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ABSTRACT

A simple, versatile, computationally efficient ensemble-based method for objectively designing an ob-
servation array is described. The method seeks to compute the observation array that minimizes the analysis
error variance, according to Kalman filter theory. While most elements of the method have been described
elsewhere, this paper attempts to present a simple, yet comprehensive, recipe for array design based on an
ensemble of anomalies that represents the background error covariance. The versatility of the method is
demonstrated through a series of applications to the tropical Indian Ocean (TIO). The first application uses
model-generated fields of high-pass-filtered mixed layer depth to design an array to monitor intraseasonal
variability. The second uses gridded observations of sea level anomaly to design an array to monitor
intraseasonal-to-interannual variability. For both applications, the objectively designed arrays are compared
to an array that will soon be implemented under the auspices of the Climate Variability and Predictability–
Global Ocean Observing System (CLIVAR–GOOS) Indian Ocean Panel (CG-IOP). The authors conclude
that the CG-IOP array produces results that compare well to the objectively designed arrays for intrasea-
sonal variability, and observations to the east and northeast of the TIO and south of India are most
important for resolving intraseasonal variability. The authors also find that observations near 9°S, where
seasonal Rossby waves dominate, are important for observing seasonal-to-interannual variability. The
described method for objective array design can be applied to a wide range of geophysical applications
where time series of gridded modeled or observed fields are available.

1. Introduction

The use of models and data assimilation theory to aid
in the design of atmospheric and oceanic observing sys-
tems has gained momentum over recent decades (e.g.,
Kållberg 1984; McIntosh 1987; Barth and Wunsch 1990;
Kuo et al. 1998; Hackert et al. 1998; Bishop et al. 2001;
Hirschi et al. 2003; Schiller et al. 2004; Oke and Schiller
2007b). The applications described in this study are mo-
tivated by the proposal of the Climate Variability
and Predictability–Global Ocean Observing System
(CLIVAR–GOOS) Indian Ocean Panel (CG-IOP;
CLIVAR et al. 2006) to implement a surface mooring
array in the tropical Indian Ocean (TIO) (CG-IOP ar-
ray) that is similar to the Tropical Ocean and Global
Atmosphere–Tropical Atmosphere Ocean (TOGA–
TAO) array in the tropical Pacific Ocean. This initia-
tive has resulted in a series of model-based studies that

have attempted to assess the CG-IOP array and iden-
tify possible improvements. Results from these studies
are varied. For example, Vecchi and Harrison (2007)
presented results from a series of observing system
simulation experiments (OSSEs) using a high-
resolution ocean model and assessed the ability of an
integrated observing system, including Argo observa-
tions, XBT lines, and the CG-IOP array to monitor
intraseasonal and interannual variability. Ballabrera-
Poy et al. (2007) used a reduced-order Kalman filter to
objectively determine an array for mapping sea surface
height and sea surface temperature in the TIO. Oke
and Schiller (2007a) use an EOF-based approach to
assess the CG-IOP array’s ability to monitor intrasea-
sonal and interannual variability. Vecchi and Harrison
(2007) conclude that in conjunction with the integrated
observing system, the CG-IOP array should be capable
of resolving intraseasonal and interannual variability.
Both Ballabrera-Poy et al. (2007) and Oke and Schiller
(2007a) argue that the CG-IOP array may oversample
the region within a few degrees of the equator. These
studies also suggest that key regions for monitoring sea-
sonal-to-interannual variability are south of 8°S, at
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about 4°–5° from the equator and along the coast of
Indonesia. These regions correspond to the locations of
the maximum amplitude of seasonal Rossby waves
(Masumoto and Meyers 1998; Schouten et al. 2002),
equatorial Rossby waves, and strong Indian Ocean di-
pole events (Murtugudde et al. 2000), respectively.

In this study, we describe a simple, versatile, compu-
tationally efficient ensemble-based method for objec-
tively designing an observation array, and consider two
applications of the method to the TIO. The first appli-
cation uses model-generated fields of high-pass-filtered
mixed layer depth to design an array to monitor in-
traseasonal variability. The second application uses
gridded observations of sea level anomaly to design an
array to monitor intraseasonal-to-interannual variabil-
ity.

Ensemble-based methods for optimal array design
have been used intensively in the last few years (e.g.,
Bishop et al. 2001). These methods are based on en-
semble square root filter theory (e.g., Tippett et al.
2003) and allow one to handle large systems in cases
when explicit manipulation of the background error co-
variance matrix is not possible or not feasible. Most of
the studies on the ensemble-based optimal array design
consider the problem of targeted observations, or adap-
tive sampling, aimed at improving the model’s forecast
at a given time (e.g., Bishop et al. 2001; Langland 2005;
Khare and Anderson 2006). The problem of targeted
observations implies the use of an ensemble of model
states representing the background error covariance at
a particular time, which in itself often poses a formi-
dable task. Consequently, the advantages of the en-
semble-based optimal array design methods may not
have been fully exploited by the wider atmospheric and
oceanographic scientific communities.

In this study, we consider a problem of optimal array
design based on an ensemble of system states that is
formed from output from a long model run or from
time series of observation-based gridded fields. Be-
cause such an ensemble represents the time-averaged
statistics of the system, the described method is most
suitable for designing a stationary array that is intended
to be deployed over a long period of time. Further-
more, the method does not take advantage of possible
time correlations because it treats the ensemble as a
nonordered collection of system states that adequately
approximates the background error covariance.

