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ABSTRACT

A new ensemble ocean data assimilation system, developed for the Predictive Ocean Atmosphere Model

for Australia (POAMA), is described. The new system is called PEODAS, the POAMA Ensemble Ocean

Data Assimilation System. PEODAS is an approximate form of an ensemble Kalman filter system. For

a given assimilation cycle, a central forecast is integrated, along with a small ensemble of forecasts that are

forced with perturbed surface fluxes. The small ensemble is augmented with multiple small ensembles from

previous assimilation cycles, yielding a larger ensemble that consists of perturbed forecasts from the last

month. This larger ensemble is used to represent the system’s time-dependent background error covariance.

At each assimilation cycle, a central analysis is computed utilizing the ensemble-based covariance. Each of the

perturbed ensemble members are nudged toward the central analysis to control the ensemble spread and

mean. The ensemble-based covariances generated by PEODAS potentially yield dynamically balanced

analysis increments. The time dependence of the ensemble-based covariance yields spatial structures that

change for different dynamical regimes, for example during El Niño and La Niña conditions. These differ-

ences are explored in terms of the dominant dynamics and the system’s errors. The performance of PEODAS

during a 27-yr reanalysis is evaluated through a series of comparisons with assimilated and independent

observations. When compared to its predecessor, POAMA version 1, and a simulation with no assimilation of

subsurface observations, PEODAS demonstrates a quantitative improvement in skill. PEODAS will form the

basis of Australia’s next operational seasonal prediction system.

1. Introduction

Seasonal prediction is motivated to support a variety

of communities and industrial groups including agricul-

ture (McIntosh et al. 2007), monitoring and management

of coral bleaching events (Spillman and Alves 2009),

anticipation and management of vector-borne diseases

(Thomson et al. 2006), and long-range forecasts of climate

indicators (e.g., Zhao and Hendon 2009). Prediction of

seasonal mean rainfall and circulation in the atmosphere

for different regions of the globe is of great scientific and

societal interest (Shukla et al. 2000). Dynamical seasonal

prediction, also termed seasonal forecasting, usually

involves the initialization and integration of a coupled

ocean–atmosphere model and provides forecasts over

time ranges of many months. Most seasonal forecast

systems involve ensemble prediction to help formulate

probabilistic forecasts and to provide users with an in-

dication of forecast uncertainty. An important aspect

of a seasonal forecast system is the ocean initialization,

where oceanic observations are combined with a model-

generated background field, providing ocean initial con-

ditions for a forecast, or an ensemble of forecasts.

Existing ocean data assimilation systems, used in the

initialization of operational and preoperational seasonal

forecasts, include but are not limited to: those at the Japan

Meteorological Agency [Meteorological Research Insti-

tute multivariate ocean variational estimation (MOVE);

Usui et al. 2006], the European Centre for Medium-Range

Weather Forecasts (ECMWF) Ocean Re-Analysis sys-

tem 3 (ORA-S3; Balmaseda et al. 2008), Meteo-France

(PSY2G2 from Mercator Ocean), the Bureau of Meteo-

rology (PEODAS, described in this paper), National
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Centers for Environmental Prediction (NCEP) Global

Ocean Data Assimilation System (GODAS; Behringer

2007), the Met Office Global Seasonal Prediction Model

(GloSea3), and National Aeronautic and Space Admin-

istration (NASA) global modeling and assimilation office

(ODAS-1; Keppenne et al. 2008). For a review of these

systems, including a comparison of their methods and new

developments in coupled model initialization [e.g., Geo-

physical Fluid Dynamics Laboratory (GFDL) coupled

data assimilation (CDA) system; Zhang et al. 2007], the

reader is referred to Balmaseda et al. (2009). Of these

systems, some are based on three-dimensional variational

(3DVAR) methods, some on univariate or multivariate

optimal interpolation (OI), and some are variants of the

ensemble Kalman filter (EnKF; Evensen 1994; Houte-

kamer and Mitchell 1998; Burgers et al. 1998). Some

systems compute analyses in a single step, while others

assimilate different data types independently over several

steps. Other aspects of these systems that differ include

the treatment of biases, the data types assimilated, and

the initialization methods employed.

The ocean analysis system for the first-generation sea-

sonal prediction system in Australia, called the Predictive

Ocean Atmosphere Model for Australia versions 1 and

1.5 (POAMA; Alves et al. 2003; more information avail-

able online at http://poama.bom.gov.au/), is based on a

univariate OI system (Smith et al. 1991) that assimilates

only in situ temperature observations. Such univariate

analysis schemes have been shown to provide benefits in

reducing uncertainty and improving initial conditions

for dynamical seasonal forecasts (Alves et al. 2004).

However, because of the lack of appropriate multivari-

ate formulations, this approach has a detrimental effect

on the salinity and velocity fields of the model. Troccoli

et al. (2002) reported that the univariate assimilation

of temperature profiles, without attempting to correct

salinity, can induce spurious convection and result in

errors in the subsurface temperature and salinity fields.

Bell et al. (2004) found that assimilation of temperature

data into an ocean model near the equator often results

in a dynamically unbalanced state with unrealistically

strong vertical motions that corrupt the increments in-

troduced by the data assimilation scheme and lead to an

ocean state with a biased density field. To address these

problems recent developments have focused on dynam-

ically balanced multivariate analysis schemes for ocean

data assimilation. For instance, Troccoli et al. (2002) pro-

posed a method to preserve water mass characteristics,

and Burgers et al. (2002) suggested imposing geostroph-

ically balanced increments to horizontal velocities and

density. In addition, various bias estimation and treatment

techniques, inspired by Dee and Da Silva (1998), have

been proposed for ocean data assimilation (Bell et al.

2004; Chepurin et al. 2005; Balmaseda et al. 2007).

However, most of these techniques are not truly multi-

variate, since the analysis is performed by taking dynam-

ical constraints that are applied a posteriori to a statistically

generated univariate analysis. These approaches require

parameter tuning and do not make optimal use of mul-

tivariate information in defining the analysis itself, and

therefore, make the assimilation of different data types

more complicated.

Ensemble-based data assimilation methods are rela-

tively new and potentially attractive alternatives to four-

dimensional variational (4DVAR) methods for operational

data assimilation systems. They are relatively simple to

code and maintain, since the tangent linear and adjoint

models of the dynamics are not required. They also pro-

vide an ensemble of states to initialize ensemble forecasts.

Ensemble-based background error covariances are state-

dependent, inhomogeneous, anisotropic, and multivar-

iate. Also, they facilitate the simultaneous assimilation

of different observation types in a single analysis step,

and yield potentially dynamically consistent analyses.

Based on these considerations, a new ensemble-based

ocean analysis system called the POAMA Ensemble

Ocean Data Assimilation System (PEODAS) has been

developed for operational implementation at the Aus-

tralian Bureau of Meteorology. PEODAS can be regarded

as an inexpensive EnKF because of simplifications used

to reduce the system’s computational cost. The purpose of

this paper is to document the details of PEODAS, to de-

scribe the salient properties of this system, and to docu-

ment its performance through the assessment of a 27-yr

reanalysis. This paper is organized as follows: a brief

introduction to data assimilation is presented in section

2, along with a short description of the POAMA-1 as-

similation (Alves et al. 2003) and a detailed description

of PEODAS. A description of the ocean model that

underpins POAMA and PEODAS and the configuration

of a 27-yr reanalysis are presented in section 3, followed

by an analysis and discussion of the characteristics of

PEODAS in section 4. Results from a series of reanalyses

are presented in section 5, including a series of model-

observation comparisons, and a summary is presented in

section 6.

2. Data assimilation

a. Background

Consider the analysis equations,

xa 5 xb 1 K(y� Hxb) and (1)

K 5 PbHT(HPbHT 1 R)�1, (2)
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where x is the model state vector, y is the vector of

observations, K is the Kalman gain matrix, and H is an

operator that maps from model space to observation

space—typically H is simply linear interpolation. The

matrix Pb is the background error covariance and R is

the observation error covariance. Superscripts a and b de-

note analysis and background, respectively, and the su-

perscript T denotes a matrix transpose. The background

field xb is the model field before assimilation, and the

analysis xa is the model field after assimilation. The no-

tation is based, wherever possible, on Ide et al. (1997).

Traditional OI-based schemes (e.g., Smith et al. 1991)

typically solve the analysis Eqs. (1) and (2) by estimating

the background error covariances in Pb with an analytical

function, usually a Gaussian function. In this case, the

length scales of the background errors are usually assumed

to be fixed in time, often vary in space, and are estimated

from statistical properties of observations (e.g., Kanamitsu

1989). In most cases the observation errors are assumed

to be uncorrelated, so R is diagonal and the diagonal ele-

ments represent the assumed observation error variance,

including both instrument and representation error (e.g.,

Oke and Sakov 2008). A critical aspect of any data as-

similation system is the ratio of the assumed background to

observation error variance. This largely determines the

degree to which observations are fitted by an assimilation

system.

