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Motivation/Objective

The purpose of many bio-logging experiments is to gain knowledge
about populations rather than about specific individuals.

However, many bio-logging data are individual based.

Therefore, techniques for analysing multiple individuals are often
needed.

Goal: Develop a simple, flexible, and fast method for inference in
groups using data from individuals.
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Case:
Analysis of acoustic telemetry

data
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Lake Gosmer with listening grid



Case: Acoustic data Individual analysis Population analysis Population inference Conclusion

Acoustic data logging

Setup

I Acoustic transmitters on M = 20 pike (Esox lucius L.).
I Retrieved data: horizontal location (via BioMap software),

depth (via pressure).
I Sample interval 45 sec. Total recording time: 2 months

(∼ 100000 obs per individual).
I Filtering to reduce the effect of outliers.
I Location uncertainty is negligible after filtering.
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The population of tagged pike

Numbered and sorted by length:
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Model for individual analysis
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Hidden Markov model (HMM) for movement behaviour

Setup a 2-state hidden Markov model for the unobservable
movement behaviour, Bt , of an individual pike.

I Movement behaviours: Bt ∈ {resting,moving}.
I Observations: Average speed (body length per second)

between locations.

I Covariate information: Time of day, τ ∈ {day, night}.
I Estimate model parameters with maximum likelihood.

Summarize estimates via the stationary distribution of Bt for
individual i .

So, θi = [θ(day), θ(night)]i is the probability that i is resting at day
and night time respectively.
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Individual likelihood functions
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Combining individual analyses

Mixed effects model:

θi = θ + wi

θ1 · · · θi · · · θM

Z(1) · · · Z(i) · · · Z(M)

Individual datasets

Random effects: wi ∼ N(0,W), Population parameters: θ and W.
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Individuals and population
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Difference between day and night?

Population parameter estimates (θ is probability fish is at rest):

θ(day) = 0.7838, θ(night) = 0.9785.

Standard statistical tests conclude that day and night time
behaviour are significantly different (p-value 3.73× 10−13)
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Deviating individuals?

Leave-one-out procedure (for night or day):

Loop over j ∈ {1, . . . ,M}
I Leave out individual j from the population.

I For the reduced population calculate the ML estimates: θ̂, Ŵ .

I Test in a χ2-distribution if individual j is significantly different
from the reduced population.
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I Test in a χ2-distribution if individual j is significantly different
from the reduced population.



Case: Acoustic data Individual analysis Population analysis Population inference Conclusion

Leave-one-out (1/3)

Day, left out:
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Leave-one-out (2/3)

Day, left out: 5
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Leave-one-out (3/3)

Day, left out: 5,12
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Conclusion

Key assumption: Individual likelihood functions must be well
approximated by a Gaussian.

Important properties of the method:

I The technique is compatible with any type of individual model
estimated with ML.

I Individuals are estimated independently, easy to include new
data.

I Population estimation is fast (seconds).

I Individuals deviating from the population can be identified.

Thank you for listening!
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