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ABSTRACT

The use of perturbed observations in the traditional ensemble Kalman filter (EnKF) results in a suboptimal filter

behaviour, particularly for small ensembles. In this work, we propose a simple modification to the traditional EnKF

that results in matching the analysed error covariance given by Kalman filter in cases when the correction is small;

without perturbed observations. The proposed filter is based on the recognition that in the case of small corrections to

the forecast the traditional EnKF without perturbed observations reduces the forecast error covariance by an amount

that is nearly twice as large as that is needed to match Kalman filter. The analysis scheme works as follows: update the

ensemble mean and the ensemble anomalies separately; update the mean using the standard analysis equation; update the

anomalies with the same equation but half the Kalman gain. The proposed filter is shown to be a linear approximation to

the ensemble square root filter (ESRF). Because of its deterministic character and its similarity to the traditional EnKF

we call it the ‘deterministic EnKF’, or the DEnKF. A number of numerical experiments to compare the performance

of the DEnKF with both the EnKF and an ESRF using three small models are conducted. We show that the DEnKF

performs almost as well as the ESRF and is a significant improvement over the EnKF. Therefore, the DEnKF combines

the numerical effectiveness, simplicity and versatility of the EnKF with the performance of the ESRFs. Importantly, the

DEnKF readily permits the use of the traditional Schur product-based localization schemes.

1. Introduction

The Ensemble Kalman Filter (EnKF) was introduced by Evensen

(1994) and has attracted a lot of attention in the literature (e.g.

see references in Evensen, 2003). It makes it possible to ap-

ply Kalman filter to high-dimensional discrete systems, when

the explicit storage and manipulation of the system state error

covariance are impossible or impractical.

The EnKF may be characterized by the application of the anal-

ysis equation given by Kalman filter to an ensemble of forecasts.

It has been recognized (Burgers et al., 1998) that a straightfor-

ward application of the analysis equation to each of the ensemble

members results in an ensemble collapse, when the ensemble

spread reduces too rapidly. The standard way to prevent the en-

semble collapse in the EnKF is to update each ensemble mem-

ber using independently perturbed observations (Burgers et al.,

1998; Houtekamer and Mitchell, 1998); the resulting algorithm

has become known as the perturbed observations EnKF and is

currently commonly associated with the acronym EnKF. The

use of perturbed observations in the EnKF results in the anal-

ysed error covariance matching the theoretical value given by
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Kalman filter in a statistical sense only. It introduces sampling

error, which makes the filter suboptimal, particularly for small

ensembles (Whitaker and Hamill, 2002).

The traditional EnKF can be regarded as a Monte Carlo formu-

lation of the Kalman Filter. By contrast, a number of determinis-

tic ensemble-based filters have been proposed; and are referred

to as the Ensemble Square Root Filters (ESRFs). A brief de-

scription of four different schemes may be found in Tippett et al.

(2003); see also Pham et al. (1998), Ott et al. (2004), Evensen

(2004) and Sakov and Oke (2008). Although an ESRF may show

a significantly better performance over the EnKF in numerical

experiments (e.g. Whitaker and Hamill, 2002), the EnKF still

has a number of features that may be attractive in practice. The

EnKF is simpler in some way as it requires only a repetitive

application of the analysis equation to each ensemble member;

and it readily permits the traditional Schur-product-based local-

ization (Hamill and Whitaker, 2001; Houtekamer and Mitchell,

2001), which may be required for realistic applications when the

system dimension exceeds the ensemble size (Oke et al., 2006).

Note that applying the Schur-product-based localization to an

ESRF currently requires using serial assimilation (Whitaker and

Hamill, 2002).

In this work, we propose a simple modification to the EnKF,

which results in an asymptotic matching of the analysed er-

ror covariance given by Kalman filter theory in cases when the
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correction is small; without perturbed observations. Because of

the deterministic character of the proposed filter and its close

relation to the EnKF we refer to it as the deterministic EnKF, or

the DEnKF.

To test the performance of the DEnKF we apply it to three dif-

ferent systems based on small models with different characteris-

tics. It is shown to perform as well as an ESRF and significantly

better than the EnKF.

This paper is organized as follows: the theoretical background

of the traditional EnKF is given in Section 2; the DEnKF is

introduced in Section 3; followed by a series of numerical tests

in Section 4. A discussion is presented in Section 5, followed by

our conclusions in Section 6.

