WHEN 3% MAY NOT BE 3%;

DEVICE-EQUIPPED SEABIRDS EXPERIENCE VARIABLE FLIGHT

Swansea University Prifysgol Abertawe

Vandenabeele SP & Wilson RP SMART group Swansea University, UK

Swansea Moving Animal **Research Team**

Animal tracking and logging studies

Swansea Moving Animal Research Team

General bla bla

Potential negative impact of devices

- Aberrant behaviours Eg: device-induced behaviours ^a altered foraging behaviour ^b
- Physical injuries ^c

More bla bla

Potential negative impact of devices

- Compromised energetics

Swimming performance of penguins

Saraux et al 2011, Nature 2011

What about flying performance?

To date – we tend to use the "3% rule" (Kenward 2001)

A MANUAL FOR WILDLIFE RADIO TAGGING

To examine the effects of payload on the energetics of flying seabirds

4 primary forces

How to do it?

Determining birds energetics for flight is hard (impossible?)

Functional Ecology 2004 18, 168–183

ESSAY REVIEW

Measuring metabolic rate in the field: the pros and cons of the doubly labelled water and heart rate methods

P. J. BUTLER,*† J. A. GREEN,* I. L. BOYD‡ and J. R. SPEAKMAN§

The Journal of Experimental Biology 213, 2958-2968 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jeb.043414

Application of the two-sample doubly labelled water method alters behaviour and affects estimates of energy expenditure in black-legged kittiwakes

Jannik Schultner^{1,2,*}, Jorg Welcker¹, John R. Speakman³, Erling S. Nordøy² and Geir W. Gabrielsen¹

CO₂ production in animals: analysis of potential errors in the doubly labeled water method KENNETH A. NAGY Environmental Biology Division, Laboratory of Nuclear Medicine and Radiation Biology, University of California, Los Angeles, Los Angeles, California 90024

How to do it?

Flight program* of Prof. Pennycuick

JDELLING THE

THEORETICAL ECOLOGY SERIE

FLYING BIRD

C.I. Pennycuick

Based on aerodynamic rules (can be applied to particular birds and situations)

Simulation of payload effect

*New version of the freeware available online at http://books.elsevier.com/companions/9780123742995

(1) Devices are a heavy burden!

Flight 2010 Main Setup Screen

Either	Define	e new b	ird b	elow	Or	G	et bird fro	m one	of these dat	abases	:			
Conceine norme	Phologra		ha											
Species name Phalacrocorax car			100			P	reset Bird	.s	User Bir	ds	Wi	ıgs databa	se	
Short name Cormorant														
Notes Sample of 7 from S Sweden mixed			ed age		Age Set all variables to Original default				l default values	;				
-BMR catego	orv	Sex-				0) Adult		Set all y	oriobles t	o Heer (lafault voluer		
O Passerine		O M) Male 💿 Mixe			C) Immature							
 Non-passerine 		O Fe	male _	🔾 Un	known) Unknown		Reset User defaults to Original defaults					
Body Mass		2.56		kg	Click	to make	e displayed va	lue User	r default	First	t revie	w settings	, then:	
Fat Mass		0				Fat Fraction			0	Kun program				
Flight Muscle	e Mass	0.266		kg		Flig	ht Muscle Fra	c'n	0.104		Pow	er Curve		
[Airframe Ma	uss]	2.29		kg		[Air	frame Fractio:	n]	0.896		Gli	de Polar		
[All-up Mass]]	2.56		kg		- IPat	zload Fraction	- 1	0					
					_	(L 4)	,	9	<u> </u>	$\sim M$	igratio	n simulation	. —	
Payload Mass	s	0		kg						۲	Progr	ammed 🔘	GPS	
Payload Drag	Factor	1.00		_		De	fine envir	onmen	ıt		īv	limate		
Wing span	1.35		m			Gra	wity (m/sec-so	Ð	9.81]	TA.	ngrate		
Wing area	0.224	1	sq n	n										
Aspect ratio 8.14			Wing shape c		shape chec	ecker A		Air den	density calculator					
									Start			Cruise		
[Energy height fat+protein]		n]	0		km	Alti	Altitude ASL (m)		0			0		
[Energy height fat only]				km		Air density (kg/m-cubed)		-cubed)	1.225			1.225		