The analysis Eqs. (1) and (2) can be readily expressed

in terms of an ensemble, using

Pb 5 r 8 A9A9T/(m� 1) and (3)

K 5 r 8 A9(HA9)T[r 8 HA9(HA9)T 1 (m� 1)R]�1, (4)

where m is the ensemble size, r is a correlation function,

the open circles denote Hadamard product (or Schur

product, an element-by-element matrix multiplication;

Houtekamer and Mitchell 2001), and the ensemble per-

turbation matrix A9 is given by

A9 5 [x9
1
x9

2
. . . x9

m
], (5)

where xi9 is the ith perturbation ensemble member, de-

rived from the ith ensemble member by removing the

ensemble mean. Most EnKF-based systems can be

classified into one of two flavors, the traditional EnKF

with perturbed observations (e.g., Burgers et al. 1998;

Houtekamer and Mitchell 2001), or ensemble square

root filters (ESRFs; Tippett et al. 2003 and references

therein). For a traditional implementation of the EnKF,

observations are perturbed according to their assumed

error, and a different realization of the observations is

assimilated with each ensemble member yielding an

analysis that has the theoretical minimum analysis er-

ror covariance in a statistical sense. By contrast, ESRFs

generally solve the analysis Eqs. (1) and (2) for the en-

semble mean, and then transform, or update, the ensemble

about that mean so that its analysis error covariance

matches the theoretical minimum analysis error co-

variance. So, the traditional EnKF involves the calculation

of m analyses for an m-member ensemble, and the ESRF

involves the explicit update of m ensemble members. Both

flavors of the EnKF are computationally expensive, and

are not always feasible for a practical application. The

EnKF system developed here is more like an ESRF than

an EnKF with perturbed observations. However, the en-

semble transformation is achieved by nudging each en-

semble member to the ‘‘central analysis.’’ This is described

in detail below in section 2c.

The inclusion of the correlation function in Eqs. (3)

and (4) represents localization (e.g., Houtekamer and

Mitchell 2001). Localization is a necessary part of any

ensemble-based data assimilation system where the model

state dimension exceeds the ensemble size. Localization

acts to reduce sampling error that arises from the use of a

small ensemble, and to increase the rank of the ensemble,

so that the system can ‘‘fit’’ the background innovations.

One of the negative consequences of localization is the

introduction of dynamical imbalance (e.g., Mitchell et al.

2002; Oke et al. 2007). As a general rule, as the localizing

length scale is shortened (lengthened) the rank of the en-

semble increases (decreases), the analyses can be made to

fit observations more (less), and analysis increments be-

come less (more) dynamically consistent. Without locali-

zation (i.e., r 5 1), it follows directly from Eqs. (1) and (4)

that

xa � xb 5 A9c, (6)

where c is an m-element vector. Written in this form, it is

clear that when an ensemble is used to approximate the

background error covariance, the increment, represented

by Eq. (6), is simply a linear combination of ensemble

perturbations. When localization is used, the coefficients

c in Eq. (6) vary in space—though these coefficients are

generally not computed explicitly. This demonstrates that

there is a clear relationship between how an ensemble is

constructed and the assumptions made when implemen-

ting the data assimilation system.

The application considered in this paper is for seasonal

prediction. An important source of background error for

the ocean state is due to errors in the surface forcing, and

specifically the surface fluxes on intraseasonal time scales.

In the assimilation system introduced below, we explicitly

perturb the surface fluxes for the ensemble. As a result,
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the ensemble contains perturbations to the ocean state

that reflect uncertainties in the surface fluxes. Ocean

model error, such as parameterization of vertical mixing

and other subgrid-scale processes, are not explicitly rep-

resented and can be significant. As discussed in detail

below in section 2c, the construction of the ensemble in

this study explicitly represents errors in surface forcing,

and the ocean model error is accounted for by introducing

ocean perturbations through a simple method: additive

inflation.

There are many flavors of ensemble data assimilation

systems that evolve, update, and characterize different

ensemble members in different ways. The simplest of

these use a time-invariant ensemble (e.g., Oke et al. 2005,

2008, 2009); some use a seasonally varying ensemble that

is not state dependent (e.g., Brasseur et al. 2005); and

others evolve the ensemble with time, resulting in truly

state-dependent estimates of the background errors (e.g.,

Leeuwenburgh 2005; Bertino and Lisaeter 2008). The

system developed here conforms to the latter, with state-

dependent estimates of the background errors, implicit

in the time-evolving ensemble, as described below in

section 2c.

b. POAMA-1

POAMA-1 is a first generation seasonal prediction

system that is run operationally at the Bureau of Meteo-

rology. The first version of POAMA (POAMA-1) was

developed in a joint project involving the Bureau of Me-

teorology Research Centre and Australian Commonwealth

Scientific and Research Organization (CSIRO) Marine

Research. POAMA-1 became operational in October 2002,

and has produced routine seasonal forecasts since then.

A new version, POAMA-1.5, became operational in June

2007, however in this version there were no changes to

the ocean data assimilation component.

The data assimilation system for POAMA-1 is a vari-

ation of the univariate OI scheme that is described by

Smith et al. (1991). The details of POAMA-1 are pre-

sented by Alves et al. (2003). An important feature of the

POAMA-1 ocean assimilation system is that the weight

given to observations has been set to be no greater than

that of the background field. This is to avoid large ini-

tialization shock in the coupled model, which may de-

teriorate the forecast skill. This is a common strategy used

by the seasonal prediction community (e.g., Balmaseda

et al. 2008). Additionally, the model sea surface tem-

perature (SST) field is strongly relaxed to model-gridded

SST analysis products, so that the model SST is always

close to the ‘‘observed’’ SST. This is often regarded as an

important requirement for seasonal forecast initialization

(e.g., Balmaseda et al. 2008; Daget et al. 2009). Specif-

ically, the ratio of the model error standard deviation to

that of the observations is 0.47 (this factor of 0.47 was

established when POAMA-1 was initially developed

through a process of tuning). The observation errors are

assumed to be correlated in space, with an e-folding dec-

orrelation scale of 150 km. The background error co-

variances Pb are modeled as Gaussian functions. Within

108 of the equator the covariances are assumed to be

anisotropic, with e-folding zonal and meridional length

scales of 1500 and 300 km, respectively. At mid and high

latitudes (outside of 6258 latitudes) the covariances are

assumed to be isotropic, with e-folding length scales of

500 km. Between 108 and 258 from the equator, the length

scales are simply linearly interpolated.

POAMA-1 assimilates observations of in situ temper-

ature from the top 500 m of the ocean, producing two-

dimensional maps of temperature on model levels. The

observations are preinterpolated to model levels before

assimilation using linear interpolation. Salinity is not

updated by POAMA-1. Based on the increments com-

puted for temperature, geostrophic increments are com-

puted for velocity, using a method that is similar to that

described by Burgers et al. (2002).

c. PEODAS

The new assimilation system that is introduced here,

PEODAS, is a variation of an EnKF system. PEODAS

includes the routine generation of an ensemble of initial

conditions that are used to generate a perturbed forecast

ensemble, and a state-dependent estimate of the back-

ground error covariance. We regard these features as

essential for seasonal prediction. Specifically, the ability

to perform ensemble forecasts is important because it

readily permits the issuance of probabilistic forecasts

(e.g., Gneiting and Raftery 2005). Moreover, we expect

the background field errors in a system to be largely

attributable to errors in the surface forcing, and there-

fore, to be highly state dependent, for example, for dif-

ferent phases of the El Niño–Southern Oscillation

(ENSO) or the Madden–Julian oscillation (MJO). We

therefore expect the greatest uncertainty along the equa-

tor to be centered about the time-varying position of the

ocean’s seasonal thermocline in response to uncertainty

in the intraseasonal and interannual wind stress, and other

surface flux components.

Because of limited computational resources, only a

small ensemble size is viable, which limits the number of

degrees of freedom used to represent forecast and anal-

ysis errors. Techniques for background covariance con-

ditioning methods, such as localization have been applied

here to solve this problem. However, while localization

effectively removes spurious long-range covariances, it

does not effectively damp the high-frequency short-scale

oscillations that are present in low-rank error covariance
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estimates. Considering the slow changing nature of the

ocean, we therefore designed a method to reduce the

high-frequency short-scale oscillations. This method sim-

ply involves constructing the ensemble by including all the

ensemble perturbations from the previous assimilation

cycles within the intraseasonal time span. Experiments

show this method does play a role as a filter similar to that

of the spatiotemporal filter designed by Keppenne et al.

(2008).