2. Background

The EnKF is based on the Kalman filter analysis equation:

xa = x f + K(d − Hx f ), (1)

where

K = P f HT (HP f HT + R)−1 (2)

is referred to as the Kalman gain; xa is the analysis; x f is the

forecast; d is the vector of observations; H is the observation

sensitivity matrix, H = ∇xH(x f ), whereH(x) is the (non-linear)

operator mapping the state vector space to the observation space;

P f is the forecast error covariance matrix; R is the observation

error covariance matrix; the superscripts f and a denote forecast

and analysis, respectively; and the superscript T denotes a matrix

transpose. In the EnKF, the covariance matrix P is stored and

manipulated implicitly via an ensemble X of model states, X =
[X1, . . . , Xm], where m is the ensemble size, using the relation

P = 1

m − 1

m∑
i=1

(Xi − x)(Xi − x)T = 1

m − 1
AAT , (3)

where x is the ensemble mean:

x = 1

m

m∑
i=1

Xi , (4)

and A = [A1, . . . , Am] is the ensemble of anomalies, or pertur-

bations,

Ai = Xi − x. (5)

The ensemble mean is considered the best estimate for the system

state.

The EnKF processes each ensemble member using the anal-

ysis eq. (1):

Xa
i = X f

i + K
(
d + Di − HX f

i

)
, i = 1, . . . , m, (6)

where Di is a synthetic vector of perturbations of observations d.

The ensemble average of (6) yields the analysis eq. (1), provided

that the ensemble average of Di is zero:

D1 = 0, (7)

where D = [D1, . . . , Dm], and 1 = [1, . . . , 1]T is the vector

with all components equal to 1. To calculate the analysed error

covariance, we first subtract the analysis eq. (1) from (6); this

yields the equation for the update of an ensemble anomaly

Aa
i = A f

i + K
(
Di − HA f

i

)
, i = 1, . . . , m, (8)

which may be written in a matrix form for the full ensemble as

Aa = A f + K(D − HA f ). (9)

The analysed error covariance carried by the ensemble can then

be calculated using (3):

Pa = 1

m − 1
AaAa T

= 1

m − 1
[A f + K(D − HA f )][A f + K(D − HA f )]T

= P f − P f HT KT − KHP f + KHP f HT KT

+ 1

m − 1
KDDT KT + 1

m − 1
(I − KH)A f DT KT

+ 1

m − 1
KDA f T

(I − HT KT ). (10)

Without perturbing the observations, D = 0, the analysed error

covariance carried by the ensemble becomes

Pa = P f − P f HT KT − KHP f + KHP f HT KT

= (I − KH)P f (I − HT KT ), (11)

which is less than the value given by Kalman filter

Pa = (I − KH)P f , (12)

and therefore results in a premature reduction in the ensemble

spread (Burgers et al., 1998; Houtekamer and Mitchell, 1998).

The traditional way of handling this problem in the EnKF is to

add synthetic perturbations D (Burgers et al., 1998; Houtekamer

and Mitchell, 1998). If D is defined so that

1

m − 1
DDT = R, (13)

then in (10)

−KHP f + KHP f HT KT + 1

m − 1
KDDT KT = 0.

If there was a solution for D that satisfies (7), (13) and

A f DT KT = 0, (14)

then the ensemble transformation (9) would result in the anal-

ysed error covariance (10) exactly matching the theoretical value

(12). However, such a solution does not, generally, exist. Con-

sequently, the traditional EnKF only satisfies these conditions

approximately, in a statistical sense. If D contains random nor-

mally distributed elements such that eqs (7) and (13) are satisfied

in a statistical sense, then, if rows of D are not correlated with

rows of A, eq. (14) is also satisfied in a statistical sense, so that

arguably Pa = (I − KH)P f + O(m−1/2) (Burgers et al., 1998).
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The above considerations form a theoretical basis for the tra-

ditional EnKF, in which the analysis eq. (6) for the ith ensemble

member is contaminated with random Gaussian noise Di with

zero mean and variance equal to that of the observation error.

(Note that in the case of the correlated observation errors, when

R is non-diagonal, one needs to generate correlated Gaussian

noise with the covariance R.) The downside of this approach

is that it introduces a sampling error and makes the traditional

EnKF suboptimal, particularly for small ensembles.

In this work, we propose a simple modification to the tradi-

tional EnKF that makes the analysed error covariance asymptot-

ically match the theoretical value (12).

3. The deterministic EnKF

Because

P f HT KT = P f HT (HP f HT + R)−1HP f = KHP f ,

the expression for the analysed error covariance without per-

turbed observations (11) can be written as

Pa = P f − 2KHP f + KHP f HT KT .

If KH is small in some sense, then the quadratic term

KHP f HT KT is much smaller than the linear term 2KHPf ; and

one can asymptotically match the theoretical covariance up to

quadratic terms by halving the Kalman gain K. This argument

forms the theoretical basis for the DEnKF. The proposed analysis

scheme is as follows.

