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Introduction

Bluelink is a partnership between the Commonwealth Sci-
entific and Industrial Research Organisation (CSIRO), the 
Bureau of Meteorology (the Bureau) and Royal Australian 
Navy (RAN). The primary objective of Bluelink is to develop 
and improve Australia’s capabilities in short-range ocean 
forecasting and reanalysis. The Bluelink forecast system 
(Brassington et al. 2007) first became operational at the Bu-
reau in August 2007, and has since produced two seven-day 
forecasts each week. The main components of the Bluelink 
system are the Ocean Forecasting Australia Model (OFAM) 
and the Bluelink Ocean Data Assimilation System (BODAS; 
Oke et al. 2008). The primary test-bed for the Bluelink system 
is the series of Bluelink ReANalysis (BRAN) experiments – 
multi-year data assimilating model runs (e.g. Schiller et al. 
2008; Oke et al. 2009a).
 An important aspect of any data assimilation scheme 
is the estimation of the system’s background error covari-
ances. These covariances, together with the observation-er-
ror covariances, quantify how the background innovations 
(model-observation misfits) project onto the full model state 
– including all variables at all model grid-points. Ensemble 

Kalman Filter (EnKF) methods have been established over 
many years, with their introduction by Evensen (1994) and 
subsequent refinement by Burgers et al. (1998). Subse-
quently, many different types of ensemble-based filters have 
been developed (see Tippett et al. 2003). Ensemble Optimal 
Interpolation (EnOI), first described by Oke et al. (2002) and 
Evensen (2003), involves the use of a stationary ensemble of 
anomalies, or modes, to approximate a system’s background 
error covariances. EnOI has many attractive characteristics, 
including quasi-dynamically consistent, multivariate, inho-
mogeneous and anisotropic covariances. The ensemble for 
EnOI can be time-invariant (e.g. Oke et al. 2002; 2005; 2008; 
Fu et al. 2008; Counillon and Bertino 2009) or seasonally 
varying (e.g. Brasseur et al. 2005).
 The analysis step of an EnOI scheme is very similar to that 
of a traditional EnKF; however, EnOI is much less expen-
sive. For an application using m ensemble members, EnOI 
is approximately m times less expensive than an EnKF. EnOI 
requires only a single deterministic model run to generate a 
background state, and only a single solution of the analysis 
equations to update the background. By contrast, an EnKF 
generally requires the integration of m model runs to rep-
resent the time-varying background error covariances and 
a background state (often based on the ensemble mean), 
and m solutions of the analysis equations where all ensem-
ble members are updated. Because of its simplicity, EnOI 
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does not represent the errors of the day. Rather, for EnOI, 
it is assumed that the background error covariances are not 
state-dependent, and are well represented by a stationary or 
seasonally varying ensemble. Additionally, EnOI does not 
explicitly include ensemble forecasts, which have proved 
useful for quantifying forecast uncertainty.
 Several factors, somewhat unique to oceanography, sup-
port an argument that EnOI is an appropriate method for 
ocean data assimilation. These factors are that:
(1) the spatial scales of the most energetic components of 

ocean variability are short;
(2) ocean observations, particularly observations represent-

ing the variability of the interior of the ocean, are sparse; 
and

(3) the user base for ocean forecasting is small.
The first factor, listed above, means that the spatial resolu-
tion of ocean models must be relatively high (e.g. 10 km or 
less) to resolve the dominant processes (i.e. eddies). This 
means that ocean models are generally very computationally 
expensive, particularly global ocean models. The third fac-
tor, listed above, means that justification for the deployment 
of significant computational resources for ocean forecasting 
is a challenge. That is, the user demand for ocean forecasting 
is currently weak. So, with computationally expensive fore-
cast systems motivated by only a small user base, the com-
putational resource available for ocean forecasting is likely 
to be a limiting factor for the foreseeable future. As a result, 
optimal data assimilation for ocean applications may not be 
possible. The second factor, together with the first, means 
that the background, or forecast, errors of ocean forecasts 
are often quite large, often with entire features (e.g. eddies, 
meanders, fronts, etc.) completely missing in an analysis or 
forecast. That is, because the observations are sparse and the 
spatial scales are short, processes and features that are often 
unpredictable (e.g. instabilities) may not always be either 
simulated by a model, or detected by the observing system. 
Taking all of these factors into consideration, one may con-
clude that an appropriate ocean data assimilation scheme 
should be computationally inexpensive, robust to missing 
observations, and capable of introducing, or re-introducing, 
entire features (e.g. eddies) during any given update. EnOI 
arguably satisfies all of these criteria.
 In this paper, the Bluelink forecast system is described, 
followed by a detailed description of EnOI, a discussion of 
ocean data assimilation, and some examples of EnOI applied 
to a global ocean model, followed by a short summary.