PEODAS differs from traditional EnKF systems in that

only a single analysis is computed for a central forecast

(like the ESRF). This analysis is calculated every 3 days

using a modified version of the Bluelink Ocean Data

Assimilation System (BODAS; Oke et al. 2008). A

schematic of a typical integration of PEODAS is presented

in Fig. 1. Briefly, a central model run is integrated, along

with 11 perturbed ensemble members. For calculating the

background covariances these 11 ensemble perturbations

are augmented by the 11 ensemble perturbations from each

of the previous nine assimilation cycles. Together, this gives

an ensemble of 110 perturbations. At each assimilation

cycle, the 110-member perturbation ensemble is used to

estimate the background error covariances according to

Eq. (3). Using these background error covariance es-

timates, the model background field, from the central

model run, is updated by assimilating observations using

the analysis Eqs. (1) and (2). PEODAS computes ana-

lyses and analysis increments for temperature, salinity,

and velocity. The analysis increments for velocity are

based on the ensemble-based covariance only, and do

not involve any explicit assumption of geostrophy.

We chose to use a central run as a background rather

than using the ensemble mean, and we only explicitly

assimilate observations into the central run. This choice

also facilitates the implementation of strong relaxation

of SST in the central run to a gridded SST analysis and

weak relaxation of SST to the perturbed runs. The model

SST of the central run is always close to the ‘‘observed’’

SST while the ensemble spread of SST can be tuned by

varying the relaxation time scale. This approach also

helps to avoid the effect of sample error on the estimate

of the ensemble mean due to a small sample size.

After each analysis, the ensemble members are up-

dated by ‘‘compressing and nudging’’ the prior members

around the central analysis. This step is the counterpart to

the ensemble transformation step of ESRFs, or the as-

similation of perturbed observations for the traditional

EnKF. The ith ensemble member Ai is compressed and

nudged toward the central analysis AC according to:

Au
i 5 Ap

i 1 a(A
C
� Ap

i ) 1 b(AC � Ap), (7)

where p denotes prior, u denotes updated, a and b are

nudging factors that can vary between 0 and 1, and the

overbar denotes the ensemble mean. Here, a 5 1 2 b is

selected so that the Eq. (7) can be rewritten as

Au
i 5 AC 1 b(Ap

i � Ap), (8)

and the factor b is specified as

b 5 (1 1 s2
b/s2

o)�1/2, (9)

where sb
2 and so

2 denote the background error variance

and the observation error variance, respectively. By this

approach, the updated ensemble mean is shifted toward

the central analysis and the ensemble spread is adjusted

to being b times its prior value. The factor b here is spec-

ified according to an ESRF formula (Anderson 2003) by

assuming that the observation errors are uncorrelated and

the distribution of observations is even and sufficiently

dense so that there is at least one observation in each

FIG. 1. Schematic of the assimilation system, showing the consecutive integration of an en-

semble of forecasts with perturbed forcing (Alves and Robert 2005), the combination of ob-

servations with the ensemble mean using an ensemble optimal interpolation (EnOI) approach

(Oke et al. 2005, 2008), and the compression of the ensemble toward the central analysis.
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model grid. Although this approach is suboptimal as it

does not take into account the distribution of observa-

tions, this simplified ensemble method leads to very sig-

nificant computational savings. In theory, since sb
2 comes

from the prior ensemble, it varies with space and time and

so does the b. However, as discussed in detail later, we

use preassigned ratio of sb
2 and so

2, which leads to a fur-

ther simplification of the ensemble transformation.

To account for errors in the surface fluxes at intra-

seasonal time scales, we perturb the surface forcing for

each ensemble member. The method for generating these

perturbations is an extension of the approach developed

by Alves and Robert (2005). Briefly, we characterize the

likely errors in surface fluxes (i.e., zonal and meridional

surface stress, surface heat flux, shortwave radiation, and

freshwater flux) by computing differences between the

forcing fields from the NCEP/National Center for At-

mospheric Research (NCAR) and 40-yr European Cen-

tre for Medium-Range Weather Forecasts (ECMWF)

Re-Analysis (ERA-40) reanalysis products (Kalnay et al.

1996; Uppala et al. 2005). Time series of these fields are

filtered in time, isolating the variability of 5 to 120 days.

Perturbations on these time scales project strongly onto

ocean thermocline variations. The first 139 EOFs of a 2-yr

record of the normalized difference fields are computed.

The EOFs contain the spatial structures of the errors in

the surface flux fields. A time series of these EOFs are

computed using randomly generated but time-correlated

amplitudes for each EOF. A similar approach was also

used by Leeuwenburgh (2005) to perturb the ensemble

members in a traditional EnKF to represent background

error.

Using this approach, we find that the ensemble spread

is greatest at the surface and about the position of the

thermocline, owing to the perturbations to surface fluxes.

By contrast, the ensemble spread below the thermocline

is much less. Based on a series of reanalysis experiments,

we find that the ensemble spread is too small at depth,

where the local forcing perturbations have minimal

impact and model error is not taken into account. This

results in an underestimation of the forecast error co-

variance at depth. Several different approaches have

been suggested to represent model errors with the deep

ocean within the EnKF (e.g., Keppenne et al. 2008).

There are three relatively simple methods for account-

ing for model error: multiplicative inflation (Anderson

and Anderson 1999), additive inflation (Houtekamer

et al. 2005), and relaxation-to-prior (Zhang et al. 2004).

Additive inflation was found to be more effective than

the other two methods by Whitaker et al. (2008). Here,

we apply an additive inflation to each ensemble mem-

ber by adding scaled random samples from a set of

difference fields computed from a long model run

without data assimilation. The difference dataset is con-

structed by:

d
n

5 x
n�1

1 x
n11
� 2x

n
, (10)

where x denotes daily model states (temperature, salinity,

and the zonal and meridional current components) on a

given date of each month, say the first day of each month

and n denotes the month. Such difference fields are of

intraseasonal time scales. The reason for this choice is

that the intraseasonal differences will emphasize error

growth that is consistent with the growth of errors from

the perturbed forcing.

Based on our 27-yr (324 months) run, we establish a

dataset of 322 difference states. The additive ocean

perturbations are computed daily by randomly sampling

11 members from this dataset. After removing the en-

semble mean from the sample, we apply a 0.125 scaling

and implement a method described by Evensen (2003)

to enforce correlation between random daily perturba-

tions on 3-day decorrelation time scale to make the per-

turbations smoother. This scaling was chosen after several

experiments to ensure the ensemble spread is within

a reasonable span such that it inflates the variance in the

deep ocean but is small compared to the spread due to

perturbed surface forcing in the upper ocean. We apply

the perturbations gradually, over the whole day, to each

ensemble member using the Incremental Analysis Up-

dating (IAU) procedure (Bloom et al. 1996) in order to

minimize the initialization shock. We regard this inflation

as a simple parameterization for model error—that is not

explicitly represented by perturbing the forcing fields

alone. Without this inflation, the ensemble variance is too

small, so the deeper observations have a very little impact

on analyses because the innovation covariance matrix

(HPbHT 1 R) is often poorly conditioned.

As in the standard EnKF, we not only use the spatial

covariance information from the ensemble directly in

the assimilation but also use the ensemble spread for

the background error variance. However, defining the

observation-error variance is a more complicated issue.

The total observation error includes measurement errors,

representation (or representativeness) errors associated

with the unresolved physical processes, and interpolation

errors associated with approximating the continuum ob-

servation operator (e.g., Daget et al. 2009). While all data

assimilation applications include some estimate of the

observation error, there is a wide range of approaches

used (e.g., Oke and Sakov 2008). A statistical method that

involves various assumptions originally proposed by Fu

et al. (1993) has been widely used in ocean data assimi-

lation (Fukumori 2000; Menemenlis and Chechelnitsky

2000; Leeuwenburgh 2007; Daget et al. 2009), but some of
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the assumptions are made purely for practical conve-

nience and are questionable (see, e.g., Menemenlis and

Chechelnitsky 2000; Daget et al. 2009). As discussed in

detail below, we set the observation error estimates by

assuming a constant background/observation error (i.e.,

square root of error variance) ratio of 0.47. This is the

same as used in POAMA-1. Smith et al. (1991) and Alves

et al. (2004) used a signal-to-noise ratio of 1.0, when they

assimilated observations every 10 days. This signal-to-noise

ratio is equivalent to the ratio of background to observation

error that we refer to here. Assuming linear error growth

and an assimilation cycle of 3 days, we require a signal-to-

noise ratio of 0.47 to be equivalent to that of Smith et al.

(1991) and Alves et al. (2004). We therefore impose a

ratio of 0.47 for the background to observation errors in

POAMA-1 and PEODAS. We decided to keep this ratio

rather than explicitly specifying the observation errors for

the following reasons:

1) In Wang et al. (2002), Alves et al. (2004), and the

POAMA-1 systems, it was found that this achieved

a good balance between model and observations that

did not lead to significant initialization shock.

2) It overcomes the problem of ensemble collapse, where

the ensemble spread is too small compared with the

observation error variance, which may result in the

model not being constrained by the observations.

3) It allows more control over the initial set of integrations,

since allowing more degrees of freedom in a system is

only advantageous if they can be properly specified (or

controlled).

4) It facilitates a more straightforward comparison with

the POAMA-1 system.

The ensemble variance is used to directly perturb the

coupled model forecasts, with each ensemble member

used as initial conditions for each member of the forecast

ensemble.