(i) Given the forecast ensemble X f , calculate the ensemble

mean, or forecast xf by (4), and the ensemble anomalies A f by

(5).

(ii) Calculate the analysis xa by using the Kalman analysis

eq. (1).

(iii) Calculate the analysed anomalies by

Aa = A f − 1
2
KHA f . (15)

(iv) Calculate the analysed ensemble by offsetting the ana-

lysed anomalies by the analysis:

Xa = Aa + [xa, . . . , xa]. (16)

This scheme is equivalent to applying the Kalman analysis equa-

tion to each ensemble member using half the Kalman gain and

no perturbed observations, with a subsequent readjustment of

the ensemble mean to the explicitly calculated analysis (1). Sim-

ilarly to the ESRF, the analysed error covariance in the DEnKF

does not depend on the particular realization of the observation

or assimilation procedures. Therefore, it also represents a ‘de-

terministic’ filter.

Updating the ensemble anomalies by eq. (15) results in the

analysed error covariance that is equal to

Pa = (I − KH)P f + 1

4
KHP f HT KT . (17)

This expression has an extra term compared with (12). The term

is quadratic over KH and positive semi-definite. The main ques-

tion is how significant is the discrepancy it introduces for the per-

formance of the DEnKF. This question will be partially answered

in the next section in experiments with three small models.

Because the DEnKF linearly approximates the theoretical er-

ror covariance, the ensemble transform (15) must represent a

linear approximation to the ensemble transform of an ESRF.

This is indeed the case because (15) can be rewritten as

Aa = A f

(
I − 1

2

A f T HT M−1HA f

m − 1

)
, M ≡ HP f HT + R,

in which the expression in brackets represents the first two terms

of the expansion of the square root in the ESRF solution

Aa = A f

(
I − A f T HT M−1HA f

m − 1

)1/2

(18)

(Evensen, 2004) into the Taylor series:

Aa = A f

[
I − 1

2

A f T HT M−1HA f

m − 1

−1

8

(
A f T HT M−1HA f

m − 1

)2

− · · ·
⎤
⎦ . (19)

4. Numerical tests

In this section we compare the performance of the DEnKF with

that of the traditional EnKF and an ESRF for three small mod-

els, namely the Linear Advection (LA) model of Evensen (2004);

the non-linear Lorenz-40 (L40) model of Lorenz and Emanuel

(1998); and a 1.5-layer reduced-gravity quasi-geostrophic (QG)

model with double-gyre wind forcing and bi-harmonic friction.

We first give a detailed description of the models and the con-

figurations used in the tests, and then describe the results. In all

experiments with the LA and L40 models we use a symmetric

(‘spherical simplex’) ensemble transform Kalman filter (ETKF)

(Bishop et al., 2001; Wang et al., 2004) to represent the ESRF,

while in the experiments with the QG model we use the serial

scheme by Whitaker and Hamill (2002) that permits localization.

4.1. The LA model

The LA model, described below, is based on that of Evensen

(2004). The dimension of the state vector x is 1000; the signal

propagates (advects) in the positive direction by one element at

each time step without changing its shape; and the model domain

is periodic:

x(t) = [x1(t), . . . , x1000(t)], t = 1, 2, . . . ;

xi (t + 1) =
{

xi−1(t), i = 2, . . . , 1000 ;

x1000(t), i = 1,
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where xi(t) is the ith component of the state vector at the tth time

step.

To generate a state vector sample, a sum of 25 sine curves with

random amplitude and phase and a random offset is calculated:

si =
25∑

k=0

ak sin

(
2πk

1000
i + ϕk

)
, i = 1, . . . , 1000,

where ak and ϕk are random numbers uniformly distributed in

the intervals (0, 1) and (0, 2π ), correspondingly. This sample is

then normalized to have a variance of 1:

x(1) = s
[(s − s)T (s − s)]1/2

,

where s denotes the state average. To generate the initial en-

semble, a specified number of samples are generated using this

procedure. The ensemble mean field is subsequently subtracted

from each member, and another random sample (‘climatology’)

is added to each member. The true field is defined as a sum of

yet another random sample and the climatology.

Therefore, by construction all possible model state vectors

belong to a subspace with dimension of 51 (referred to hereafter

as the model dimension) of the full model state vector space with

dimension of 1000. Also by construction, the initial root mean

square error (RMSE) of the ensemble mean is equal to 1. Note

that because the ensemble mean has been subtracted from each

member after the normalization, each ensemble anomaly has an

initial variance that is slightly different from 1.