The main steps in the objective design of an obser-
vation array, as described in this manuscript, are rep-
resented schematically in Fig. 1. Suppose an array of p
observations is to be designed. The method starts with
the construction of a representative ensemble. The first
optimal observation is then calculated, and the en-

semble is updated so that the influence of this observa-
tion is reflected (i.e., the background error variance of
the ensemble is reduced). The next optimal observation
is then calculated, the ensemble is updated again, and
so on, until all p observations are calculated.

Equation (3.3) of Berliner et al. (1999) provides a
means for identifying the optimal observation for the
simplest case where the observation is of the same field
that is to be analyzed by the assimilation system. In this
paper, we express this formula in terms of ensemble
data assimilation, so that an ensemble of anomalies can
be used instead of the background error covariance ma-
trix. We also extend their formulation to facilitate the
design of multisensor observation networks. An ex-
ample of a multisensor observation network is a moor-
ing at a certain location that measures more than one
variable and/or has multiple instruments at different
depths. The ensemble update is conducted using the
ensemble square root filter, so that the updated, or
transformed, ensemble reflects the reduced back-
ground error variance, given information from the op-
timal observation, or observations, identified in step 2
above. The computational cost of the described method
is shown to be linear with respect to the system state
dimension, which makes it scalable for application to
large systems. Further, by augmenting the state vector
and/or rescaling its components, one can design an ob-
serving array that best constrains an arbitrary function
of the state vector. We demonstrate the versatility of
the method through a series of applications that are
intended to resolve different time scales of variability,
and that use ensembles from different sources (i.e.,
model and observation based).

The paper is organized as follows: a description of
the method is presented in section 2, a description of
the models and observations used here is presented in
section 3, the results are presented in section 4, and a
discussion and our conclusions are in section 5.

2. Method

Suppose we have a discrete system that is character-
ized by a state vector xn�1 and let us assume that the
uncertainty of x is characterized by a background error
covariance matrix Pb. Suppose that after assimilation of
a set of observations, the uncertainty of the analyzed

FIG. 1. Schematic diagram depicting the serial calculation of an
optimal observation array. The dashed arrows represent optional
calculations, depending on the number of observations that are to
be included in the array.
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system is characterized by the analysis error covariance
matrix Pa. In this case, the optimal set of observations
characterized by the observation matrix Hopt may be
defined as a set that minimizes some norm of Pa:

Hopt � arg min
{H}

||Pa ||, �1�

where {H} denotes the set of all possible observations.
This approach can be easily implemented using the

Kalman filter theory, according to which after assimi-
lating p observations characterized by the observation
matrix Hp�n and error covariance matrix Rp�p the
analysis error covariance is given by

Pa � �I � PbHT�HPbHT � R��1H�Pb, �2�

where I is the identity matrix and the superscript T
denotes a matrix transpose. We note that the solution
given by the Kalman filter is a minimum variance esti-
mation; it does not require the statistics of the model
errors and observation errors to be Gaussian; however,
the minimum variance estimate coincides with the
maximum likelihood estimate if these distributions are
Gaussian (e.g., Jazwinski 1970, p. 157). Because the
Kalman filter minimizes the trace of the analysis error
covariance Pa, we should assume for consistency that it
is the trace of the system error covariance that is used
as a norm of the uncertainty in the system state, ||Pa || �
trace(Pa).

Using the relation trace(AB) � trace(BA), the solu-
tion of (1)–(2) may be written as

Hopt � arg max
{H}

trace
HP�HP�T

HPHT � RH

, �3�

where RH is the observation error covariance associated
with the observation matrix H. Calculation of (3) in-
volves inversion of a p � p matrix, which is computa-
tionally inexpensive for small p.

The solution (3) may include multiple observations
and multiple sensor elements (e.g., a mooring at a cer-
tain location that measures more than one variable and/
or has multiple instruments at different depths). In a
more simple case when only one measurement of
a single element xk of the state vector is possible at
a time, H becomes a row vector H � h(k) such that
hi(k) � {0, i 	 k; 1, i � k}, and R becomes a scalar, R �
r(k). In this case, (3) simplifies to

k � arg max
i�1,. . . , n

� 1

Pii
b � r�i� 
j�1

n

�Pij
b�2�. �4�

This solution is equivalent to Eq. (3.3) of Berliner et al.
(1999). We note two important features of this solution.

First, the location of the optimal observation is given
not by the maximum variance Pkk of the observed ele-
ment xk, but rather by a certain balance between its
variance and its covariance with other elements Pki, i 	
k. Second, the location of the optimal observation de-
pends on the value of the observation error variance
r(k).

Although solution (3) may include multiple indepen-
dent observations (corresponding to different rows in
H), the number of possible combinations of locations of
the array elements in this case increases as a power of
the system dimension. In practice that means the set of
possible observations H becomes so large that cycling
through its elements in (3) is too computationally ex-
pensive even for systems of moderate size and an array
of just two elements. This case of “parallel” optimiza-
tion should be distinguished from the case of multiple
sensor elements, when locations of the individual sen-
sor elements are mutually dependent, and the compu-
tational cost remains linear in respect with the system
dimension.

After finding the location of the first optimal obser-
vation from (3) or (4), and calculating Pa by (2), one
may use the analyzed covariance Pa to find the location
of the second optimal observation and so on (Fig. 1). As
discussed above, this serial approach is the only feasible
option for most applications. The serial assimilation
and parallel assimilation of observations with uncorre-
lated errors result in the same analysis error covariance
(Bierman 1977), so that the serial approach can be used
to objectively determine an observation array of a given
size (Bishop et al. 2001). Similarly, it is common prac-
tice in applications of the ensemble Kalman filter for
observations to be assimilated either in small batches or
one at a time (e.g., Houtekamer and Mitchell 1998;
Whitaker and Hamill 2002). For completeness, we in-
clude a proof of this equivalence in the appendix. How-
ever, we note that this serial approach does not guar-
antee, nor does it generally yield, the array that corre-
sponds to the global minimum of trace(Pa) (F. De Hoog
2007, personal communication). Hereafter, we there-
fore refer to the arrays deigned using this method as
objectively designed arrays, rather than optimal arrays.