As described above, we use localization to increase

the rank of our ensemble and to reduce sampling error

that results from using a small ensemble. We use an

anisotropic localizing function that is a variant of the

quasi-Gaussian function presented by Gaspari and Cohn

(1999). The distance over which the ensemble-based

covariances go to zero is 308 cosu and 108 cosu (u is the

grid latitude) in the zonal and meridional directions,

respectively, and 50 m vertically. These length scales

correspond to e-folding decorrelation length scales of

approximately 208 cosu, 78 cosu, and 35 m, respectively.

Here, the multiplication of the cosu factor is to make the

scale consistent with the latitude-dependent nature of the

Rossby deformation radius for a global analysis scheme.

These localization scales are greater than the POAMA-1

correlation scales. In practice, the length scales of the

background errors are implicit to the ensemble. The

localizing length scales only set the upper limit on the

background error covariance length scales. Use of longer

length scales also yields analysis increments that are more

dynamically consistent.

PEODAS has several appealing aspects to it that meet

what we regard as essential requirements for a seasonal

prediction system. First, it yields an ensemble of initial

states for the forecast model that are intended to span

the actual uncertainty in the estimate of the initial con-

ditions. If the intention for the ensemble to span the ac-

tual uncertainty is realized in reality, such an ensemble

is ideal for initializing probabilistic seasonal forecasts.

Second, the background error covariances that are used

to assimilate observations are state dependent and are

generated based on our expectations of the dominant

sources of error in our system. Third, PEODAS is com-

putationally affordable, and can be scaled according to

the computational resources available. We would prefer

to integrate a new ensemble of 110 members for each cy-

cle, but this is prohibitively expensive. As computational

resources increase, we can readily reconfigure PEODAS

to integrate more ensemble members at each cycle, and

retain ensemble members from fewer previous cycles (e.g.,

we may integrate 30 ensemble members and retain en-

semble members from the last four cycles, yielding a 120-

member ensemble).

3. Model and reanalysis configuration

a. Ocean model

The ocean model that underpins both POAMA-1 and

PEODAS is version 2 of the Australian Community

Ocean Model (ACOM2; Schiller et al. 2002), a global

configuration of version 2 of the Modular Ocean Model

(MOM2; Pacanowski 1995). The model configuration is

described in detail by Schiller and Godfrey (2003).

Briefly, the model has constant zonal resolution of 28

and enhanced meridional resolution of 0.58 within 88

latitude of the equator that gradually increases to 1.58

toward the poles. There are 25 vertical levels with 7

levels in the top 100 m. This version of the model in-

cludes the hybrid mixed layer model described by Chen

et al. (1994).

Results from different integrations of ACOM2 have

been used to explore intraseasonal variability (Schiller

and Godfrey 2003), upper-ocean dynamics (Schiller et al.

1998), and interannual dynamics (Schiller et al. 2000) in

the Indian and Pacific oceans. These studies have un-

dertaken extensive comparisons with observations in-

cluding comparisons of time series of subsurface currents

in the central Indian Ocean (Schiller and Godfrey 2003),
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comparisons between modeled and observed SST in the

low-latitude Indian and Pacific oceans (Schiller et al.

2000), and validation of the model’s surface heat fluxes

(Schiller et al. 1998) that represents an assessment of both

the ocean’s upper-ocean dynamics and the atmospheric

boundary layer model. Additionally, Schiller (1999) pre-

sented a series of comparisons between modeled and

observed subsurface temperatures along frequently re-

peated expendable bathythermograph (XBT) lines in

the Indian Ocean. In general, the model displays rea-

sonable agreement with the available observations on the

intraseasonal to interannual time scales.

b. PEODAS reanalysis configuration

To assess the relative performance of POAMA-1 and

PEODAS, we perform a 28-year assimilation using

PEODAS. The assimilation is integrated for 28 yr, be-

tween January 1979 and December 2006. Considering the

first year as the period of assimilation spinup, we therefore

discarded the analysis of 1979 and used the remaining

27-yr (1980–2006) reanalysis for the evaluation. Assim-

ilation analyses are performed every 3 days using ob-

servations in a time window of 3 days, centered on the

analysis time. We assimilate observations of in situ tem-

perature and salinity from conductivity temperature

depth (CTD), expendable bathythermograph (tempera-

ture only), Tropical Atmosphere Ocean (TAO)/Triangle

TransOcean Buoy Network (TRITON)/Prediction and

Research Moored Array in the Atlantic (PIRATA) moor-

ing, and Argo profiles, sourced from version EN3 of

the Enhanced Ocean Data Assimilation and Climate

Prediction (ENACT) and Ensemble-based Predictions of

Climate Changes and their Impacts (ENSEMBLE) quality-

controlled database (Ingleby and Huddleston 2007). Al-

though quality-control flags are provided with the EN3

data, we perform additional checks with the model value,

removing observations where the background innova-

tions are greater than five standard deviations from a cli-

matology estimated from a long model run. Within each

model grid cell, we select only a single temperature and

salinity profile. This selection is based on the observation

with the highest quality determined by the quality-control

procedure. Superobing of each profile is done in the ver-

tical to ensure that no more than one superobservation

falls within each model depth level (see Oke et al. 2008).

The ocean observations are assimilated into an ocean-

only integration forced by observed estimates of the

surface fluxes. The unperturbed surface fluxes for mo-

mentum, heat, and freshwater are derived from ERA-40

(Uppala et al. 2005) for the period 1979–2001; and from

NCEP/DOE Atmospheric Model Intercomparison Pro-

ject (AMIP-II) Reanalysis (Kanamitsu et al. 2002) for

the period 2002–06. As the freshwater flux from ERA-40

is known to be inaccurate, PEODAS uses a corrected

version based on the approach described in Troccoli and

Kallberg (2004). During the model integration, the sub-

surface temperature and salinity are relaxed to a monthly

climatology World Ocean Atlas 2001 (WOA2001; Stephens

et al. 2002; Boyer et al. 2002) throughout the water column

with an e-folding time scale of 2 years. The relaxation to

climatology is stronger for sea surface salinity (SSS; 1-yr

time scale) due to large uncertainties in the freshwater flux.

The model SST is also strongly relaxed to the analyzed SST

maps, from the NCEP/NCAR reanalysis prior to 1982 and

daily interpolated values derived from the OIv2 SST weekly

product (Reynolds et al. 2002) from 1982 onward, with a 1-

day time scale. For the PEODAS perturbed ensembles, the

time scale of SST relaxation is increased to 5 day, which

maintains an appropriate ensemble spread for SST.

c. Other reanalyses for comparison

Two other reanalyses are used in this study for com-

parison with PEODAS. First, a control run with no ex-

plicit assimilation of in situ observations is performed.

This is done exactly the same as PEODAS but no ob-

servations are assimilated. This run includes the surface

relaxation to SST and SSS, and the subsurface relaxation

of temperature and salinity to climatology.

A second dataset is a reanalysis performed for the

POAMA-1 system. As well as the analysis systems being

different there are several other differences in the setup.

The surface forcing used for the model is from the NCEP/

NCAR reanalysis. The subsurface relaxation of tempera-

ture and salinity to climatology is not used in the POAMA-1

system. The observational dataset used by POAMA-1 is a

local dataset assembled from real-time and delayed mode

Global Telecommunication System (GTS) data at the Bu-

reau of Meteorology. However, the observations from this

dataset were incorporated in the EN3 quality-controlled

database. POAMA-1 also incorporates a sophisticated

quality control procedure described in Smith et al. (1991).

For POAMA-1 only temperature profiles in the upper

500 m are assimilated. The salinity fields are not up-

dated, but velocity fields are updated using the geostrophic

relation similar to Burgers et al. (2002). For PEODAS,

the temperature, salinity, and velocity fields are updated

explicitly from the ensemble data assimilation system.

Observation errors are assumed to be correlated in space

for POAMA-1, as documented above, and are assumed

to be uncorrelated in space for PEODAS. For both

POAMA-1 and PEODAS, the individual magnitudes of

the observation and background error variances are not

relevant, only their ratio since the observation errors are

scaled by the assumed, or modeled, background error

variance, so that the ratio of the background to obser-

vation error is 0.47 everywhere.
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4. Characteristics of the assimilation system

a. Ensemble characteristics

The roles of an ensemble for an ensemble-based data

assimilation system are threefold. First, the ensemble

variance is intended to estimate the magnitude of the

background error variance for all model variables. Sec-

ond, the ensemble-based covariance fields quantify the

system covariance. Third, the ensemble is used as a per-

turbed set of initial conditions for the coupled model

forecasts. The covariance between state elements deter-

mines how a background innovation (y 2 Hxb), from Eq.

