Case: Acoustic data
 Individual analysis
 Population analysis
 Population inference
 Conclusi

 0000
 00
 00
 00
 00
 0
 0

Individual based population inference using tagging data

Martin W. Pedersen, Uffe H. Thygesen, Henrik Baktoft and Henrik Madsen Fourth International Science Symposium on Bio-logging 15 March 2011

Technical University of Denmark

Case: Acoustic data	Individual analysis 00	Population analysis 00	Population inference	Conclusion O
Motivation/	Objective			

The purpose of many bio-logging experiments is to gain knowledge about populations rather than about specific individuals.

Case: Acoustic data	Individual analysis 00	Population analysis 00	Population inference	Conclusion O
Motivation/	Objective			

The purpose of many bio-logging experiments is to gain knowledge about populations rather than about specific individuals.

However, many bio-logging data are individual based.

Case: Acoustic data	Individual analysis 00	Population analysis 00	Population inference	Conclusion O
Motivation,	Objective			

The purpose of many bio-logging experiments is to gain knowledge about populations rather than about specific individuals.

However, many bio-logging data are individual based.

Therefore, techniques for analysing multiple individuals are often needed.

Case: Acoustic data	Individual analysis 00	Population analysis 00	Population inference	Conclusion O
Motivation,	Objective			

The purpose of many bio-logging experiments is to gain knowledge about populations rather than about specific individuals.

However, many bio-logging data are individual based.

Therefore, techniques for analysing multiple individuals are often needed.

Goal: Develop a simple, flexible, and fast method for inference in groups using data from individuals.

Case: Acoustic data	Individual analysis	Population analysis	Population inference	Conclusion
0000	00	00	00000	0

Case: Analysis of acoustic telemetry data

Case: Acoustic data •000	Individual analysis 00	Population analysis	Population inference	Conclusion O
Lake Gosme	r with listeni	ng grid		

Case: Acoustic data	Individual analysis 00	Population analysis	Population inference	Conclusion O
Acoustic dat	ta logging			

Case: Acoustic data	Individual analysis 00	Population analysis	Population inference	Conclusion O
Acoustic data	logging			

• Acoustic transmitters on M = 20 pike (*Esox lucius* L.).

Case: Acoustic data	Individual analysis	Population analysis	Population inference	Conclusion O
Acoustic data	alogging			

- Acoustic transmitters on M = 20 pike (*Esox lucius* L.).
- Retrieved data: horizontal location (via BioMap software), depth (via pressure).

Case: Acoustic data	Individual analysis 00	Population analysis	Population inference	Conclusion O
Acoustic data	logging			

- Acoustic transmitters on M = 20 pike (*Esox lucius* L.).
- Retrieved data: horizontal location (via BioMap software), depth (via pressure).
- Sample interval 45 sec. Total recording time: 2 months (~ 100000 obs per individual).

Case: Acoustic data	Individual analysis 00	Population analysis	Population inference	Conclusion O
Acoustic data	logging			

- Acoustic transmitters on M = 20 pike (*Esox lucius* L.).
- Retrieved data: horizontal location (via BioMap software), depth (via pressure).
- Sample interval 45 sec. Total recording time: 2 months (~ 100000 obs per individual).
- Filtering to reduce the effect of outliers.

Case: Acoustic data	Individual analysis 00	Population analysis	Population inference	Conclusion O
Acoustic data	alogging			

- Acoustic transmitters on M = 20 pike (*Esox lucius* L.).
- Retrieved data: horizontal location (via BioMap software), depth (via pressure).
- Sample interval 45 sec. Total recording time: 2 months (~ 100000 obs per individual).
- Filtering to reduce the effect of outliers.
- Location uncertainty is negligible after filtering.

Numbered and sorted by length:

Case: Acoustic data	Individual analysis 00	Population analysis	Population inference	Conclusion O
Population in	nference			

Case: Acoustic data	Individual analysis	Population analysis	Population inference	Conclusion
0000	00	00	00000	0

Model for individual analysis

• Movement behaviours: $B_t \in \{\text{resting}, \text{moving}\}.$

- Movement behaviours: $B_t \in \{\text{resting}, \text{moving}\}.$
- Observations: Average speed (body length per second) between locations.

- Movement behaviours: $B_t \in \{\text{resting}, \text{moving}\}.$
- Observations: Average speed (body length per second) between locations.
- Covariate information: Time of day, $\tau \in {\text{day, night}}$.

- Movement behaviours: $B_t \in \{\text{resting}, \text{moving}\}.$
- Observations: Average speed (body length per second) between locations.
- Covariate information: Time of day, $\tau \in {\text{day, night}}$.
- Estimate model parameters with maximum likelihood.

- Movement behaviours: $B_t \in \{\text{resting}, \text{moving}\}.$
- Observations: Average speed (body length per second) between locations.
- Covariate information: Time of day, $\tau \in {day, night}$.
- Estimate model parameters with maximum likelihood.

Summarize estimates via the stationary distribution of B_t for individual *i*.

- Movement behaviours: $B_t \in \{\text{resting}, \text{moving}\}.$
- Observations: Average speed (body length per second) between locations.
- Covariate information: Time of day, $\tau \in {day, night}$.