In practice, the dimension of the state vector n can be
very large, making it impossible to explicitly manipu-
late the n � n covariance matrices. Instead, one may
store and manipulate the covariance matrix implicitly
via a representative ensemble A of the system state
anomalies, An�m � [�x(1), . . . , �x(m)], where �x(i) �
x(i) � x, m is the ensemble size and the overbar denotes
the ensemble average. In this case the error covariance
P associated with the ensemble A is given by
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P �
1

m � 1
AAT, �5�

so that (3) and (4) for the location of the optimal ob-
servation transform to

Hopt � arg max
{H}

trace
HA�ATA��HA�T

HA�HA�T � �m � 1�RH

�6�

and

k � arg max
i�1, . . . , n

Ai�A
TA�Ai

T

AiAi
T � �m � 1�r�i�

, �7�

respectively, where Ai � h(i)A is the ith row of A. To
maximize the computational effectiveness, one should
precalculate the product ATA before cycling over the
possible locations, in which case the computational cost
of calculating (6) or (7) becomes linear with respect to
the system state dimension n and is O(nm2).

Using this ensemble-based approach, after finding an
optimal observation, one needs to update the back-
ground ensemble Ab → Aa in such a way that the analy-
sis covariance calculated by (5) matches that given by
(2) (Fig. 1). There are a number of formally equivalent
solutions for such an ensemble update that are readily
provided by different flavors of the ensemble square
root Kalman filter (e.g., Tippett et al. 2003). The best
choice among these solutions depends on the dimen-
sions n, m, and p of the application. In the context of
this paper, when typically n k m and p � 1 (for a single
element array), a computationally effective choice is
the solution given by the ensemble transform Kalman
filter (Bishop et al. 2001):

Aa � AbT and �8�

T � �I �
1

m � 1
�HAb�TR�1HAb��1�2

, �9�

in which a relatively expensive operation of calculating
the inverse square root of a matrix is performed in the
ensemble space of dimension m, rather than in the state
space of dimension n. This calculation itself can be con-
ducted by using an eigenvalue (or a singular value) de-
composition of the matrix in square brackets in (9).
Because this matrix is symmetric, it can be decom-
posed as

I �
1

m � 1
�HAb�TR�1HAb � U�UT,

where U is an orthonormal matrix (UUT � I) and � is a
diagonal matrix. Subsequently, the inverse square root
can be calculated as

T � U��1�2UT.

The computational cost of this step is defined by that
of the eigenvalue decomposition during the calculation
of the transformation matrix T, which is O(m3), and by
that of the ensemble transformation AbT, which is
O(nm2). Because in most applications m K n, the cost
of calculating the ensemble transform T is typically
much less than that of calculating the optimal observa-
tion and performing the ensemble transform itself.

Note that the calculation of a constrained array, as in
section 4a, requires multiple ensemble updates for each
subset of observations, which may substantially in-
crease the computational cost. For example, assume
that we have to find an optimal set of six observations
within a two-dimensional gridded field of size 50 � 50,
constrained to be located at the same column of the
grid (e.g., the same longitude). We may proceed by
finding six optimal observations within each column
and choosing the set with the minimal trace of the ana-
lyzed covariance. In this case, finding the best set will
require 6 � 50 � 300 ensemble updates compared to
just 6 ensemble updates in the case of independent, or
unstructured, observations. It will also require 300 cal-
culations of the optimal location, but each of these cal-
culations will be restricted to cycling through one col-
umn (longitude) of the grid and therefore will become
about 50 times less expensive than in the noncon-
strained case.

Equations (7) and (8) form a theoretical basis for the
ensemble-based method of objectively designing obser-
vation arrays in which the ensemble is used to factorize
the system covariance by means of (5). The two main
assumptions for this method are that the error covari-
ance of the system is correctly represented by the en-
semble of state vector anomalies, and that observations
are assimilated in an optimal way. The statistical prop-
erties of the ensemble should depend on the application
to which the observing system is being designed. For
example, suppose an ensemble Kalman filter system is
used for data assimilation. In this case, the background
field is the ensemble mean and the ensemble should be
formed by the anomalies about the ensemble mean at a
given time. Alternatively, suppose the observation ar-
ray is designed for a monitoring system that will pro-
duce gridded fields of the observed quantity, using cli-
matology as the background field (e.g., Smith and Mey-
ers 1996). In this case, the ensemble may be a time
series of gridded anomalies generated either from a
long model run or from observations. In the remainder
of this paper, we restrict our attention to the latter case,
where it is appropriate to use a stationary ensemble.

As noted above, the application of a Kalman filter
does not necessarily imply that the system is Gaussian.
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Similarly, there are no restrictions on the statistics of
the initial ensemble of anomalies. Its distribution does
not have to be Gaussian or even represent the distri-
bution of the model perturbations; also, it does not
have to be zero centered. The only requirement to the
initial ensemble is to factorize the background error
covariance by means of (5).