(1), is interpolated and extrapolated in space and between

different variables. It also shows the structure of the per-

turbations that are applied to the coupled model forecast

ensemble. We assess these aspects of the ensemble for a

limited range of fields here. The time-averaged ensemble

spread (defined by the standard deviation of the ensem-

ble) is presented for surface and subsurface temperature

and salinity in Fig. 2. It demonstrates that the magnitude

of the estimated background field error for temperature

and salinity varies significantly for different parts of the

global ocean. The ensemble spread for both SST and SSS

identify the regions of high uncertainty in the eastern

tropical Pacific and Atlantic oceans. The ensemble spread

for SSS is also high in the eastern tropical Indian Ocean

and the region of the Pacific warm pool, because of large

uncertainties in the freshwater flux in these regions.

The longitude–depth profiles of the ensemble spread

for temperature along the equator (Fig. 2b) indicates

that the largest temperature errors, according to the en-

semble, fall at depths where the thermocline varies most

significantly. This ranges from about 50 m in the eastern

Pacific and Atlantic basins, and penetrates to about

150-m depth in the center of each basin. By contrast the

ensemble suggests that the subsurface temperature error

is expected to have a maximum at 100-m depth across the

entire tropical Indian Ocean. These characteristics are

consistent with known dynamics of these basins. Specif-

ically, the equatorial oceans are known to respond quickly,

and with large amplitude, to variations in surface fluxes,

particularly to anomalies in zonal wind stress (McCreary

1976). The subsurface maximum in the equatorial Indian

Ocean is due to the subsurface influence of equatorial

Kelvin waves and their coastal extension along Indonesia,

which are also known to be correlated with surface

forcing (e.g., Sprintall et al. 2000).

The subsurface structure of the ensemble spread for

salinity (Fig. 2d) is dominated by a near-surface maximum

in the region of the warm pool in the western tropical

Pacific. Maes et al. (2006) highlighted the importance of

upper-ocean variability in controlling ocean–atmosphere

interactions in the western Pacific. The uncertainty for

surface salinity is also high in the eastern tropical Indian

Ocean, an area with large variations in precipitation.

Other local maxima in the ensemble spread of subsurface

salinity are in the eastern equatorial Pacific and Atlantic,

and are associated with variations of the ocean’s halocline

in response to surface forcing through the same mecha-

nism as that of temperature, discussed above.

FIG. 2. Spread of the ensemble (before assimilation) over the reanalysis period showing fields of (a) SST (8C),

(b) temperature section along the equator (8C), (c) SSS [practical salinity unit (psu)], and (d) salinity section along the

equator (psu).
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An example of the ensemble-based correlation be-

tween temperature at a reference location along the

equator (at 1258W and 100-m depth) and temperature,

salinity, and zonal velocity is presented in Fig. 3. These

correlations are used by PEODAS (after applying the

localization function) to map background innovations of

temperature onto the model state. Where the magnitude

of the correlation is higher for different variables, the

projection of the background innovation for tempera-

ture is strong. Along the equator in this region, there is

typically a subsurface salinity maximum centered about

160-m depth. This helps us understand the structure of

the ensemble-based correlations with salinity in Fig. 3b.

A temperature increase (decrease) at the reference lo-

cation is likely to correspond to a deepening (shoaling)

of the thermocline and halocline. In the absence of

anomalous surface fluxes that may modify the water mass

properties, this deepening (shoaling) of a salinity profile

will result in a salinity decrease (increase) above the sa-

linity maximum, where the vertical salinity gradient is

positive (the axis z is increasing downward), and a salinity

increase (decrease) below the subsurface salinity maximum,

where the vertical salinity gradient is negative. These

characteristics are evident in the fields presented in Fig.

3b. The correlation between temperature at the reference

location and zonal velocity indicates that a deepening

(shoaling) of the thermocline will result in an eastward

(westward) anomaly in the zonal currents in the vicinity

of the observation and to its east (Fig. 3c), mainly because

the temperature and velocity errors are both associated

with wind stress errors.

More generally, the example of the ensemble-based

correlation between temperature and other ocean vari-

ables, shown in Fig. 3, highlights the multivariate, and

anisotropic nature of the ensemble-based estimates of

the background error covariance generated and used by

PEODAS.

Another example of the ensemble-based covariance

structures generated by PEODAS for different times is

presented in Fig. 4. The examples in Fig. 4 include the

ensemble-based correlation between temperature from

a reference location, at the surface along the equator,

and temperature in the surrounding region. The first

example (Fig. 4a) is during an El Niño event when the

FIG. 3. Example of the ensemble-based covariance structures from PEODAS for 4 Jul 1993, showing a zonal section at equator of cross

correlations between temperature at a reference location (08, 1258W, 100-m depth), denoted by the asterisk, and (a) temperature, (b)

salinity, and (c) zonal current in the surrounding region.

FIG. 4. Example of the ensemble-based covariance structure along the equator showing cross correlations between

temperature at a reference location (08, 1258W, 7.5-m depth; i.e., surface layer), denoted by the asterisk, and tem-

perature in the surrounding region for different times (zero is bold, dotted is negative), during (a) El Niño (28 Jun

1997) and (b) La Niña (29 Jun 1998). The background temperature field is superimposed (in gray; 8C).
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thermocline along the equator is flat and deep. The sec-

ond example (Fig. 4b) is during a La Niña event when the

thermocline slopes upward toward the east and is sha-

llow. These correlation fields are consistent with the

dynamics of the thermocline being heaved (raised or

lowered) in response to variations in the wind stress and

surface heat flux. For a positive background innovation—

warming and/or deepening the surface mixed layer—the

ensemble-based projection onto the model state includes

a temperature increase within the mixed layer and a tem-

perature decrease below the mixed layer. The examples

in Fig. 4 clearly demonstrate the state dependence of the

ensemble-based estimates of the background error covari-

ance. The state dependence depicted in Fig. 4 is exactly

what we expect from our conceptual understanding of the

underlying dynamics of this region.

b. Assimilation increments

The time-mean and root-mean-square (RMS) of the

increments from the 27-yr PEODAS reanalysis described

in section 3 are shown for maps of temperature, salinity,

and zonal velocity in the tropical Pacific, averaged over

the top 300-m depth, in Fig. 5, and for a zonal section of

subsurface temperature, salinity, and zonal velocity along

the equator in Fig. 6.

The first thing to note from the fields in Fig. 5 and Fig. 6

is that the mean increments are small compared to the

RMS of the increments. The ratio of bias to total in-

crement is up to 40% for the temperature field in the

equatorial thermocline. This means that the increments

are not dominated by model bias. The mean increments

for temperature and salinity (Fig. 5) show small, but spa-

tially coherent positive–negative bands in the Northern

Hemisphere western boundary currents. In the 27-yr re-

analysis these mean increments act to shift these warm

boundary currents offshore at higher latitudes, thereby

shifting their separation toward lower latitudes. That

is, the increments ‘‘try’’ to make the modeled western

boundary currents separate from the coast sooner while

the model apparently ‘‘wants’’ the boundary currents

to ‘‘hug’’ the coast for longer. This is a common problem

with coarse-resolution ocean models (Dengg et al. 1996;

FIG. 5. Statistics of the PEODAS increments showing (a),(b),(c) average and (d),(e),(f) RMS of assimilation

increments every 3 days over the top 300 m for (a),(d) temperature (8C), (b),(e) salinity (psu), and (c),(f) zonal

current (cm s21) for the assimilation period (January 1980–December 2006).
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Chassignet and Marshall 2008). The only spatially co-

herent structure in the mean increments for zonal ve-

locity (Fig. 5c) is a negative increment in the equatorial

Pacific Ocean. This indicates that PEODAS is ‘‘trying’’

to strengthen (weaken) the model’s westward (east-

ward) velocities in this region.

The subsurface fields of the mean increments (Fig. 6)

are not particularly coherent in space, with the exception

of a cooling in the central Pacific between 50- and 200-m

depth. This corresponds to a shoaling of the thermocline

in that region. The assimilation acts to tighten the ther-

mocline, so that the temperature gradient is sharper

with data assimilation. This type of model bias is a com-

mon problem for most coarse-resolution ocean models

(Stockdale et al. 1993; Bell et al. 2004). Details of the bias

are addressed below in section 4c. The pattern of salinity

and zonal velocity increments in this region is consistent

with the error correlation structure shown in Fig. 3. The

patterns of the multivariate increments demonstrate, in a

qualitative sense, how dynamical balance is maintained

by the equatorial zonal velocity increments for PEODAS.

Specifically, the strong cooling and weak freshening in-

crements in the central Pacific can result in positive density

changes that affect changes in hydrostatic pressure, and

hence changes to the east–west pressure gradient that

can cause a dynamical imbalance and drive a spurious

current. The zonal current increments in PEODAS op-

pose the unbalanced pressure gradient and therefore

counteract the spurious current and hence the dynam-

ical balance is maintained to some extent. Further cal-

culations (not shown) reveal that along the equator the

magnitude of the zonal current increment exceeds that

of a simple geostrophical adjustment, which means that,

in the presence of model bias, geostrophic balanced in-

crements, as imposed in POAMA-1, are not sufficient to

maintain dynamical balance near the equator.

The RMS of the increments (Fig. 5) indicates that the

largest magnitude adjustments for temperature and sa-

linity are in the western boundary currents, again pre-

sumably adjusting the positions of the boundary currents.