Bluelink forecast system

The ocean model used under Bluelink is based on the GFDL 
Modular Ocean Model (Griffies et al. 2004) and is called the 
Ocean Forecasting Australia Model (OFAM). To date, the de-
velopments under Bluelink have focussed on modelling the 
circulation of the upper ocean in the Australian region. This 
is reflected in the OFAM grid, with 10 m vertical grid spac-
ings over the top 200 m, and 1/10° horizontal grid spacings 

in the 90°-sector centred on Australia and south of 16°N. The 
horizontal grid spacing of OFAM is 0.9° across the Indian 
and Pacific Oceans and 2° in the Atlantic Ocean. The Arctic 
basin is not included in OFAM. To accommodate the inho-
mogeneous resolution, the horizontal viscosity is resolution 
and state-dependent based on the Smagorinsky-scheme 
(Griffies and Hallberg 2000). The bottom topography for the 
configuration of OFAM that is used here was constructed 
from a range of different sources, as documented by Schiller 
et al. (2008). The turbulence closure model used by OFAM 
is a version of the hybrid mixed-layer scheme described by 
Chen et al. (1994). 
 For long model runs, such as free spin-up runs and 
BRAN experiments, OFAM is forced by six-hourly atmo-
spheric fluxes from the European Centre for Medium-range 
Weather Forecasts (ECMWF), using fields from the 40-year 
ECMWF ReAnalysis (ERA-40; Kallberg et al. 2004) for the pe-
riod prior to August 2002, and six-hour operational forecasts 
thereafter. The operational Bluelink forecast system uses six-
hourly forcing from the Bureau’s Global Atmospheric Pre-
diction System (GASP, e.g. Schulz et al. 2007) that is soon to 
be replaced with a version of the Unified Model (Rawlins et 
al. 2007), developed at the UK Met Office. 
 The Bluelink Ocean Data Assimilation System (BODAS) 
is described by Oke et al. (2005; 2008). BODAS uses an EnOI 
scheme that is underpinned by a 72-120 member ensem-
ble (depending on the application) of intraseasonal model 
anomalies. The ensemble is generated from a long non-as-
similating model run. Observations that can be assimilated 
by BODAS include along-track sea-level anomalies from al-
timeters, in situ temperature and salinity observations, and 
satellite sea-surface temperatures.
 The Bluelink system has been used to perform operational 
ocean forecasts (www.bom.gov.au/oceanography/forecasts), 
multi-year ocean reanalyses (Oke et al. 2005; 2008; 2009a; 
Schiller et al. 2008), and observing system experiments 
(Oke and Schiller 2007). Output from Bluelink applications 
have been used to explore ocean dynamics (e.g. Schiller et 
al. 2009), for observing system design and assessment (Oke 
and Schiller 2007; Brassington and Divakaran 2008; Oke et 
al. 2009b), and to support a variety of industry groups.