Four observations of the true field are conducted and assimi-

lated into the model at every fifth time step, t = 1, 6, 11, . . . , at

equidistant locations i = {125, 375, 625, 875}. Each observation

is contaminated with random normally distributed uncorrelated

noise with variance of 0.01.

4.2. The L40 model

The L40 model (Lorenz and Emanuel, 1998) is a strongly non-

linear model with a state vector dimension of 40. Lorenz and

Emanuel (1998) argue that it roughly imitates the evolution of an

unspecified scalar meteorological quantity (such as temperature

or vorticity) along a latitude circle. This model has been used

for testing ensemble-based assimilation methods in a number of

earlier studies (Anderson, 2001; Whitaker and Hamill, 2002; Ott

et al., 2004; Lawson and Hansen, 2004). It contains 40 coupled

ordinary differential equations in a domain with cyclic boundary

conditions:

ẏi = (yi+1 − yi−2)yi−1 − yi + 8, i = 1, . . . , 40;

y0 = y40, y−1 = y39, y41 = y1.

The consecutive model states are obtained by integrating these

equations forward by intervals of �t = 0.05, so that the model

states x(t) relate to the solution of the above system as

x(t) = y(0.05t), t = 1, 2, . . . .

The model has an estimated fractal dimension of 27.1, the dou-

bling time of the leading Lyapunov exponent of 0.42 (which

corresponds to approximately 8 time steps), a mean of 2.34 and

standard deviation of 3.66 (Lorenz and Emanuel, 1998).

Following Lorenz and Emanuel (1998), each model time step

in our tests is conducted by a single step of the standard fourth-

order Runge–Kutta integrator. The ensemble members are ini-

tialized by random sampling from a set of 10 000 model states

obtained during one continuous integration at t = 1000, 1001,

. . . , 11 000. The true field is initialized by one more randomly

chosen state from this set. Following Whitaker and Hamill (2002)

and Ott et al. (2004), at every time step we conduct 40 observa-

tions of the true field at the node locations, i = 1, . . . , 40; each

observation is contaminated with random normally distributed

uncorrelated noise with a variance of 1. Common for assimila-

tion with non-linear models, an ensemble inflation is applied to

the ensemble at the end of each assimilation step by multiply-

ing the ensemble anomalies by the inflation factor δ with typical

values between 1.00 and 1.10: Aa ← δ · Aa .

The L40 model is a chaotic non-linear model, and as such rep-

resents an excellent framework for testing the filter performance

with a dynamic model; however, it does not represent ‘typical’

conditions of a GCM due to its low dimension (40) and rela-

tively high model subspace dimension (about 27). We therefore

introduce a third model that is described below.

4.3. The QG model

The QG model is a derivative of the 1.5-layer reduced-gravity

quasi-geostrophic model with double-gyre wind forcing and bi-

harmonic friction. It is a non-linear model with dimension of

about 1.6 × 104 and model subspace dimension of the order of

102– 103, which, we believe, is more representative of a realistic

atmospheric or oceanic data assimilating system.

The QG model is a numerical approximation of the following

equation:

qt = −ψx − εJ (ψ, q) − A�3ψ + 2π sin(2πy), (20)

where q = �ψ − Fψ , J(ψ , q) ≡ ψx qy − ψyqx , � ≡ ∂2/∂x2 +
∂2/∂y2. This equation is similar to eq. (3) from Jelloul and

Thierry (2003), which was obtained by non-dimensionalizing

the initial potential vorticity equation. ψ may be interpreted as

either a stream function or surface elevation. For the coefficients

in (20) we use values of F = 1600, ε = 10−5, and A = 2 ×
10−12. The model domain represents a 1 × 1 square, 0 ≤ x ≤
1, 0 ≤ y ≤ 1, discretized by a 129 × 129 grid. We use boundary

conditions ψ = �ψ = �2ψ = 0; second-order centred differ-

encing approximations for the derivatives and Laplacian; and

Arakawa approximation for the Jacobian. In many papers in-

volving quasi-geostrophic models different or more complicated

boundary conditions are used; however, the simplistic boundary

conditions above are sufficient for the purpose of this paper.

Terms with �2 and �3 are calculated by consecutive application
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Fig. 1. A typical state of the QG model; the

dots show an example of the observation

locations.

of the employed approximation for the Laplacian. We integrate

in time by the fourth-order Runge–Kutta scheme with the time

step of 1.25. The integration is conducted for the potential vor-

ticity q. To calculate ψ from a given q we solve the Helmholtz

equation �ψ − Fψ = q using an iterative multigrid solver with

the latest estimate for ψ as the initial guess.