There are also significant increments in the central tropical

Pacific basin and near the equator in the Atlantic Ocean.

The RMS of increments for temperature in the Indian

Ocean show maxima that are located 58–128 from the

equator, corresponding to the typical latitude of seasonal

Rossby waves (Masumoto and Meyers 1998; Schouten

FIG. 6. As in Fig. 5, but for a depth–longitude section along the equator.
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et al. 2002). The RMS of the increments for zonal

velocity is strongest along the equator, where it is up

to 1.8 cm s21.

The RMS of the subsurface increments along the

equator (Fig. 6) indicates that the dominant adjustments

to temperature are associated with shifts and adjustments

to the thermocline. The increments to salinity are greatest

near the surface and in the eastern and western Pacific.

Comparison of the distribution of the RMS of tem-

perature and salinity increments along the equator in the

Pacific (Figs. 6d,e) and the corresponding fields for the

ensemble spread (Figs. 2b,d) are generally similar in

structure and magnitude—the increments for salinity

are smaller than the time-averaged ensemble spread.

This is expected, because the ensemble spread represents

the assumed background error. Regions of larger back-

ground error require greater adjustments through assim-

ilation. This is clearly seen in the comparison of Fig. 6 and

Fig. 2. There are, however, differences in the structure of

the spread/increment of the temperature fields in the

thermocline. In both the Pacific and the Atlantic, the

maximum spread occurs close to the eastern coast (Fig.

2b), while the maximum RMS of the increment occurs

more in the ocean interior (1408W in the Pacific and

close to the western coast in the Atlantic)—this may be

because of the presence of the systematic bias in these

locations (Fig. 6a).

The RMS of the increments to zonal velocity along the

equatorial Pacific (Fig. 6f) indicate that the assimilation

acts to adjust the surface velocities associated with the

wind-driven equatorial current, and at depth, presumably

modifying the strength and position of the equatorial

undercurrent.

c. Systematic error and the degree of dynamical
balance

The ensemble-based multivariate covariances gener-

ated by an EnKF could theoretically yield fully dy-

namically balanced increments, providing the ensemble

size is large enough. However, as discussed in section 2,

approximations introduced in PEODAS, such as the use

of reduced-space methods and localization, could com-

promise the dynamical consistency. Anderson (2003) gives

an account of the degree of dynamical consistency of

analyses generated using localized covariances. To min-

imize the dynamical inconsistency, we use relatively long

localizing length scales, a strategy recommended by Oke

et al. (2007).

Given that an unbalanced data assimilation method

can cause spurious vertical circulations and systematic

errors that can make model bias even worse, the degree

of balance in the analysis increments can therefore be

diagnosed by comparing the temperature bias (shown in

Figs. 7a–c) and the vertical velocity (shown in Figs. 7d–f)

in the control and assimilations.

The control (Fig. 7a) shows substantial deviations of

up to 2.58C at the depth of thermocline, even though the

subsurface fields are relaxed toward the WOA2001 cli-

matology. It is warmer than WOA2001 in the eastern Pa-

cific and in the Atlantic Ocean, and colder in the western

Pacific. This systematic bias is linked to the overly diffuse

nature of the modeled thermocline, probably because

of limitations of the ocean model. Such biases are sub-

stantially reduced in both POAMA-1 (Fig. 7b) and

PEODAS (Fig. 7c) as a result of assimilation. Below the

thermocline, however, significant differences, with re-

spect to WOA2001, appear in POAMA-1. POAMA-1 is

more than 1.08C warmer than WOA2001 at around 700 m

in the eastern Pacific, and more than 1.58C warmer than

WOA2001 around 800 m in the Atlantic Ocean, similar

to Troccoli et al. (2002). These spurious differences are

not present in either the control or PEODAS. This

demonstrates that the univariate assimilation scheme

in POAMA-1 is the likely cause of the dynamical im-

balance that results in a bias in temperature. By contrast,

the ensemble-based multivariate increments in PEODAS

are generally dynamically balanced. The mean vertical ve-

locity field along the equator is large, around 200-m depth,

in POAMA-1 (Fig. 7e), compared to that of the control

(Fig. 7d). We attribute this difference to the degradation

of the zonal velocities in POAMA-1 due to dynamical

imbalance. PEODAS shows a similar increase in vertical

velocity (Fig. 7f), but with a much smaller magnitude

than POAMA-1. The nature of the dynamical balance

of each run is further verified by the model–observation

comparisons in section 5.

5. Model–data comparisons

a. Comparison with assimilated observations

In this section, we compare observed and modeled

temperature and salinity fields for different locations.

Maps of the number and spatial distribution of tem-

perature and salinity profiles assimilated by PEODAS

and used for the comparisons that follow are shown in

Fig. 8. The XBT tracks and the TAO/TRITON/PIRATA

moorings in tropical oceans are easily identified in Fig. 8.

While the uneven and nonstationary nature of the ob-

serving system is highlighted (see Fig. 8 and Figs. 10a,d),

it also shows that the observation coverage is now almost

global due to the deployment of Argo floats in recent

years. Recall that PEODAS assimilates both tempera-

ture and salinity profiles (Figs. 8a,b), while POAMA-1

only assimilates temperature (Fig. 8a).

The RMS difference (RMSD) between observed and

modeled subsurface temperature and salinity in different
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regions for the entire 27-year reanalysis period is shown

in Fig. 9. Specifically, we show the RMSD between the

observed temperature and salinity and the control run

[with no data assimilation (O-C)], the PEODAS back-

ground field [immediately before assimilation (O-B)] and

the PEODAS analysis field [immediately after assimilation

(O-A)]. We also show the profile of the time-averaged

ensemble spread. The profiles presented in Fig. 9 are pro-

duced by interpolating each model product to the ob-

servation location in time and space, and then averaged

all profiles in different regions. The regions shown in-

clude NIÑO-3 (58S–58N, 1508–908W), EQ3 (58S–58N,

1508E–1708W), EQIND (58S–58N, 408–1208E), and

EQATL (58S–58N, 708W–308E). We focus largely on the

tropical oceans since it is variability in these regions that

is associated with the main modes of climate variability

on interannual time scales, such as El Niño and the Indian

Ocean dipole.

The RMSD profiles in Fig. 9 show that the control run

has larger errors than PEODAS for all regions for both

temperature and salinity. Similarly, the PEODAS back-

ground fields have larger errors than the PEODAS anal-

ysis fields. This is exactly as expected.

The difference between the RMSD profiles of the

control and the PEODAS product is significant for both

temperature and salinity. This difference is as large as

1.08C and 0.1 psu at some locations. Note that the mean

increments for temperature and salinity in the regions

considered here (Fig. 5) are much smaller than these

RMSDs. We ascribe most of this improvement to a bet-

ter representation of the variability of the ocean rather

than improvements to the mean fields.

The variance of the Eulerian temperature is greatest

at the depth of the thermocline, because of the vertical

excursion of isotherms in response to external forcing and

wave propagation. As a result, the profile of RMSD for

temperature shows a maximum about the thermocline

depth (Fig. 9). The RMSD of O-A for temperature about

the thermocline depth is around 18C for all regions con-

sidered, and the corresponding RMSD of O-B is typically

FIG. 7. Equatorial longitude–depth section of mean temperature differences between (left) reanalyses and

WOA2001 and (right) mean vertical velocity averaged over the 27-yr mean (1980–2006) for (a),(d) control, (b),(e)

POAMA1, and (c),(f) PEODAS. Contour interval is 0.58C for the temperature and 1 3 1025 m s21 for the vertical

velocity.
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0.38C greater than that of the analysis. This indicates that,

if the observation error is assumed to be zero, the error of

model temperature near the thermocline typically grows

by about 0.38C over 3 days between each analysis.

The variance of the salinity is greatest at the sur-

face, owing to the impact and uncertainty of the surface

fluxes, particularly the freshwater flux. The RMSD of

O-A for salinity is 0.12–0.2 psu at the surface, and the

FIG. 8. The number of the in situ (a) temperature and (b) salinity profiles per model grid point assimilated during the

whole period spanning January 1980 to December 2006.

FIG. 9. Vertical profiles of the ensemble spread and RMS differences of analysis minus observations averaged in the NIÑO-3 (58S–58N,

1508–908W), EQ3 (58S–58N, 1508E–1708W), EQIND (58S–58N, 408–1208E), and EQATL (58S–58N, 708W–308E) regions for (top) tem-

perature (8C) and (bottom) salinity (psu), respectively. Solid—control; dash—PEODAS background; dot–dash—PEODAS analysis; and

dot—ensemble spread.
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corresponding RMSD of O-B is about 0.04–0.06 psu greater

than that of the analysis (Fig. 9).

In the deeper ocean, below about 300 m, the RMSD

for both temperature and salinity decreases (Fig. 9),

owing to the reduced variability there. For those depths

the ensemble spread is very small. Moreover, at those

depths there is also little difference between the quality

of the analysis and background fields.