Ensemble optimal interpolation

Consider the analysis equations,

 wa = wb + K(d – H wb) …1
  
K = Pb HT (HPb HT + R)-1 …2

where w is the model state vector, d is the vector of observa-
tions, K is the gain matrix, and H is an operator that maps 
from model-space to observation-space – often H is simply 
linear interpolation. The matrix Pb is the background error 
covariance and R is the observation error covariance. Su-
perscripts a and b denote analysis and background, respec-
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tively, and the superscript T denotes a matrix transpose. The 
analysis equations (Eqns 1 and 2) can be readily expressed in 
terms of an ensemble using

Pb = r ° A’A’T / (m – 1) …3

K = r ° A’(HA’)T (r ° HA’(HA’)T  + (m – 1) R)-1 …4

where m is the ensemble size, r is a correlation function, the 
open circles denote an element-by-element matrix multipli-
cation, and the ensemble A’, is given by,

A’ = a[w’ 1   w’ 2   ...   w’ m] …5

where a is a scalar, and w’i is the ith model anomaly. The in-
clusion of the correlation function in Eqns 3 and 4 represents 
localisation (e.g. Houtekamer and Mitchel 2001). Localisation 
is a necessary part of any ensemble-based data assimilation 
system where the model state dimension exceeds the en-
semble size. Localisation acts to reduce sampling error that 
arises from the use of a small ensemble, and to increase the 
rank of the ensemble, so that the system can ‘fit’ the back-
ground innovations. One of the negative consequences of 
localisation is the introduction of dynamical imbalance (e.g. 
Mitchell et al. 2002; Lorenc 2003; Oke et al. 2007; Kepert 2008). 
Without localisation (i.e. r = 1), it can easily be shown that

wa – wb = A’c …6

where c is a m-element vector. Written in this form, it is 
clear that when an ensemble is used to approximate the 
background error covariance, the increment, represented 
by Eqn 6, is simply a linear combination of ensemble mem-
bers. When localisation is used, the coefficients c in Eqn 6 
vary in space – though these coefficients are generally not 
computed explicitly. This demonstrates that there is a clear 
relationship between how an ensemble is constructed and 

the assumptions made when implementing the data as-
similation system. This permits a clean hypothesis about the 
system’s background errors. This hypothesis can be readily 
formulated and evaluated. For example, under Bluelink we 
hypothesise that the background errors are proportional to 
model variability on intraseasonal time-scales, relating to the 
development and evolution of the mesoscale eddy field. The 
ensemble is therefore constructed in a manner that isolates 
the representation of the mesoscale eddy field. In practice 
this is achieved by computing an ensemble of intraseasonal 
anomalies, through a simple band-pass filter of a long free 
model run. 
 The ensemble-based background error covariances gen-
erated under EnOI are anisotropic and inhomogeneous. 
Some examples of ensemble-based correlations are present-
ed in Fig. 1. These covariances nicely summarise the domi-
nant processes that regularly occur in different regions. 
They concisely represent the spatially varying length-scales, 
anisotropy, and the variance of the modelled circulation. In 
the examples shown in Fig. 1, ensemble-based correlation 
between sea-level at a reference location (denoted by the 
star) and sea-level in the surrounding region is shown. These 
fields show the region of influence of an innovation at the 
reference location. These examples highlight the long along-
shore length-scales and the short across-shore length-scales 
for a region near the coast (Fig. 1(a)), the anisotropy of the 
circulation along the path of the EAC after it separates from 
the coast (Fig. 1(b)), and the quasi-Gaussian, quasi-isotropic 
structures of eddies in a region that is dominated by meso-
scale eddies (Fig. 1(c)).

Ocean data assimilation

In the introduction to this paper, three aspects of ocean data 
assimilation are mentioned that arguably set it apart from at-
mospheric data assimilation. The first of these is that the spa-

Fig. 1 Examples of the ensemble-based cross-correlations between sea level at a reference location, denoted by the star, and 
sea level in the surrounding region for a reference location on the (a) continental shelf, (b) along the path of the EAC as it 
separates from the coast, and (c) over the deep where EAC-spawned eddies regularly occur off eastern Australia (panel (d)). 
Contour intervals are 0.2; zero is bold, dotted is negative. 