The described method can be easily generalized to
calculate observations targeted for the maximum re-
duction of variance in an arbitrary quantity q (e.g., vol-
ume transport, rate of overturning, water mass proper-
ties) related to the system state,

q � Q�x�. �10�

This can be achieved by augmenting the state vector to
include both x and q,

xaug � ��x

q �, �11�

and scaling down x by setting � so small that the trace
of the covariance matrix of the new ensemble will be
dominated by the contribution from q. Alternatively,
instead of scaling, one can replace the product ATA in
(6) or (7) by AT

qAq, where Aq is the ensemble formed
only by the anomalies of the elements of interest of the
augmented state vector: Aq � [�q(1), . . . , �q(m)], �q �
q � q.

Equation (8) may be used to calculate the analyzed
anomalies for any (not necessarily optimal) set of ob-
servations. Together with (5), it provides a basis for an
inexpensive comparison of the performance of different
observation arrays without performing OSSEs.

In this paper, the performance of objectively derived
arrays is compared with the performance of the CG-
IOP mooring array for the TIO. The CG-IOP array is
structured, with a number of mooring lines at various
longitudes across the TIO to facilitate routine servicing.
We therefore constrain our objectively designed arrays
to have a structure that is similar, although not identical
to the CG-IOP array. Namely, we allow 33 locations
only to be structured in five meridionally aligned lines
of six moorings, one line of three moorings, and to be
located within 12° of the equator. To find the “optimal”
locations for the first mooring line, we calculate the
optimal locations for six sites for all possible lines and
choose the line that provides the maximal reduction of
trace(Pa) and so on.

3. Data

We present results for applications to the TIO using
model-generated ensembles of high-pass-filtered mixed

layer depth to represent intraseasonal variability (rep-
resenting periods of 3–100 days) and an ensemble of
observation-based gridded sea level anomalies
(GSLAs) representing intraseasonal-to-interannual
variability. The details of the models and observations
are outlined below.

a. Model configurations

The reliability of an objectively designed array from
a model-based ensemble depends on the representa-
tiveness of the ensemble. If the background error co-
variance represented in the ensemble is unrealistic,
then the objectively designed array will be flawed. One
way to assess the robustness of an objectively designed
array is to derive multiple arrays from multiple en-
sembles generated by different models or different
model simulations. For this study, we derive and evalu-
ate an objectively designed array using output from
three different models, with different resolution, differ-
ent forcing, and integrated for different time periods.
All three models are global configurations of different
versions of the Geophysical Fluid Dynamics Labora-
tory (GFDL) Modular Ocean Model (Pacanowski
1995; Griffies et al. 2004), with the hybrid mixed layer
model described by Chen et al. (1994). Specifically, the
models used here are the Australian Community Ocean
Model (ACOM), versions 2 and 3 (ACOM2 and
ACOM3), and the Ocean Forecasting Australian
Model (OFAM). The details of these models are sum-
marized below and in Table 1.

1) ACOM2

Details of the configuration of ACOM2 are de-
scribed by Schiller and Godfrey (2003). ACOM2 is
based on version 2 of the Modular Ocean Model
(MOM2; Pacanowski 1995), has constant zonal resolu-
tion of 2°, enhanced meridional resolution of 1/2°
within 8° latitude of the equator that gradually in-
creases to 3/2° toward the poles, and 25 vertical levels.
ACOM2 is initially spun up for 20 yr using climatologi-
cal forcing and is subsequently integrated for 1982–94
using 3-day-averaged wind stress from a blend of Na-
tional Centers for Environmental Prediction–National
Center for Atmospheric Research (NCEP–NCAR)
fields (Kalnay et al. 1996) and the Florida State Uni-
versity climatology (Legler et al. 1989). Surface heat
and freshwater fluxes are obtained by coupling
ACOM2 to the atmospheric boundary layer model
(ABLM) described by Kleeman and Power (1995).

2) ACOM3

Details of the configuration of ACOM3 are de-
scribed by Schiller (2004). ACOM3 is based on version
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3 of MOM (MOM3), has a zonal resolution of 1/2°,
meridional resolution of 1/3°, and 33 vertical levels. The
model is initially spun up for 8 yr using climatological
forcing and is subsequently integrated for 1992–2000
using daily European Remote Sensing Satellite-1/2
(ERS-1/2) scatterometer winds, surface heat fluxes (la-
tent, sensible, and longwave) from the ABLM of Klee-
man and Power (1995), solar shortwave radiation de-
rived from observed outgoing longwave radiation
within 15° of the equator and NCEP elsewhere, and
precipitation from Xie and Arkin (1997).

3) OFAM

Details of the configuration of OFAM are described
by Oke et al. (2005; 2008). OFAM is based on MOM4
and has zonal resolution of 1/10° between 90°E and
180° that gradually increases to 2° between 60°W and
0°, meridional resolution of 1/10° south of 25°S that
gradually increases to 2° north of 45°N, and 47 vertical
levels. The model is initially spun up for 3 yr with cli-
matological forcing and is subsequently integrated for
1992–2004 using 6-hourly wind, heat, and freshwater
fluxes from the 40-yr European Centre for Medium-
Range Weather Forecasts Re-Analysis (ERA-40; Kåll-
berg et al. 2004).

4) MODEL VALIDATION

Results from ACOM2 and ACOM3 have been used
to explore intraseasonal variability (Schiller and God-
frey 2003) and upper ocean dynamics (Schiller et al.
1998). These studies have undertaken extensive com-
parison with observations, including comparisons of
time series of subsurface currents in the central Indian
Ocean (Schiller and Godfrey 2003) and validation of
the model’s surface heat fluxes (Schiller et al. 1998) that
represent an assessment of both the ocean’s upper
ocean dynamics and the ABLM. Additionally, Schiller
(1999) presented a series of comparisons between mod-
eled and observed subsurface temperature along fre-
quently repeated XBT lines in the Indian Ocean. The

extensive model validation referred to above was typi-
cally very favorable. This demonstrates that these mod-
els generally provide a realistic representation of the
intraseasonal variability in the TIO.