The model has dimension of 127 × 127 = 16 129 (excluding

the boundary points) and a typical doubling time of the leading

eigenmode between 25 and 50 (which corresponds to between

5 and 10 assimilation cycles). A typical example of the ψ and q
fields from the QG model are shown in Fig. 1.

The data assimilation is conducted at every fourth time step.

At each assimilation cycle, 300 observations of ψ with obser-

vation variance of 4.0 are used. The observations are distributed

uniformly over the state vector length, with a random offset, dif-

ferent for each assimilation cycle, resulting in 10 densely pop-

ulated equidistant parallel tracks (Fig. 1). This observation net-

work is motivated by the typical distribution of satellite altimetry

for oceanic applications. All experiments are conducted with an

ensemble of 25 members. This ensemble size is intentionally

chosen to be much smaller than the model subspace dimension

since this is typical of many realistic oceanic or atmospheric ap-

plications (Oke et al., 2006). During data assimilation, ensemble

inflation and localization are applied. The ensemble inflation is

applied in the same way as for the L40 model, by multiplying

the analysed ensemble anomalies by a given factor; the factors

from 1.0 to 1.18 with the increment of 0.02 are used. For local-

ization we use the Gaussian localization function. It is applied

to the state error covariance matrix by means of a Schur product

by multiplying each element Pi j of the covariance matrix by the

factor ρi j = exp (−0.5 r2
i j/r2

0), where ri j is the horizontal distance

between elements i and j in grid space, and r0 is the localization

radius. The localization radii of 5–45 with the increment of 5 are

used. The initial ensemble is formed by 25 random samples of

2000 fields collected from a long model run to the time of t =
5 × 105, with the true field being initialized from another random

field from this set.

For each combination of the ensemble inflation and localiza-

tion radius we conduct 10 runs of 1200 steps each, during which

301 assimilation cycles are conducted. We compare results ob-

tained in these runs for three different schemes, the DEnKF, the

serial ESRF (Whitaker and Hamill, 2002), and the traditional

EnKF.

In choosing the parameters of the data assimilating system

based on the eq. (20), we aim to achieve stable runs (without di-

vergence) for some range of the inflation factor and localization

radius. We find that our assimilating system cannot achieve a sta-

ble performance with model parameters equivalent to those that

allowed long stable runs of the stand-alone model. We attribute

this less stable behaviour of the assimilating system compared

to the stand-alone model to the dynamic inconsistency of the

corrections introduced, firstly, by localization (e.g. Oke et al.,

2006) and, secondly, by the model’s non-linearity. We find that

it is possible to achieve a stable performance of the assimilating

system by increasing the dissipation for the ensemble by a factor

of 10, to A = 2 × 10−11 and, importantly, by reducing the time

step from 1.5 (used in free model runs) to 1.25.

4.4. Results

Results using the LA model and the L40 model are shown in

Fig. 2. It shows the behaviour of the RMSE of the analyses and

the ensemble spread during the initial stage of one particular

realization of the system. Here we define the ensemble spread

as the ensemble mean of the root mean squared deviation of

the anomalies. The top three panels in Fig. 2 refer to the LA

model, while the bottom three panels refer to the L40 model.

The LA model runs are conducted with a 55-member ensemble

and no inflation; while the L40 runs are conducted with a 35-

member ensemble and inflation factor of 1.02. These ensemble

sizes are only slightly larger than the model dimensions (equal to

51 for the LA model and approximately 27 for the L40 model),

and should result in a relatively small residual. After the initial

transient period, for both the ESRF and DEnKF the RMSE and

the ensemble spread become approximately equal; while for the

EnKF one can observe the filter collapse. This demonstrates a

consistency in this particular case between the actual analysis

error covariance (represented by RMSE) and its representation

by the ensemble for both ESRF and DEnKF, but not for EnKF.

The performance of the ESRF and DEnKF is very comparable,

with a slightly smaller residual achieved by the ESRF for the LA
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Fig. 2. An example of the RMSE and

ensemble spread of the ESRF, DEnKF and

EnKF for LA and L40 models.
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Fig. 3. RMSE for the LA model using the ESRF, DEnKF and EnKF

for the LA model, averaged for the time interval t = [900, 1000], and

over 50 realizations.

model, and a slightly faster convergence achieved by the DEnKF

for the L40 model

Figure 3 shows the mean value of the RMSE over the time

interval t = [900, 1000], averaged over 50 random realizations of

the LA model, versus the ensemble size. Each realization refers

here to a simulation with a different truth and initial ensemble,

ran for from t = 0 to 1000, with data assimilation performed

every four steps, to the total of 251 assimilation cycles. Figure 3

also shows the best achievable value of RMSE error for a given

ensemble, calculated as

σmin = ||Xs − xt ||, s = (XT X)−1XT xt ,

where X is the ensemble matrix, and xt is the the true solution; and

averaged over 50 realizations. The performance of the DEnKF

is almost identical to that of the ESRF, and is much better than

the performance of the EnKF. Both the DEnKF and the ESRF

perform nearly optimally, closely following the best possible

RMSE.

