{x}'_i \boldsymbol{\beta} + \epsilon_i$
 - $\{\epsilon_i\}$ are temporally autocorrelated
- Categorical Counts
 - $\mathbf{y}_i \sim [(\text{Counts per Category})_i | n_i, \text{covariates}_i] = \text{Mult}(n_i, \mathbf{p}_i)$
 - $f(\mathbf{p}_i); \mathbf{x}_i, \delta_{i,k}$?
 - $\delta_{i,k}$ are temporally autocorrelated for fixed k

Introduction	The Data 000	Models ●○○○○	Results 0000	Conclusions
Models				

- Total Number of Dives
 - $n_i \sim [(\text{Total Number Dives})_i | \text{covariates}_i] = \text{Poi}(\lambda_i)$
 - $\triangleright \log(\lambda_i) = \mathbf{x}'_i \boldsymbol{\beta} + \epsilon_i$
 - $\{\epsilon_i\}$ are temporally autocorrelated
- Categorical Counts
 - $\mathbf{y}_i \sim [(\text{Counts per Category})_i | n_i, \text{covariates}_i] = \text{Mult}(n_i, \mathbf{p}_i)$
 - $f(\mathbf{p}_i); \mathbf{x}_i, \delta_{i,k}$?
 - $\delta_{i,k}$ are temporally autocorrelated for fixed k

Introduction	The Data 000	Models ●○○○○	Results 0000	Conclusions
Models				

- Total Number of Dives
 - $n_i \sim [(\text{Total Number Dives})_i | \text{covariates}_i] = \text{Poi}(\lambda_i)$
 - $\triangleright \log(\lambda_i) = \mathbf{x}'_i \boldsymbol{\beta} + \epsilon_i$
 - $\{\epsilon_i\}$ are temporally autocorrelated
- Categorical Counts
 - $\mathbf{y}_i \sim [(\text{Counts per Category})_i | n_i, \text{covariates}_i] = \text{Mult}(n_i, \mathbf{p}_i)$
 - $f(\mathbf{p}_i); \mathbf{x}_i, \delta_{i,k}$?
 - δ_{i,k} are temporally autocorrelated for fixed k

Introduction	The Data	Models	Results	Conclusions
		0000		
Madala				

- For unordered categorical data
- E.g., counties, colors, etc.
- Cumulative Logit Model
 - For ordered categorical data
 - ► E.g, Strongly Agree → Strongly Disagree
- Aggregated Continuous-value Models
 - When category values have real-value meaning
 - E.g, binned dive depths

Introduction	The Data	Models	Results	Conclusions
		0000		
Madala				

Multinomial Logistic Model

- For unordered categorical data
- E.g., counties, colors, etc.

Cumulative Logit Model

- For ordered categorical data
- ► E.g, Strongly Agree → Strongly Disagree

Aggregated Continuous-value Models

- When category values have real-value meaning
- E.g, binned dive depths

Introduction	The Data	Models	Results	Conclusions
		0000		
Madala				

Multinomial Logistic Model

- For unordered categorical data
- E.g., counties, colors, etc.

Cumulative Logit Model

- For ordered categorical data
- ► E.g, Strongly Agree → Strongly Disagree

Aggregated Continuous-value Models

- When category values have real-value meaning
- E.g, binned dive depths

Introduction	The Data	Models	Results	Conclusions
		0000		
Madala				

Multinomial Logistic Model

- For unordered categorical data
- E.g., counties, colors, etc.

Cumulative Logit Model

- For ordered categorical data
- ► E.g, Strongly Agree → Strongly Disagree

Aggregated Continuous-value Models

- When category values have real-value meaning
- E.g, binned dive depths

Introduction	The Data	Models	Results	Conclusions
		0000		
Madala				

- For unordered categorical data
- E.g., counties, colors, etc.
- Cumulative Logit Model
 - For ordered categorical data
 - ► E.g, Strongly Agree → Strongly Disagree
- Aggregated Continuous-value Models
 - When category values have real-value meaning
 - E.g, binned dive depths