To date, the validation of OFAM has focused on the
Australian region for a 13-yr reanalysis experiment,
known as the Bluelink Reanalysis (BRAN), that was
based on OFAM (Oke et al. 2005). Oke et al. (2005)
showed that BRAN provides a good synoptic represen-
tation of the eddy field around Australia, and that the
subsurface temperature variability along the equatorial
Pacific Ocean is in good agreement with observations
from the TOGA–TAO array in both BRAN and a free
run of OFAM. More recently, Oke et al. (2008) pre-
sented a comprehensive evaluation of the latest BRAN
experiment, showing that both BRAN and OFAM
compare well to observations.

b. Remapping

To simplify our analysis, we remap all fields onto the
ACOM2 grid. This is achieved by averaging the original
fields onto the ACOM2 grid, using a boxcar filter that
has a footprint that spans each model grid cell. This
remapping has the effect of eliminating the details of
the fields that have scales that are not resolvable on the
ACOM2 grid. All gridded products therefore become
more or less compatible and can be compared directly
in the experiments that follow. This remapping also
means that the range of possible locations included in
the computation of optimal locations, by (7) or (6), are
the same for all applications presented here.

One limitation here, for ACOM3, is that the
ACOM3 fields are only available on a 1° � 1° grid that
has been subsampled (not averaged) from the original
grid. As a result, the ACOM3 fields are noisier than
they would be if we could remap them by averaging
from the original grid.

c. Observations

Weekly maps of GSLA, on a 1⁄3° Mercator grid, are
used here to represent intraseasonal-to-interannual

TABLE 1. Summary of model configurations. FC refers to a flux correction.

ACOM2 ACOM3 OFAM

Model code MOM2 MOM3 MOM4
Zonal resolution 2° 0.5° 0.1°–2°
Meridional resolution 0.5°–1.5° 0.33° 0.1°–2°
No. of vertical levels 25 33 47
Wind forcing NCEP–NCAR � FSU ERS-1/2 ERA-40
Nonshortwave heat flux ABLM � FC ABLM � FC ERA-40 � FC
Shortwave heat flux As above OLR � NCEP ERA-40
Freshwater flux As above Monthly analyses Levitus
Simulated period 1982–94 1992–2000 1992–2004
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variability and to demonstrate that the method de-
scribed in section 2 can be applied as easily to gridded
observations, as it can to model-based fields. The
GSLA maps used here are produced by Aviso, are
freely available using OpenDAP (opendap.aviso.
oceanobs.com/thredds/dodsC/), and are generated by
combining along-track sea level anomaly observations
from all altimetric missions [Ocean Topography Ex-
periment (TOPEX)/Poseidon, ERS-1/2, Jason-1, and
Envisat) using optimal interpolation (OI). The details
of the OI mapping are described by Ducet et al. (2000)
and La Traon et al. (1998). Briefly, the length scales
used for the OI range from 100 km in the zonal and
meridional directions at 60°N–60°S to 250 (350) km in
the meridional (zonal) direction at the equator.

4. Results

a. Model-based array design

We objectively compute an observation array using
an ensemble of intraseasonal mixed layer depth
(IMLD) from ACOM2, ACOM3, and OFAM and sub-
sample and average fields from ACOM3 and OFAM
onto the ACOM2 grid, as described in section 3b. The
mixed layer is defined here as the depth over which the
potential density decreases by 0.1 kg m�3 compared to
the surface density and has been high-pass filtered to
retain only variability on time scales of less than 100
days. The IMLD has been shown to provide a good
representation of intraseasonal variability (e.g., Shi-
noda and Hendon 1998). We apply the method de-
scribed in section 2 to objectively design an observation
array for the ACOM2, ACOM3, and OFAM ensemble
of IMLD and calculate the structured observation array
as described in section 2. As mentioned above, to be
consistent with the configuration of the CG-IOP array,
the mooring locations are restricted to within 12° of the
equator, while the system state is defined to include all
grid points in the TIO north of 15°S. We use an en-
semble of 1463 (12 yr), 976 (8 yr), and 1460 (12 yr)
members of three daily IMLD fields from ACOM2,
ACOM3, and OFAM, respectively.

The variance of IMLD for all three models is shown
in Fig. 2. These variance maps show good qualitative
agreement, with the maximum variance in the eastern
equatorial Indian Ocean. This region has been identi-
fied by observations to be a site where intraseasonal
oscillations have their largest amplitude (Webster et al.
2002; Sengupta et al. 2001). The variance in OFAM is
about twice as large as in ACOM2 and ACOM3 owing
to the finer horizontal resolution, rendering a richer
representation of equatorial Kelvin waves and other
small-scale phenomena.

Taking into account the likely vertical resolution of
the array, and subgrid-scale and daily variability, we
assume that the observed IMLD has an error variance
of 25 m2, and that observation errors are not correlated
in space. The method allows us to not only calculate the
observation array objectively, but also to rank the in-
dividual sites or mooring lines of the CG-IOP array in
terms of their impact on trace(Pa). We compute an ar-
ray for each model and calculate the corresponding fi-
nal theoretical analysis error variance [diagonal ele-
ments of Pa from (2)], including the CG-IOP array, for
the ensembles from all three models. This allows us to
cross check the likely performance of each array using
statistics from all models. Figure 2 shows maps of the
theoretical analysis error variance for each experiment
along with the locations and rankings of each array. We
have also ranked the locations from the CG-IOP array
using each model’s ensemble (Fig. 2, second row). We
note that each of the derived arrays have several moor-
ing lines in common. The rankings of the locations all
agree that the best mooring line is between 90° and
95°E (locations denoted 1–6 for all four arrays), and
that the mooring line south of India is also very impor-
tant (locations 7–12 for the CG-IOP, ACOM2, and
ACOM3, and 13–18 for OFAM). These regions are
where the IMLD have the largest variance.