The DEnKF shows a similarly good performance with the

non-linear L40 model. Figure 4 depicts the average RMSE over

a long run of the L40 model versus ensemble size and inflation

factor for the ESRF, DEnKF and EnKF. Each run uses the same

true field, and for a given ensemble size each filter starts from

the same ensemble. The RMSE values are averaged over time

steps t = 1000, . . . , 300 000. Each panel in Fig. 4 shows the

RMSE computed as a function of the ensemble size and the

inflation factor. The white cells correspond to experiments in

which the filter did not converge, here defined as the runs with

RMSE greater than 1.

Figure 5 shows the best RMSE achieved in the runs from

Fig. 4 for a given filter and ensemble size, for all inflation fac-

tors involved. Once again, the DEnKF and ESRF show almost

identical performance, with the ESRF marginally better than the

DEnKF, and both being substantially better than the EnKF.

An important characteristic of a data assimilating scheme is

its stability towards the filter divergence. This stability is not

necessarily directly related to the scheme’s performance in terms

of RMSE under normal conditions, but rather characterizes its

ability to continue operation when the system turns out to be in

an inconsistent state in the sense of Julier and Uhlmann (1997).

Because the previous experiments with the L40 model were

not particularly challenging in regard to the filter divergence, we

change the configuration of the system to increase the divergence

rate by assimilating fewer observations, with smaller errors, and

less often. Specifically, we use 10 equally spaced observations

with error variance of 0.3, and assimilate every two time steps.

This configuration substantially increases both the non-linearity
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Fig. 4. RMSE for the L40 model using the ESRF, DEnKF and EnKF averaged over a long model run.
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Fig. 5. The best RMSE from Fig. 4 for the L40 model for a given

ensemble size.

of the system and the magnitude of the analysis correction com-

pared to the configuration described above (40 observations with

error variance of 1, assimilating every time step). An average re-

duction of RMSE after assimilation for the ETKF-based system
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Fig. 6. Comparison of convergence from the

initial ensemble for the ESRF and DEnKF

with L40 model in difficult conditions.

Shows the mean RMSE for time interval t =
[200, 500], averaged over 50 realizations. In

these experiments 10 observations with

observation error variance of 0.3 are

assimilated every two time steps.

with the above configuration at steps 200–500 is about 0.10 com-

pared to about 0.02 in the former configuration.

To investigate the convergence of the filter from the initial

ensemble, we compare the average RMSE of the ESRF and the

DEnKF over time interval t = [200, 500], averaged over the same

set of 50 realizations. The results of this experiment are shown

in Fig. 6. The white cells indicate that at least in one realization

out of 50 the model RMSE exceeds 10 at some point, which

we qualify as the filter divergence. The figure shows that for

convergence in the described configuration the ESRF requires

much more inflation and a larger ensemble than the DEnKF. We

conclude that although the DEnKF only approximates the ESRF

in the case of small corrections and performs as well as ESRF

in these situations, it may also be more stable in regard to filter

divergence than the ESRF when the corrections are large.

Finally, we compare the performance of the DEnKF, ESRF

and EnKF in a more ‘realistic’ environment in a series of exper-

iments with the QG model. Figure 7 shows the analysis RMSE

for the three systems as a function of the localization radius and

inflation factor. Each value of RMSE represents an average over

10 realizations, for assimilation cycles 52–301 of each realiza-

tion. The white cells correspond to the cases when the system

became unstable or diverged in at least one realization out of 10.

The results presented in Fig. 7 show a very similar perfor-

mance of both the ESRF- and DEnKF-basedr systems for a dense

observation network. The performance of the EnKF-based sys-

tem is slightly worse, with fewer configurations converging and
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Fig. 7. Comparison of the RMSE of the analysis of ψ for the DEnKF, ESRF and EnKF for the QG model as a function of the localization radius and

inflation factor; for the ensemble size of 25, averaged over 10 realizations and assimilation cycles 52–301 within each realization. White cells
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Fig. 8. Snapshots of the true field and the difference (error) fields between the analyses of ESRF, DEnKF and EnKF-based systems and the true field

obtained from a particular run with the QG model; for time equal to 375, 750, 1125 and 1500; with the localization radius of 15 and inflation factor

of 1.06 (ESRF, DEnKF) or 1.10 (EnKF).

greater RMSEs for those configurations that do converge. From

a practical point of view, the superior performance of the DEnKF

and ESRF here may not be very significant.