As noted above and in section 2 the ensemble spread is

intended to represent the background error. Clearly from

Fig. 9, the ensemble spread is much smaller than the

RMSD between the background and observations for

both temperature and salinity. This reflects two factors:

1) a consistency with the signal to noise ratio of 0.47 that

was enforced; that is, the RMSD between the back-

ground and observations is dominated by observa-

tion error (presumably mostly representation error)

rather than model error; and

2) the spread may be too low in places because it mainly

represents errors associated with the intraseasonal

component of forcing errors.

There is a classical relationship between the expectation

of the innovation covariance matrix and the background

and observation errors [Eq. (11)]. This relationship as-

sumes that the background and observation errors are

mutually uncorrelated, and that their covariance matrices

are good approximations to the true error covariance

matrices:

E[(y� Hxb)(y� Hxb)T] 5 R 1 HPbHT. (11)

This equation is often used as a consistency test on the

prescribed error statistics in a practical data assimilation

system (e.g., Talagrand 1999; Desroziers and Ivanov 2001;

Oke et al. 2002; Evensen 2003). Taking into account that

the ratio of background error to observation error was

enforced in PEODAS, if this statistical consistency is

satisfied then the ensemble spread should be roughly

0.4 times the RMSD of O-B. From this point of view, the

ensemble spread is quite a bit smaller than that value,

except for the surface temperature where this relation-

ship is consistent. This is a common issue in ensemble

data assimilation applications involving the assimilation

of actual observations into ocean or atmospheric models,

since models are imperfect. To maintain the approximate

equality of Eq. (11) some researches try to inflate the

background error covariance by adjusting the amplitude

of the perturbation (e.g., Keppenne et al. 2005). We find

that the PEODAS system is almost unbiased for SST, so

the relationship of Eq. (11) is satisfied very well for SST.

This means that the PEODAS ensemble spread is ap-

propriate for equatorial surface temperature, and we find

no evidence indicating that the ensemble spread is un-

derestimated for temperature or salinity due to the exis-

tence of the bias.

The structure (or shape) of the vertical profiles of the

ensemble spread nicely resembles the vertical profiles of

the RMSD fields for each region. The subsurface max-

imum in the RMSD profiles for temperature is evident

in the ensemble spread, with the position of the maxi-

mum at about the correct depth. Similarly, the ensemble

spread for salinity shows a maximum at the surface that

FIG. 10. Time series of the (a),(d) data density, (b),(e) area-averaged temperature, and (c),(f) area-averaged sa-

linity in the (a)–(c) WTIO and the (d)–(f) WTPO, averaged over the top 300 m, for PEODAS, POAMA-1, control,

and EN3 objective analysis. Note the legends in (a) and below (c),(f). Here the WTIO region spans 108S–108N,

508–708E; and the WTPO region spans 108S–108N, 1508E–1708W. The monthly time series have been filtered with

13-month running mean.
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is consistent with the RMSD profiles. However, we note

that the ensemble spread for salinity does not capture

the subsurface maxima that are apparent in the O-B or

O-A statistics. It is found that there are subsurface bias

maxima in the depth from the vertical profiles of the

mean O-B or O-A fields (not shown) for each region. We

note that the ensemble spread generated by PEODAS is

used to estimate the unbiased background error. This is

also the case for temperature in the Atlantic Ocean at

the depth of around 300 m. Such a bias is strongest for

the control. By contrast, PEODAS does a good job for

eliminating the bias, although it is not removed entirely.

This demonstrates that if the model is improved and the

underlying tendency to introduce a bias is eliminated, the

PEODAS system will perform better.

The PEODAS, POAMA-1, and control are all model-

based reanalyses. Here we compare these reanalyses with

a model-independent analysis, using the same observa-

tions as PEODAS, called the EN3 objective analysis pro-

duced by the ENSEMBLES project (see http://hadobs.

metoffice.com/en3/). EN3 objective analyses uses optimal

interpolation method with the analysis grid of 1.258 3

1.258 horizontally (meridional spacing decreasing to 0.38

near the equator) and vertical 40 levels. The product grid

of EN3 is horizontal 18 3 18, vertical 31 levels. Using

subsurface temperature and salinity observational data

(EN3 in situ datasets), the EN3 analysis relaxes toward

climatology in the absence of data area. Figure 10 shows

monthly time series (filtered with 13-month running

mean) of area-averaged temperature and salinity, aver-

aged over the top 300 m, in the western tropical Indian

and Pacific Ocean (WTIO and WTPO). These two re-

gions are chosen because they are important regions for

the Indian Ocean dipole (Saji et al. 1999) and the Pacific

warm pool variability. For this analysis the region for the

WTIO spans 108S–108N, 508–708E and the region for the

WTPO spans 108S–108N, 1508E–1708W.

The comparisons in Fig. 10 show that the control is

generally biased warm and salty. The assimilation does

a good job of eliminating biases in temperature. The

nature of the variability in the WTIO and the WTPO is

very different. For example, the variability in the trop-

ical Pacific is dominated by several large-amplitude

events in temperature that are associated with ENSO

(Fig. 10e). We note that even the control run with no

data assimilation captures these events in the Pacific,

because of the surface forcing. By contrast, the tem-

perature variability in the Indian Ocean exhibits more

small-amplitude variability and only one or two large-

amplitude events during the reanalysis. It is interesting

that the salinity time series for POAMA-1 shows large

differences with EN3 in both regions for most of the

reanalysis (Figs. 10c,f). We attribute this difference to

a combination of the neglect of salinity assimilation and

the dynamically unbalanced assimilation technique used

in POAMA-1, as discussed in sections 4b and 4c. For the

WTPO, the POAMA-1 salinity drifts rapidly in the first

5–10 years. The control simulation is significantly better

than that for POAMA-1. The smallest differences with

EN3 objective analysis is for PEODAS, which shows

particularly good agreement for WTPO. We note that

there is a distinct change in the performance of the

system after about 2001, when the Argo program really

became established (Figs. 10a,d). After this period,

the PEODAS analysis is in very good agreement with

the objective analysis. This may indicate that before

Argo, there were simply insufficient salinity observa-

tions, particularly in the tropical Indian Ocean, to con-

strain the modeled salinity at all; and only after Argo

became established were there enough salinity observa-

tions to properly constrain a dynamical model. Alterna-

tively, it may indicate that there were too few salinity

observations for the EN3 analysis product to yield a reli-

able estimate of salinity.

We present monthly mean time series of the ther-

mocline depth for different locations along the equator

from TAO observations (McPhaden 1995; data delivery

online at http://www.pmel.noaa.gov/tao/) and from dif-

ferent reanalyses in Fig. 11. Here the thermocline is

defined as the depth of the 208C isotherm. Although,

PEODAS does not explicitly assimilate observations of

the thermocline depth, it does assimilate temperature

observations from which the thermocline depth can be

directly derived. Figure 11 shows that the variability in

the control run is generally in good agreement with the

observed estimate at the selected TAO moorings. The

correlations between the observed and modeled ther-

mocline depth from the control run is over 0.89. We

ascribe this high correlation to the strong dependence of

the thermocline depth on surface fluxes; and since for

this integration of the model the surface fluxes are de-

rived from atmospheric reanalyses, the surface fluxes are

realistic, and so the thermocline depth is realistically

reproduced. However, the RMSD between the ob-

served and modeled thermocline depth in the control

run remains quite large, ranging from 8.9 to 20.5 m. This

is comparable to the magnitude of the variability itself,

and should be improved by assimilation. This means that

even though the control run reliably represents the timing,

or phase, of the thermocline variations, it does not accu-

rately represent the magnitude of variations.

The time series of thermocline depth from the PEODAS

analysis and background show a quantitative improvement

compared to the control (Fig. 11). The PEODAS analysis

tracks the observed thermocline depth almost perfectly,

with correlations of 0.97–0.98 and RMSDs of 5–6.9 m. By
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contrast, the POAMA-1 fields have correlations of 0.89–

0.96, indicating that POAMA-1 tracks the phase of the

variability and the timing of events almost as well as

PEODAS, but it does not reproduce the magnitude of

variations as accurately as PEODAS. More specifically,

the RMSDs for the POAMA-1 thermocline depth range

from 5.9 to 13.9 m, which is significantly more than that of

PEODAS, particularly in the central and eastern Pacific,

even though the same signal-to-noise ratio was used.

b. Comparisons with independent observations

We now turn to a series of comparisons with un-

assimilated observations, namely velocity and sea level

anomaly observations. Here, we include comparisons

with PEODAS, POAMA-1, and the control.