Introduction	The Data	Models	Results	Conclusions
		0000		
Madala				

- For unordered categorical data
- E.g., counties, colors, etc.
- Cumulative Logit Model
 - For ordered categorical data
 - E.g, Strongly Agree \rightarrow Strongly Disagree
- Aggregated Continuous-value Models
 - When category values have real-value meaning
 - E.g, binned dive depths

Introduction	The Data	Models	Results	Conclusions
		0000		
Madala				

- For unordered categorical data
- E.g., counties, colors, etc.
- Cumulative Logit Model
 - For ordered categorical data
 - E.g, Strongly Agree \rightarrow Strongly Disagree
- Aggregated Continuous-value Models
 - When category values have real-value meaning
 - E.g, binned dive depths

Introduction	The Data	Models	Results	Conclusions
		0000		
Madala				

- For unordered categorical data
- E.g., counties, colors, etc.
- Cumulative Logit Model
 - For ordered categorical data
 - E.g, Strongly Agree \rightarrow Strongly Disagree
- Aggregated Continuous-value Models
 - When category values have real-value meaning
 - E.g, binned dive depths

Introduction	The Data	Models	Results	Conclusions
		0000		
Madala				

- For unordered categorical data
- E.g., counties, colors, etc.
- Cumulative Logit Model
 - For ordered categorical data
 - E.g, Strongly Agree \rightarrow Strongly Disagree
- Aggregated Continuous-value Models
 - When category values have real-value meaning
 - E.g, binned dive depths

Introduction	The Data 000	Models ○○●○○	Results 0000	Conclusions
Models				

The Basic idea; e.g., $\mathbf{p} = (0.4, 0.1, 0.2, 0.3)$

- Create probabilities by cutting a standard normal distribution
- The *p_k* will be the probability between cutpoints
- Then model the cutpoints with covariates and autocorrelation

Introduction	The Data 000	Models ○○●○○	Results 0000	Conclusions
Models				

The Basic idea; e.g., $\mathbf{p} = (0.4, 0.1, 0.2, 0.3)$

- Create probabilities by cutting a standard normal distribution
- The *p_k* will be the probability between cutpoints
- Then model the cutpoints with covariates and autocorrelation

Introduction	The Data 000	Models ○○●○○	Results 0000	Conclusions
Models				

The Basic idea; e.g., $\mathbf{p} = (0.4, 0.1, 0.2, 0.3)$

- Create probabilities by cutting a standard normal distribution
- The *p_k* will be the probability between cutpoints
- Then model the cutpoints with covariates and autocorrelation

Introduction 000	The Data 000	Models ○○○●○	Results ০০০০	Conclusions
Models				

- Can model η₁ directly with covariates η_{1,i} = x'_iθ₁ + δ_{1,i}
- $\eta_{k,i} = \eta_{k-1,i} + a_{k-1,i}$ for k > 1
- ► To keep order relations, need to model additive increments log(a_{k,i}) = x'_iθ_k + δ_{k,i}
- p_{k,i} = Φ(η_{k,i}) − Φ(η_{k−1,i}) where Φ is standard normal CDF

Introduction	The Data 000	Models ○○○●○	Results ০০০০	Conclusions
Models				

- Can model η₁ directly with covariates η_{1,i} = x'_iθ₁ + δ_{1,i}
- $\eta_{k,i} = \eta_{k-1,i} + a_{k-1,i}$ for k > 1
- ► To keep order relations, need to model additive increments log(a_{k,i}) = x'_iθ_k + δ_{k,i}
- ▶ p_{k,i} = Φ(η_{k,i}) − Φ(η_{k-1,i}) where Φ is standard normal CDF

Introduction 000	The Data 000	Models ○○○●○	Results ০০০০	Conclusions
Models				

- ► Can model η₁ directly with covariates η_{1,i} = x'_iθ₁ + δ_{1,i}
- $\eta_{k,i} = \eta_{k-1,i} + a_{k-1,i}$ for k > 1
- ► To keep order relations, need to model additive increments $log(a_{k,i}) = \mathbf{x}'_i \boldsymbol{\theta}_k + \delta_{k,i}$
- ► $p_{k,i} = \Phi(\eta_{k,i}) \Phi(\eta_{k-1,i})$ where Φ is standard normal CDF