Examples of ψ from the ‘true’ model run at t = 375, 750, 1125

and 1500 are shown in Fig. 8, along with the corresponding error

fields for analyses using the ESRF, DEnKF and EnKF-based

systems. Results for each assimilation run are drawn from the

configuration with the smallest RMSE using a localization radius

of 15. This corresponds to an inflation factor of 1.06 for ESRF,

1.06 for DEnKF, and 1.10 for EnKF-based system.

The true and analysed fields in Fig. 8 are quantitatively similar

for all systems. The magnitude of the errors are an order of

magnitude smaller than the magnitude of the signal in the true

field. Recall that the magnitude of the observation error variance

is 4. The characteristic spatial length-scales of the error is smaller

than that of the signal. The most significant errors occur along
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Fig. 9. The best RMSE for a given localization radius; for the same set

of experiments as in Fig. 7.

the northern boundary; and are likely to be due to errors in the

propagation of fast-moving waves. These results demonstrate

that all three assimilation schemes tested here can result in a

well-constrained analyses.

Probably the most important conclusion that we draw from

this series of experiments relates to the range of different con-

figurations (localization length and inflation factor) that reliably

yields a satisfactory result for each scheme. Suppose we consider

experiments satisfactory if the RMSE is less than 0.8. Figure 7

indicates that for the ESRF- and DEnKF-based systems, there

is quite a broad range of configurations that satisfy this crite-

rion. By contrast, the range of satisfactory configurations for the

EnKF-based system is much narrower. Similar conclusions can

be drawn from the experiments with the L40 model presented in

Fig. 4 In practice, this may mean that more tuning experiments

may be required for the EnKF; and that the performance of the

EnKF-based system may be more sensitive to changes in the

configuration.

The results in Fig. 7 demonstrate that the EnKF-based system

produces slightly inferior results, compared to the ESRF- and

DEnKF-based systems and that this difference in performance

increases when the configuration of the assimilation (localization
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Fig. 10. Difference between the ensemble spread and the RMSE for the QG model for the same set of experiments as in Fig. 7.

and inflation) is less optimal. This can be seen more clearly from

Fig. 9 that shows the best RMSE for each localization radius in

the experiments shown in Fig. 7. The EnKF-based system also

requires a greater inflation, which is consistent with the analysis

of Whitaker and Hamill (2002). They found that an EnKF sys-

tem with a small ensemble is more likely to underestimate the

background error variance than to overestimate it.

The need for greater inflation for the EnKF is clearly demon-

strated in Fig. 10, showing the difference between the aver-

age RMSE shown in Fig. 7 and the corresponding average en-

semble spread (RMSE minus ensemble spread). Experiments

with near zero difference correspond to black cells; experiments

when the ensemble spread exceeds RMSE correspond to blue

cells; and experiments when the ensemble spread is smaller

than RMSE correspond to green cells. We note that for a given

localization radius the smallest RMSE corresponds to experi-

ments when the difference between the ensemble spread and

the RMSE is near zero. We believe that this demonstrates the

consistency of the data assimilation system; that is that the sys-

tem performs best when the ensemble-based estimate of the

background error variance matches the actual background error

variance.

While the performance of ESRF and DEnKF-based systems

in this experiment are quite similar, there are some subtle differ-

ences. The ESRF performs more reliably for bigger inflation fac-

tors at small localization radii, while DEnKF is able to perform

reliably for bigger localization radii (40 versus 30 for ESRF).

Considering the difference in performance of the DEnKF-

and ESRF-based systems, there are indications of a more

robust performance of the DEnKF-based system at larger lo-

calization radii, and of the ESRF-based system at smaller local-

ization radii. We believe that these differences are marginal in

practice; and that at optimal or nearly optimal parameters in the

case of small increments the performance the two systems is

nearly identical.

5. Discussion

The numerical experiments described above with three quite dif-

ferent models show good performance and robustness of the
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DEnKF. In all tests the DEnKF demonstrates performance equal

or very close to that of the ESRF, and a substantially better per-

formance than the traditional EnKF. Importantly, the DEnKF

also appears to be quite robust, since it converges as well as or

even better than the ESRF, particularly in situations when the

analysis correction is not small.