What we look at

Vmp: The speed for minimum mechanical power

Variation in the mechanical power at Vmp

80 seabird species from 8 families

Payload masses from 0 to 5% of the body mass

"3% rule" in terms of energetics

Group – mass-specific power

Intercept: Pre-existing differences in energy expenditure when flying encumbered

<u>Gradient</u>: differences in the degree of impact of the payload mass

- ← Alcidae
- –▲ Phalacrocoracidae
- $\times -$ Procellariidae
- - Diomedeidae
- -+-Sulidae
- $\triangle Laridae$
- - \diamond -Hydrobatidae
- $\circ -$ Sternidae

Interspecies variation

Family	Gradient
Terns (<i>Sternidae</i>)	0.07 ± 0.01
Storm-petrels (<i>Hydrobatidae</i>)	0.09 ± 0.01
Gulls (<i>Laridae)</i>	0.10 ± 0.02
Gannets, boobies (Sulidae)	0.10 ± 0.02
Albatrosses (<i>Diomedeidae</i>)	0.11 ± 0.01
Fulmarine and gadfly petrels, prions	
and shearwaters (Procellariidae)	0.12 ± 0.01
Cormorants (Phalacrocoracidae)	0.23 ± 0.04
Auks (<i>Alcidae)</i>	0.29 ± 0.03

Why?

Lifestyles affect morphology e.g. divers vs. non divers

Low body mass Large wing area

Low wing loading

Lifestyles affect morphology e.g. divers vs. non divers

Drag due to breakdown in natural streamlining

Simulation drag effect

Drag indices tested with the program

-Perfectly streamlined payload, payload drag factor= 1

Flight 2010 Main Setup Screen

Payload Mass	0	kg
💻 Payload Drag Factor	1.00	

 Example poor streamlined payload, payload drag factor = 1.5 (drag coefficient of the bird increased by a factor of 1.5*)

*Factor derived from starling data wearing a 'device' measured in a wind tunnel, Pers. Comm. (Pennycuick)

Simulation drag effect

Example of a Great cormorant (Phalacrocorax carbo)

Weight and drag are both important

What else?

Behaviour e.g. meal mass!

Chick provisioning period

Mean food load mass of 330g*

Great cormorant (*Phalacrocorax carbo*) fishing a fresh trout © Kea Photography

Great cormorant (*Phalacrocorax carbo*) feeding a chick © age fotostock / SuperStock

Simulation with payload AND food

Behaviour e.g. flight duration

Phalacrocoracidae family 2 similar species:

Great cormorant **European shag** (Phalacrocorax aristotelis) (Phalacrocorax carbo) Body mass (kg) 2.53 1.75 Wing area (m²) 0.22 0.16 Wing loading (kg/m^2) 11.7 11.2 Mass-specific mechanical 22.1 19.9 power with a 3% payload (J/s)

BUT NOT THE SAME BEHAVIOUR ! Flight duration differs

Variance between 'similar' species

Variance between 'similar' species

Balearic shearwater (*Puffinus mauretanicus*)

Average flight duration

Sooty shearwater (*Puffinus griseus*)

Average flight duration

Flight program application(s)

We can calculate the total energy used in transporting a device for any 24 h period;

Flight time X cost of flight (with device) + costs of other activities

Compare to

Flight time X cost of flight (with no device) + costs of other activities

Conclusion

Tags: ARE a revolutionary way to study free-living birds

BUT We need to get smarter about defining device effects (Colin Pennycuick can help!)

Thank you, merci, gracias, danke, arigatō...

Swansea Moving Anima Research Team

Swansea University Prifysgol Abertawe