Introduction 000	The Data 000	Models ○○○●○	Results ০০০০	Conclusions
Models				

- ► Can model η₁ directly with covariates η_{1,i} = x'_iθ₁ + δ_{1,i}
- $\eta_{k,i} = \eta_{k-1,i} + a_{k-1,i}$ for k > 1
- To keep order relations, need to model additive increments

 $\log(a_{k,i}) = \mathbf{x}'_i \boldsymbol{\theta}_k + \delta_{k,i}$

▶ p_{k,i} = Φ(η_{k,i}) − Φ(η_{k−1,i}) where Φ is standard normal CDF

Introduction	The Data 000	Models ○○○○●	Results 0000	Conclusions
Models				

We used Bayesian Methods

- Fit model using Markov Chain Monte Carlo
- Obtained posterior distribution of parameters:
 - regression' parameters β (overall counts), θ_k (kth category probabilities)
 - autocorrelation parameters
- Made predictions from posterior predictive distribution

Introduction	The Data 000	Models ○○○○●	Results 0000	Conclusions
Models				

- We used Bayesian Methods
- Fit model using Markov Chain Monte Carlo
- Obtained posterior distribution of parameters:
 - ▶ 'regression' parameters β (overall counts), θ_k (k^{th} category probabilities)
 - autocorrelation parameters
- Made predictions from posterior predictive distribution

Introduction	The Data 000	Models ○○○○●	Results 0000	Conclusions
Models				

- We used Bayesian Methods
- Fit model using Markov Chain Monte Carlo
- Obtained posterior distribution of parameters:
 - ▶ 'regression' parameters β (overall counts), θ_k (k^{th} category probabilities)
 - autocorrelation parameters
- Made predictions from posterior predictive distribution

Introduction	The Data 000	Models ○○○○●	Results 0000	Conclusions
Models				

- We used Bayesian Methods
- Fit model using Markov Chain Monte Carlo
- Obtained posterior distribution of parameters:
 - regression' parameters β (overall counts), θ_k (kth category probabilities)
 - autocorrelation parameters
- Made predictions from posterior predictive distribution

Introduction	The Data 000	Models ○○○○●	Results 0000	Conclusions
Models				

- We used Bayesian Methods
- Fit model using Markov Chain Monte Carlo
- Obtained posterior distribution of parameters:
 - regression' parameters β (overall counts), θ_k (kth category probabilities)
 - autocorrelation parameters
- Made predictions from posterior predictive distribution

Introduction	The Data 000	Models	Results ●ooo	Conclusions
Results				

Full Posterior Distribution

Depth Class

Introduction	The Data 000	Models 00000	Results o●oo	Conclusions
Results				

Full Posterior Distribution

Weighted Average Depth

Jay M. Ver Hoef

Introduction	The Data 000	Models ooooo	Results oo●o	Conclusions
Results				

Time of Day Effect

ADULT FEMALE

Introduction	The Data	Models 00000	Results oo●o	Conclusions
Results				

Time of Day Effect

JUVENILE MALE

Introduction	The Data 000	Models 00000	Results ooo●	Conclusions
Results				

Predictions

Adult Female

Introduction	The Data	Models 00000	Results ooo●	Conclusions
Results				

Predictions

Juvenile Male

Introduction	The Data 000	Models 00000	Results 0000	Conclusions ●○
Conclusions				

Conclusions

We can effectively use hierarchical cutpoint models to:

- model effect of covariates on overall counts and category probabilities,
- estimate full posterior distributions of category probabilities,
- compute functions of probabilities (e.g., weighted average depth) using full posterior distribution, and
- Make predictions for unobserved time periods.
- Manuscript submitted:
 - Higgs, M.D. and Ver Hoef, J.M. Discretized and Aggregated: Modeling Dive Depth of Harbor Seals from Ordered Categorical Data with Temporal Autocorrelation. Submitted to *Biometrics*.

Introduction	The Data ooo	Models 00000	Results 0000	Conclusions ●○
Conclusions				

Conclusions

- ► We can effectively use hierarchical cutpoint models to:
 - model effect of covariates on overall counts and category probabilities,
 - estimate full posterior distributions of category probabilities,
 - compute functions of probabilities (e.g., weighted average depth) using full posterior distribution, and
 - Make predictions for unobserved time periods.