A possible reason for the robustness of the DEnKF can be

seen from eq. (17), which shows that the DEnKF always overes-
timates the analysed error covariance, and the difference between

the analysis error covariance of the DEnKF and the Kalman filter

becomes larger when the magnitude of the analysis correction is

larger. Such behaviour helps to avoid or reduce a possible under-

estimation of the estimated analysis error covariance compared

to the actual analysis error covariance, which often leads to a

divergence of the filter (Julier and Uhlmann, 1997). The vari-

ability in the magnitude of the overestimation of the analysis

error covariance, which increases for larger corrections, can be

seen as effectively an adaptive adjustment of the inflation, which

decreases the risk of filter divergence. Interestingly, a linear ap-

proximation of the ETKF solution, which is formally equivalent

to (18),

Aa = A f

(
I + A f T HT R−1HA f

m − 1

)−1/2

= A f

[
I − 1

2

A f T HT R−1HA f

m − 1

+ 3

8

(
A f T HT R−1HA f

m − 1

)2

− . . .

⎤
⎦ (21)

(Bishop et al., 2001; Wang et al., 2004), underestimates the anal-

ysed error covariance because of the alternating signs in the ex-

pansion and therefore is not as robust as the DEnKF in regard to

filter convergence.

The multiple of 1/2 in the ensemble transformation (15) can

also be obtained from the serial ESRF proposed by Whitaker

and Hamill (2002). When assimilating a single observation, the

ensemble transformation in ESRF becomes equivalent to using

a modified gain K̃ = αK, where

α =
[

1 +
(

R
HP f HT + R

)1/2
]−1

,

with all matrices in this equation becoming scalars. In the case

when the analysis correction is small, HP f HT 	 R, it yields

α ≈ 1/2.

This serial analogue of the DEnKF makes it possible to quan-

tify the assumption that the analysis corrections are ‘small’ for

the DEnKF to be valid. Specifically, for each observation, the ob-

servation error variance must be much greater than the forecast

error variance of the corresponding state vector element. Due to

the coefficient of 1/8 at the second term of the expansion

α = 1

2
+ 1

8
x − . . . , x ≡ R

HP f HT
,

in practice a weaker criteria

R > HP f HT (22)

might be sufficient for the DEnKF to be valid. Apart from the

initial period at the start of each assimilation run, this assump-

tion is typically valid in the experiments presented above. The

only experiment when the assumption (22) is not satisfied is the

experiment on the filter divergence, presented in Fig. 6. In this

experiment R = 0.3 ≈ HP f HT , but even in these conditions the

performance of the DEnKF in terms of RMSE is very close to

that of the ESRF.

One of the advantages of the traditional EnKF is that it

readily permits the use of localization schemes based on the

Schur product (an element-by-element multiplication of matri-

ces) (Houtekamer and Mitchell, 2001; Hamill and Whitaker,

2001). In this case, the covariance matrix P f in the analysis

eq. (1) is replaced by ρ◦P f , where ρ is a correlation matrix, with

elements ρi j calculated based on the distance in physical space

between elements of i and j of the state vector. Because ESRFs

update the ensemble anomalies using explicitly calculated en-

semble transformations with no direct reference to the forecast

error covariance P f , this technique is directly applicable to the

ESRF only in the case of serial processing of observations, when

the ensemble transformation can be written in terms of scaled

down Kalman gain (Whitaker and Hamill, 2002). Another pos-

sible approach to localization in the ESRF is to use a window

in physical space around a specified point and conduct data as-

similation using the local representation of the state vector (Ott

et al., 2004). In the DEnKF, the ensemble update written in the

form (15) readily permits the use of the Schur product-based

localization schemes, similarly to the EnKF.

6. Conclusions

We propose a new, deterministic modification of the traditional

EnKF, which we refer to as the DEnKF. The DEnKF can be

viewed as a linear approximation to the ESRF in the case

when the analysis corrections are small. In terms of the anal-

ysis scheme, the DEnKF is closer to the traditional EnKF than to

the ESRF. As a consequence, it allows the use of the traditional

Schur product-based localization schemes in the same way as

the EnKF. In regard to the performance of the DEnKF, a number

of experiments with three small models show that the DEnKF

performs equally as well as the ESRF, and substantially better

than the EnKF. Furthermore, our experiments indicate that the

DEnKF is quite robust; it may be less susceptible to the filter di-

vergence than ESRFs and may perform well with a wider range

of system configurations than the EnKF. Overall, we conclude

that the DEnKF combines the performance of the ESRF with the

simplicity and versatility of the EnKF and therefore represents an

interesting alternative to these two established ensemble-based

Kalman filters.
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