The basin-averaged theoretical analysis error vari-
ance of IMLD and its percent reduction (given by the
observed variance minus the final analysis error vari-
ance, divided by the observed variance, multiplied by
100) are presented in Table 2 for each array. This shows
that when the ACOM2 ensemble is used to assess the
arrays, the ACOM2 array performs best, as we expect,
and the CG-IOP array performs worst. Similarly, when
the ACOM3 (OFAM) ensemble is used to assess the
relative performance of each array, the ACOM3
(OFAM) array performs best, and the CG-IOP array
performs worst (Table 2). Again, this is as we expect,
indicating that the arrays derived from the models are
indeed an improvement on the CG-IOP array, at least
in theory. In practice, consideration of the maps of the
theoretical analysis error variance in Fig. 2 and the sta-
tistics in Table 2 suggest that we should not expect a
very significant difference in the ability of the CG-IOP
array or any of the objectively designed arrays to moni-
tor variability in IMLD. Indeed, for IMLD, all arrays
considered here only reduce the error variance by
19%–32%. This reduction is quite small and is due to
the relatively short decorrelation length scales of
IMLD. We conclude that the CG-IOP array is probably
as good as any array that we can objectively design for
resolving IMLD. However, based on our experiments,
it is not clear that a mooring array, with only 33 moor-
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ings in the TIO, in isolation will resolve intraseasonal
variability with the accuracy that may be needed for
some applications. This may only be achieved using an
integrated observing system, as Vecchi and Harrison
(2007) suggest.

In addition to the experiments described above, we
have also applied the objective array design method to
several different model variables (e.g., upper ocean
heat content over the top 400 m). However, we found
that the models used here give quite a different repre-

FIG. 2. (top) The variance of the IMLD in (left) ACOM2, (middle) ACOM3, and (right) OFAM, and the theoretical analysis error
variance for each model using (top to bottom) the CG-IOP-, ACOM2-, ACOM3-, and OFAM-derived arrays, as labeled to the left of
each row. The numbers in each panel denote the mooring locations and the ranking of each location (i.e., the locations marked “1” are
the best location).
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sentation of these variables. It is not clear whether
these differences are due to inadequacies in the models,
due to the models simulating different time periods, or
that the differences in the model configurations (e.g.,
resolution) fundamentally change the model’s ability to
represent various phenomena (e.g., equatorial wave-
guide). Regardless of the reasons for the discrepancies,
this indicates that we should not base an optimal array
design on these particular variables. This highlights one
of the limitations of our method; that is, the reliability
of the objectively derived array directly depends on the
representativeness of the ensemble used. Simply stated,
the model-based array design is only appropriate if the
model’s representation of the variability is realistic.
This suggests that model-based array design should
probably always be performed with either a number of
different models or with a very well-validated model.

We also found that the upper ocean heat content
often has smaller correlation radii compared with the
IMLD. We believe that this may be a result of corre-
lation between the temperature in the upper 400 m and
the thermocline depth, so that the contribution to the
heat content from lowering (or rising) of the tempera-
ture is compensated to some degree by the contribution
from lowering (or rising) of the thermocline. This pos-
sibly indicates that the upper ocean heat content may
not be appropriate for characterizing the intraseasonal
variability in TIO than IMLD.

We have also performed an experiment with a supe-
rensemble, where the anomalies from all three models
are combined. We find that the results closely resemble
the results from the OFAM experiments (not shown).
This is because the variance in OFAM is about twice as
large as the variance in ACOM2 and ACOM3. The
ensemble members derived from the OFAM ensemble
therefore dominate this superensemble.

b. Observation-based array design

We objectively compute an observation array using a
676-member ensemble of GSLA (i.e., anomalies from a

long-term mean) that are derived from altimetric ob-
servations as described in section 3c (i.e., 13 yr of
weekly Aviso maps). The GSLA are unfiltered and
provide a realistic representation of intraseasonal-to-
interannual variability. We understand that the CG-
IOP mooring array for the TIO is not intended to in-
dependently monitor variability on these time scales.
Indeed other components of the integrated observing
system, such as altimetry and Argo, are more suitable
for resolving this variability. However, to demonstrate
the versatility of the method, we apply it here to objec-
tively design an observation array based on these maps
of GSLA. A map of the variance of GSLA is shown in
Fig. 3a. It can be seen that there is strong variability on
seasonal to interannual time scales in the boundary cur-
rents in the TIO and across the entire basin at around
8°–12°S where seasonal Rossby waves are known to be
prevalent (Masumoto and Meyers 1998; Schouten et al.
2002).

In contrast to the previous example, we present both
a structured array and an unstructured array, where the
array need not conform to some predefined design. We
restrict the possible locations of the observations to the
TIO (
12°). We assume observations have an error
variance of 9 cm2 and that the observation errors are
uncorrelated in space. The results are shown in Fig. 3.
The basin-averaged variance of the GSLA in the TIO is
shown in Table 3, along with the basin average of the
theoretical analysis error variance and its percent re-
duction. These statistics show that all three arrays re-
solve a significant percentage of the observed signal.
Table 3 also indicates that the objectively designed ar-
rays outperform the CG-IOP array and that the un-
structured array outperforms the structured array, as
we expect.