Estimate model parameters with maximum likelihood. Summarize estimates via the stationary distribution of B_t for individual *i*.

So, $\theta_i = [\theta^{(day)}, \theta^{(night)}]_i$ is the probability that *i* is resting at day and night time respectively.

Case: Acoustic data	Individual analysis	Population analysis	Population inference	Conclusion
0000	00	00	00000	0

Population analysis combining individual analyses

Case: Acoustic data	Individual analysis OO	Population analysis •0	Population inference	Conclusion O
Combining in	dividual ana	lyses		

Mixed effects model:

Case: Acoustic data	OO	Population analysis O	Population inference	O
Complete terms to	attrational second	l		

Combining individual analyses

Mixed effects model:

Individual datasets

Case: Acoustic data	00	00000	O
Complete in a in	والمراجع المراجع والأراجع		

Combining individual analyses

Mixed effects model:

Individual datasets

Random effects: $\mathbf{w}_i \sim N(\mathbf{0}, \mathbf{W})$, Population parameters: $\boldsymbol{\theta}$ and \mathbf{W} .

Case: Acoustic data	Individual analysis	Population analysis	Population inference	Conclusion
0000	00	00	00000	0

Population inference

Case: Acoustic data Individual analysis Population analysis Population inference 00000

Difference between day and night?

Population parameter estimates (θ is probability fish is at rest):

$$\theta^{(day)} = 0.7838, \qquad \theta^{(night)} = 0.9785.$$

Difference between day and night?

Population parameter estimates (θ is probability fish is at rest):

$$\theta^{(day)} = 0.7838, \qquad \theta^{(night)} = 0.9785.$$

Standard statistical tests conclude that day and night time behaviour are significantly different (p-value 3.73×10^{-13})

Case: Acoustic data	Individual analysis 00	Population analysis	Population inference	Conclusion O
Deviating in	ndividuals?			

Case: Acoustic data	Individual analysis 00	Population analysis	Population inference	Conclusion O
Deviating in	ndividuals?			

Loop over $j \in \{1, \dots, M\}$

• Leave out individual *j* from the population.

Case: Acoustic data	Individual analysis 00	Population analysis 00	Population inference	Conclusion O
Deviating in	ndividuals?			

Loop over $j \in \{1, \ldots, M\}$

- Leave out individual *j* from the population.
- For the reduced population calculate the ML estimates: $\hat{\theta}$, \hat{W} .

Case: Acoustic data	Individual analysis 00	Population analysis 00	Population inference	Conclusion O
Deviating in	ndividuals?			

Loop over $j \in \{1, \ldots, M\}$

- ▶ Leave out individual *j* from the population.
- For the reduced population calculate the ML estimates: $\hat{\theta}$, \widehat{W} .
- Test in a χ²-distribution if individual *j* is significantly different from the reduced population.

Case: Acoustic data	Individual analysis 00	Population analysis	Population inference	Conclusion O
Leave-one-ou	ut (1/3)			

Day, left out:

Night, left out:

Case: Acoustic data	Individual analysis 00	Population analysis 00	Population inference	Conclusion O
Leave-one-o	ut (2/3)			

Day, left out: 5

Night, left out: 2,8

Case: Acoustic data	Individual analysis 00	Population analysis 00	Population inference	Conclusion O
Leave-one-o	out (3/3)			

Day, left out: 5,12

Night, left out: 2,8,1

Case: Acoustic data	Individual analysis	Population analysis	Population inference	Conclusion
0000	00	00	00000	0

Conclusion

Case: Acoustic data	Individual analysis 00	Population analysis OO	Population inference	Conclusion •
Conclusion				

Case: Acoustic data	Individual analysis 00	Population analysis	Population inference	Conclusion •
Conclusion				

Case: Acoustic data	Individual analysis oo	Population analysis	Population inference	Conclusion •
Conclusion				

Important properties of the method:

The technique is compatible with any type of individual model estimated with ML.

Case: Acoustic data	Individual analysis 00	Population analysis	Population inference	Conclusion •
Conclusion				

- The technique is compatible with any type of individual model estimated with ML.
- Individuals are estimated independently, easy to include new data.

Case: Acoustic data	Individual analysis 00	Population analysis	Population inference	Conclusion •
Conclusion				

- The technique is compatible with any type of individual model estimated with ML.
- Individuals are estimated independently, easy to include new data.
- Population estimation is fast (seconds).

Case: Acoustic data	Individual analysis 00	Population analysis	Population inference	Conclusion •
Conclusion				

- The technique is compatible with any type of individual model estimated with ML.
- Individuals are estimated independently, easy to include new data.
- Population estimation is fast (seconds).
- Individuals deviating from the population can be identified.

Case: Acoustic data	Individual analysis 00	Population analysis 00	Population inference	Conclusion •
Conclusion				

Important properties of the method:

- The technique is compatible with any type of individual model estimated with ML.
- Individuals are estimated independently, easy to include new data.
- Population estimation is fast (seconds).
- Individuals deviating from the population can be identified.

Thank you for listening!