Comparisons with zonal velocity profiles measured by

TAO acoustic Doppler current profiler (ADCP) are shown

in Fig. 12. This includes profiles of RMSD and correlation

for different longitudes along the equator at locations of

TAO moorings. Generally, PEODAS shows smaller

RMSD and larger correlation compared to the other

reanalyses. Of all the reanalyses considered, POAMA-1

tends to return the worst performance and PEODAS is

generally the best. We think that this is because PEODAS

also assimilates salinity and because the PEODAS-based

increments are more dynamically consistent than the

POAMA-1 based increments, due to the multivariate

nature of PEODAS, using temperature and salinity

observations to construct an explicit increment for ve-

locity. Our argument about the dynamical consistency is

simply that an ensemble-based system (i.e., PEODAS), as

mentioned in section 2, produces assimilation increments

that are consistent with the model dynamics. By contrast,

this is not necessarily the case for analysis increments

derived from a univariate OI scheme, even when geo-

strophic increments are included (i.e., POAMA-1).

We compare observed and modeled surface velocity

in the tropical oceans in Fig. 13. Here, we use the surface

zonal velocity estimates from the Ocean Surface Cur-

rent Analyses—Real time (OSCAR) database (Bonjean

and Lagerloef 2002). Briefly, OSCAR velocities are

derived from satellite altimeter and scatterometer data

from the end of 1992 up to near real time and cover the

whole ocean from 608S to 608N. Comparisons between

OSCAR and data from the World Wide Drifter Buoy

Deployment as well as from TAO/TRITON/PIRATA

mooring data indicate that the OSCAR methodology

performs well at reproducing both the mean and time-

varying structures of the surface circulation (data and

comparisons online at http://www.oscar.noaa.gov/). The

FIG. 11. Time series of monthly thermocline depth (m) along the equator at (a) 1658E, (b)1408W, and (c) 1108W

showing estimates from TAO observations (black), PEODAS (red), POAMA-1 (green), and control (blue). The

correlation and RMSD with the observed estimate are shown in parentheses for each location.
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comparisons in Fig. 13 show correlations between zonal

velocities from OSCAR and from different reanalyses.

Specifically, we compare the observed estimates for zonal

velocity from OSCAR, with the modeled surface zonal

velocities from PEODAS, POAMA-1, and the control.

Of these products, PEODAS has the highest correlations.

Note that the regions of greater than 0.8 correlation in

the Pacific and Indian oceans are more expansive for

PEODAS than the others. It is also interesting to note

that along the equator POAMA-1 has relatively low cor-

relations compared with both PEODAS and control. Also

throughout the tropical Indian Ocean POAMA-1 has the

lowest correlation. As discussed in section 4b, this is

due to both the lack salinity data and temperature only

assimilation generating dynamical instabilities, and the

inadequacy of the geostrophic increments for the sur-

face current used in POAMA-1.

We compare observed and modeled sea level anomaly

(SLA) in Fig. 14, using weekly maps of SLA that are

produced by Archiving, Validation, and Interpretation

of Satellite Oceanographic data (AVISO). AVISO SLA

maps are generated by combining along-track SLA ob-

servations from all altimetric missions using OI. The

details of the OI mapping are described by Ducet et al.

(2000). Briefly, the length scales used for the OI range

from 100 km in the zonal and meridional directions at

608N–608S, to 250 (350) km in the meridional (zonal)

direction at the equator. Maps are produced on a global

1/38 Mercator grid with 18.5-km resolution at 608N–608S

and 37-km resolution at the equator. A low-resolution

(18 3 18) version of weekly merged SLA product is used

for comparisons here. The data are processed by linear

interpolating the weekly data to daily from which the

SLA monthly means are then calculated. Note that our

model is a rigid-lid model. We therefore diagnose the

model SLA by inverting the modeled surface pressure

field and removing a long-term mean.

The comparison in Fig. 14 indicates that PEODAS

produces fields that are in better agreement with ob-

served SLA than both POAMA-1 and the control in the

tropical Pacific Ocean. Consistent with the assessment

of surface velocity in Fig. 13, the SLA comparisons show

that PEODAS has a broader region of greater than 0.95

correlation in the tropical Pacific Ocean. It is again in-

teresting that the POAMA-1 correlations are similar to

those obtained using the control reanalysis, whereas the

PEODAS correlations are superior. This indicates that

PEODAS is a significant improvement of both control

and POAMA-1.

There are, however, some areas, such as in the tropical

Indian, Atlantic, and southeast Pacific oceans where the

PEODAS correlations are a bit smaller than the control

run. This is likely caused by the spurious trends and signals

in salinity and/or temperature due to the nonstationary

nature of the observing system in the presence of model

bias (e.g., Fig. 10). This side effect of data assimilation is a

FIG. 12. Profiles of (top) RMSD (m s21) and (bottom) correlation between zonal currents from TAO ADCP monthly means and from

PEODAS (solid), control (dotted), and POAMA-1 (dashed) over the period 1988–2006 along the equator at different longitudes (see

titles for each column).
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common problem for most ocean data assimilation systems

because of changing observing systems in the presence of

model bias. To deal with such a problem, Balmaseda

et al. (2007) introduced a unique bias correction method

by having an a priori estimate of the bias term. They

found that poorly observed regions such as the equato-

rial Indian Ocean are better represented by using this

method. This bias correction scheme is under consider-

ations for improving PEODAS in subsequent versions.

6. Summary and conclusions

In this paper, we provide a comprehensive description

of PEODAS, a new Australian ocean data assimilation

system for seasonal forecasting. PEODAS is an ensemble

system that includes explicit estimates of state-dependent

background error covariance; involves dynamically con-

sistent, multivariate model updates; and explicitly involves

ensemble prediction.

The primary purpose for developing PEODAS is for

the delivery of operational seasonal forecasts for the

benefit of the Australian and international communities.

Some aspects of the design of PEODAS are based on

what we regard as sound hypotheses about the system’s

errors. For example, the method for ensemble generation

that involve explicit perturbations to the surface forcing

fields is based on an expectation that the dominant

source of error in the system, particularly in the tropics,

is errors in the surface fluxes. Other aspects of the design

of PEODAS are more pragmatic and driven by a need

for computational efficiency. For example, the compres-

sion of the ensemble after each assimilation cycle is

somewhat ad hoc. We regard it as a computationally effi-

cient ensemble transformation; and while we recognize

it as suboptimal, we consider it to be a practical solution

that is appropriate given the limitations in computational

FIG. 13. Correlations between the monthly zonal surface velocity

from OSCAR and (a) PEODAS, (b) control, and (c) POAMA-1

for the period 1993–2006. Note the nonlinear correlation scale.

FIG. 14. Correlations between monthly mean SLA from AVISO

maps and (a) PEODAS, (b) control, and (c) POAMA-1 for the

period 1993–2006. Note the nonlinear correlation scale.
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resources available. The additive covariance inflation is

also regarded as a simple way to represent model error in

the ocean interior that is not dependent on surface forcing

error. We also recognize that fixing the ratio of observation

to background error variance does not fully exploit the

benefits of the time-varying ensemble spread, but we have

retained this feature of the assimilation to facilitate

comparison with POAMA-1 and to avoid overfitting

observations.

Based on results from a 27-year reanalysis, we show

that PEODAS outperforms POAMA-1, Australia’s

current operational ocean analysis system. We compare

reanalyses from PEODAS and POAMA-1 to both as-

similated and independent observations. These include

comparisons with in situ temperature, salinity, and ve-

locity observations, and an objective analysis product, as

well as comparisons with satellite-derived observations.

On almost all metrics, PEODAS outperforms POAMA-1.

We also include comparisons with a control run with no data

assimilation. PEODAS outperforms the control run in al-

most all aspects. The main exception is for sea level in the

Indian Ocean, where significant changes to the observing

system lead to a nonstationary bias and spurious time var-

iability. It is interesting that while POAMA-1 outperforms

the control when assessing temperature based quantities, as

expected, quantities that are not assimilated, such as salinity

and currents, are comparable or inferior to the control. This

shows that the lack of salinity assimilation and the univar-

iate nature of POAMA-1 covariances led to dynamical

inconsistencies. This is not the case for PEODAS, where

the multivariate structure of the covariances were shown to

be dynamically consistent and the reanalysis is superior to

the control when compared to independent data.

The comparisons of salinity analyses in equatorial

regions indicate that while salinity is reasonably well-

constrained in the Pacific Ocean for the entire reanalysis

period, it is virtually unconstrained in the Indian Ocean

until the Argo program became well established, after

2001. After 2001, when the number of salinity observations

increases notably, the reanalyzed salinity fields in the

Indian Ocean suddenly become well-constrained, with

close agreement with objective analysis, which is based

on observational data and climatology.

The goal of PEODAS is to facilitate skilful seasonal

forecasts of the ocean and atmosphere over time scales of

several months. This paper provides an initial assessment

of PEODAS, focused on the assessment of PEODAS-

based reanalyses. The next step is to evaluate the perfor-

mance of PEODAS-based long-range forecasts, and to

compare the skill of those forecasts to that of POAMA-1.

Compared to its predecessor, PEODAS is a step toward

more optimal data assimilation. Several aspects require

more tuning and refinement, and this will be done in

subsequent versions. Based on the results presented

in this paper, we expect that PEODAS will prove to be

a valuable tool for the seasonal prediction community,

and for the community that it hopes to serve.
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