While the objectively designed arrays are arguably an
improvement on the CG-IOP array for resolving inter-
annual variability, the increase in the percent variance
explained is only 7%–9% over the CG-IOP array. This
suggests that, although the CG-IOP array is not de-
signed to resolve interannual variability in isolation
from the rest of the global ocean observing system, it is
still likely to do quite a good job.

Both the structured and unstructured arrays include
many observations in the seasonal Rossby wave band
between 6° and 12°S. Interestingly, they both include
many observations off Somalia and relatively few ob-
servations off Indonesia, while both regions have rela-
tively large variance (Fig. 3a). These results are ex-
plained by the correlation maps in Fig. 4, showing the
correlations between sea level from a reference loca-
tion (denoted by the star) and sea level across the entire
TIO. Figure 4a shows that sea level offshore of Indo-

TABLE 2. The basin-averaged observed variance and theoretical
analysis error variance of IMLD (m2) for different arrays, and the
percent reduction in parentheses.

Ensemble

ACOM2 ACOM3 OFAM

Observed variance 15.2 22.7 49.3
CG-IOP array 12.3 (19%) 16.7 (26%) 36.6 (26%)
ACOM2 array 11.5 (24%) 16.2 (29%) 36.6 (28%)
ACOM3 array 11.9 (22%) 15.4 (32%) 35.8 (27%)
OFAM array 12.1 (20%) 16.3 (28%) 33.6 (32%)
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nesia is well correlated with sea level along the coast
and over a very broad region. The spatial structure of
the correlation map shows a dipole structure. This
structure is observed in several previous studies (Cham-
bers et al. 1999; Feng et al. 2001; Wijffels and Meyers
2004; Rao and Behera 2005). Also, the footprint of the
positively correlated region reflects Rossby–Kelvin
wave patterns. This explains why even a single obser-
vation offshore of Indonesia can reduce the analysis
error variance in an extended region including along
the coast.

Figure 4b shows that sea level off Somalia is rela-
tively uncorrelated with sea level across the TIO. The
region off Somalia is dominated by mesoscale variabil-
ity that spawns from the energetic and highly variable
boundary currents in this region. While the mesoscale
variability in this region is well organized (Schott and
McCreary 2001), its variability is apparently somewhat
chaotic and is characterized by short decorrelation
length scales. This example explains why many obser-
vations may be required to reduce the analysis error
variance off Somalia.

While we can understand why the method identifies
certain regions as optimal locations on dynamical
grounds and through analyses like that presented in
Fig. 4, the number of observations in the objectively
designed arrays in the seasonal Rossby wave band high-
lights a limitation of the method. This overpopulation
of optimal observations near 9°S is partly attributable
to the stationary nature of the ensemble used. For ex-

FIG. 3. (a) Variance of the GSLA and the theoretical analysis error variance using (b) the CG-IOP array and an objectively designed
(c) structured array and (d) unstructured array. The numbers denote both the mooring locations and the ranking of each location as
in Fig. 2.

TABLE 3. As in Table 2, but for experiments using GSLA.

Variance (cm2)

Observed variance 81.0
CG-IOP array 34.9 (57%)
Unstructured array 27.1 (66%)
Structured array 29.5 (64%)
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ample, suppose observations from the array are assimi-
lated into a dynamical model to improve the forecast.
We might reasonably expect the model to accurately
propagate a seasonal Rossby wave westward, possibly
rendering some of the observations in this latitude band
redundant. We expect an adaptive sampling applica-
tion, where an ensemble Kalman filter is used in con-
junction with a dynamic model (e.g., an ocean general
circulation model) would identify fewer optimal loca-
tions in this latitude band.

By computing the reduction in trace(Pa) when each
observation is “added” to an observation array, we can
quantify the relative value of each observation location.
An example of this calculation is presented in Fig. 5,
showing both the cumulative percentage reduction of
the first n observations and the percentage reduction of
each individual observation. We present these statistics
for the case of the objectively designed unstructured
array using GSLA observations, shown in Fig. 3d. In
Fig. 5 we show statistics for arrays that use two different
criteria in their objective design. The first, denoted min
trace(Pa), is the criterion described in section 2. The
second, denoted max diag(Pb), identifies the “next
best” observation (referred to as the optimal observa-
tion in Fig. 1) as the location that has the maximum
background error variance. We find that the criterion
of minimal trace is clearly superior, demonstrating the
benefits of including information about the background
error covariances, rather than just the background er-
ror variances. Indeed, the details of the observation
array (not shown) are also quite different for these two
criteria. Specifically, the maximum variance criterion
yields more observations clustered in areas of large
variance and short length scales, namely, in the Somali

Current and off Sri Lanka. Interestingly, despite these
differences, the overall reduction of trace(Pa) is quite
similar for both criteria.

Figure 5b shows that the criterion of maximum back-
ground variance, denoted max diag(Pb), is clearly sub-
optimal. For example, the fifth observation yields a
greater reduction in trace(Pa) than any of the first four
observations. By contrast, the proposed method [min
trace(Pa)], while not optimal, is clearly more consistent
in this regard, with each additional observation yielding
a smaller reduction in the analysis error variance than
any of the observations that are already selected.

For a given application, the type of analysis pre-
sented in Fig. 5 might provide insight into the number
of observations required to monitor the variability in a
given region. If, for example, the first n observations
reduce the trace(Pa) considerably and all subsequent
observations result in only very small further reduc-
tions, then it would be clear that only n observations are
required. For the example considered here, Fig. 5a
shows a quasi-exponential profile in the cumulative
percentage reduction of the trace(Pa), indicating that
there are diminishing returns for each additional obser-
vation, but that there is no obvious cutoff beyond which
observations yield insignificant return.