Manuscript submitted:

Higgs, M.D. and Ver Hoef, J.M. Discretized and Aggregated: Modeling Dive Depth of Harbor Seals from Ordered Categorical Data with Temporal Autocorrelation. Submitted to *Biometrics*.

Introduction	The Data ০০০	Models 00000	Results 0000	Conclusions ●○
Conclusions				

Conclusions

- ► We can effectively use hierarchical cutpoint models to:
 - model effect of covariates on overall counts and category probabilities,
 - estimate full posterior distributions of category probabilities,
 - compute functions of probabilities (e.g., weighted average depth) using full posterior distribution, and
 - Make predictions for unobserved time periods.
 - Manuscript submitted:

Higgs, M.D. and Ver Hoef, J.M. Discretized and Aggregated: Modeling Dive Depth of Harbor Seals from Ordered Categorical Data with Temporal Autocorrelation. Submitted to *Biometrics*.
Introduction	The Data 000	Models 00000	Results 0000	Conclusions ●○
Conclusions				

- We can effectively use hierarchical cutpoint models to:
 - model effect of covariates on overall counts and category probabilities,
 - estimate full posterior distributions of category probabilities,
 - compute functions of probabilities (e.g., weighted average depth) using full posterior distribution, and
 - Make predictions for unobserved time periods.

Manuscript submitted:

Higgs, M.D. and Ver Hoef, J.M. Discretized and Aggregated: Modeling Dive Depth of Harbor Seals from Ordered Categorical Data with Temporal Autocorrelation. Submitted to *Biometrics*.

Introduction	The Data 000	Models 00000	Results 0000	Conclusions ●○
Conclusions				

- We can effectively use hierarchical cutpoint models to:
 - model effect of covariates on overall counts and category probabilities,
 - estimate full posterior distributions of category probabilities,
 - compute functions of probabilities (e.g., weighted average depth) using full posterior distribution, and
 - Make predictions for unobserved time periods.
- Manuscript submitted:
 - Higgs, M.D. and Ver Hoef, J.M. Discretized and Aggregated: Modeling Dive Depth of Harbor Seals from Ordered Categorical Data with Temporal Autocorrelation. Submitted to *Biometrics*.

Introduction	The Data 000	Models 00000	Results 0000	Conclusions ●○
Conclusions				

- We can effectively use hierarchical cutpoint models to:
 - model effect of covariates on overall counts and category probabilities,
 - estimate full posterior distributions of category probabilities,
 - compute functions of probabilities (e.g., weighted average depth) using full posterior distribution, and
 - Make predictions for unobserved time periods.
- Manuscript submitted:
 - Higgs, M.D. and Ver Hoef, J.M. Discretized and Aggregated: Modeling Dive Depth of Harbor Seals from Ordered Categorical Data with Temporal Autocorrelation. Submitted to *Biometrics*.

Introduction	The Data 000	Models 00000	Results 0000	Conclusions ●○
Conclusions				

- We can effectively use hierarchical cutpoint models to:
 - model effect of covariates on overall counts and category probabilities,
 - estimate full posterior distributions of category probabilities,
 - compute functions of probabilities (e.g., weighted average depth) using full posterior distribution, and
 - Make predictions for unobserved time periods.
- Manuscript submitted:
 - Higgs, M.D. and Ver Hoef, J.M. Discretized and Aggregated: Modeling Dive Depth of Harbor Seals from Ordered Categorical Data with Temporal Autocorrelation. Submitted to *Biometrics*.

Introduction	The Data 000	Models 00000	Results 0000	Conclusions
Conclusions				

Further Work

- Computational speed is an issue for large data sets.
- Models need to be extended to multiple animals.
- Develop an R package?

Introduction	The Data 000	Models 00000	Results 0000	Conclusions
Conclusions				

Further Work

- Computational speed is an issue for large data sets.
- Models need to be extended to multiple animals.
- Develop an R package?

Introduction	The Data 000	Models 00000	Results 0000	Conclusions
Conclusions				

Further Work

- Computational speed is an issue for large data sets.
- Models need to be extended to multiple animals.
- Develop an R package?