5. Discussion and conclusions

Through a series of experiments using model-based
fields, we objectively design an observation array for
monitoring intraseasonal variability in the TIO. To as-
sess the robustness of our model-based arrays, we use
fields from three different models. The details of the
resulting arrays are similar for all models. Specifically,
they all give the highest ranking to the same mooring

FIG. 4. Correlations between GSLA at a reference location, denoted by the star, and GSLA elsewhere.
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line in the CG-IOP array at about 90°E. More gener-
ally, they all indicate that the key regions to monitor are
near the equator to the east, northeast of the TIO, and
south of India. Despite the moderately superior perfor-
mance of the objectively designed arrays, in theory, we
conclude that the CG-IOP array is probably as good, in
practice, for resolving intraseasonal variability, as any
array we can objectively design. This conclusion is a
testament to the insight and intuition displayed by the
CLIVAR panel in designing the CG-IOP array. We
also present results from a series of experiments de-
signed to monitor intraseasonal-to-interannual variabil-
ity using fields of gridded observations. From these ex-
periments we suggest that the key region to monitor is
6°–12°S, where seasonal Rossby waves are dominant.

To better understand why the method for objective
array design “selects” certain regions, we present cor-
relation maps to show the region of influence of differ-
ent locations. We suggest that this is a very useful tool
that could easily be used when an observation array is
being designed.

We also demonstrate how our method could be used

to estimate the number of observations required to ad-
equately observe the variability in some region. This
involves the computation of the relative value of each
observation in an observation array that may also prove
to be a useful metric for some practical aspects of ob-
servation array design.

In these experiments we use a simple method for
objectively designing an observation array using en-
semble data assimilation theory. The method can be
applied to model-generated fields or to time series of
gridded observations and allows one to generate either
a structured or unstructured observation array. It is
flexible and can be used in a range of different geo-
physical applications for objective array design.

We underline that having an ensemble that correctly
represents the background error covariance is crucial
for the applicability of the method. Using ensembles
formed from output from a long model run or from
observation-based gridded fields implies the ergodicity
of the system and does not take advantage of possible
time correlations. The application for which the
method described here is most suitable is where an en-

FIG. 5. (a) The cumulative percentage reduction of the trace(Pa) using the first n observation locations and (b)
the percentage reduction of the trace(Pa) using the nth observation location for objectively designed arrays that
minimize the trace of Pa, as described in section 2, or using a criterion that identifies the locations of maximum
background error variance, denoted max diag(Pb).
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semble optimal interpolation (EnOI) system (e.g., Oke
et al. 2002; Evensen 2003; Oke et al. 2005; Oke and
Schiller 2007b; Oke et al. 2008) is used to assimilate
observations from a fixed observation array (e.g., an
array of moorings). In this case, the EnOI system
should use the same ensemble of anomalies as that used
to objectively calculate the observation array. The sys-
tem should also use the same background field as is
used in constructing the ensemble of anomalies. De-
pending on the application, this background field may
be a constant field (e.g., climatology) or a time-varying
field (e.g., seasonal cycle). However, we argue that in
many other situations, regardless of the analysis system
to be used, the nonstationarity of the system’s statistics
may be not overly important and that it may be appro-
priate to use the time-averaged statistics, represented
by an ensemble that is constructed from realizations of
the system over a long period of time. In these cases,
the described ensemble-based method represents a
simple, objective, versatile, and computationally effi-
cient tool to calculate an observation array.

Acknowledgments. This research is funded by Aus-
tralia’s CSIRO through appropriation funding and by
the U.S. Office of Naval Research Ocean Modeling
Program through Grants N000140410345 and
N000140711054. The altimeter products were produced
by Ssalto/Duacs and distributed by Aviso, with support
from CNES.

APPENDIX

Equivalence of Serial and Parallel Assimilation

The equivalence of serial and parallel assimilation is
demonstrated in a somewhat complicated way by Bier-
man (1977, p. 72). For completeness here, we present a
more straightforward proof of this equivalence.

Suppose that a set O of p observations characterized
by the observation matrix Hp�n and the observation
error covariance Rp�p can be split in two sets O1 and O2

containing p1 and p2 observations, p1 � p2 � p, char-
acterized by observation matrices H1

p1�n and H2
p2�n,

H � �H1

H2
�,

and error covariances R1
p1�p1 and R1

p2�p2, respectively.
Suppose that these two groups of observations have
uncorrelated errors, so that R is block-diagonal:

R � �R1 0

0 R2
�.

For our purpose, it is convenient to use an alternative
expression for the analysis error covariance that is
equivalent to (2):

Pa � �Pb�1 � HTR�1H��1 � F�Pb, H, R�.

For simplicity, we assume that both the background
error covariance matrix and observation error covari-
ance matrix are nonsingular. Then, the equivalence of
serial and parallel assimilation means that the assimila-
tion of O should yield the same covariance as the con-
secutive assimilation of O1 and O2:

F �Pb, H, R� � F �F �Pb, H1, R1�, H2, R2�

or

�Pb�1 � HTR�1H��1 � ���Pb�1 � H1
TR1

�1H1��1��1

� H2
TR2

�1H2�
�1,

which simplifies to

HTR�1H � H1
TR1

�1H1 � H2
TR2

�1H2,

which is the case due to the block-diagonal structure of
R�1:

R�1 � �R1
�1 0

0 R2
�1�.
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