70   Australian Meteorological and Oceanographic Journal 59 January 2010

tial length-scales of the ocean are short. The dominance of the 
short time and space-scales of the ocean is demonstrated in 
Fig. 2, showing the ratio of the eddy kinetic energy (EKE) to 
the total kinetic energy (TKE), presented as a percentage, for a 
15-year ocean reanalysis (Schiller et al. 2008). This ratio clearly 
indicates that for much of the ocean, for the region shown, 
the EKE, representing the short time and space-scales of the 
ocean, is significant. In many regions, the EKE completely 
dominates the variability. For example, the mid-latitudes are 
dominated by EKE through the abundance of mesoscale ed-
dies (Chelton et al. 2007). There are only a few exceptions to 
this around Australia, including the transition zones between 
the equatorial current systems, regions of strong topograph-
ic steering (e.g. south of New Zealand) and in some places 
where persistent continental shelf currents exist (e.g. the 
Leeuwin Current off Western and southern Australia).
 A sense of the length-scales of the ocean is also obtained 
by considering a map of sea-level anomaly (Fig. 3). This 
example is typical of the ocean circulation. It shows many 
relatively small cyclonic and anticyclonic features. A time 
sequence of these fields (not shown; see www.cmar.csiro.
au/remotesensing/oceancurrents/) shows that the ocean cir-
culation is very dynamic, with eddies developing over peri-
ods of days, and evolving over months. Wave-dynamics are 
very important in the ocean, with a range of fast and slow-
moving waves representing a considerable proportion of the 
total ocean variability.
 To compare numerical weather prediction (NWP) to ocean 
forecasting, consider the typical length-scales of the ocean 
relative to the atmosphere. While atmospheric weather pat-
terns span several hundreds and often thousands of kilome-
tres – ocean ‘weather’ patterns typically span 50-300 km.
 Consider the status of the global ocean observing system. 
Conventional ocean observations include sea-level anomaly 
from satellite altimeters, satellite sea-surface temperature 
(SST), and in situ observations of subsurface temperature 
and salinity profiles from a range of programs (mainly Argo; 
Argo Science Team (1998)). The typical coverage of the ocean 
observing system is shown in Fig. 4. This includes an ex-
ample of all observations available on a single day (Fig. 4(a)). 
Clearly, satellite SST observations provide excellent cover-
age of the global oceans. These observations are well used 
by the community and feed through to important applica-
tions, like NWP. However, from an oceanographic perspec-
tive, SST observations often only represent the variability in 
the relatively shallow surface boundary layer. Also, in many 
regions of the ocean (e.g. a large part of the tropical oceans) 
SST is isothermal and is often somewhat unrelated to the 
mesoscale variability of the ocean. SST observations are cru-
cial to ocean forecast systems, for their role in initialising 
and constraining the properties of the upper ocean bound-
ary layer, however, they cannot exclusively constrain the me-
soscale variability of the ocean (e.g. Oke and Schiller 2007).
 An example of the available subsurface observations on a 
single day is presented in Fig. 4(b). Here, we have regarded 
altimeter observations as subsurface. This is because the ob-

served sea-level anomaly typically represents the properties 
of the ocean interior in a way that is somewhat analogous to 
mean sea-level pressure representing the properties of the 
overlying atmosphere. Sea-level anomaly of the ocean is of-
ten highly correlated to variability of the ocean pycnocline 
that is typically associated with the ocean mesoscale vari-
ability. The data distribution in Fig. 4(b) provides quite a dif-
ferent story to Fig. 4(a), indicating that the spatial coverage 
of subsurface ocean observations is very sparse compared to 
the spatial scales of ocean variability (e.g. Fig. 3).

Fig. 2 Ratio of eddy kinetic energy to total kinetic energy 
from BRAN2.1 for the period 1993-2001. Units are in %.

Fig. 3 Example of a sea-level anomaly (colour) with atmo-
spheric sea-level pressure overlaid (white and blue 
contours). The diagonal tracks denote altimeter tracks 
along which sea-level anomaly is observed, and the 
black contour shows the 200 m isobath (sourced from 
www.cmar.csiro.au/remotesensing/oceancurrents/).
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 Altimeter observations are the most important observation 
type for constraining the mesoscale eddy field in the ocean (Oke 
and Schiller 2007; Oke et al. 2009c). The typical repeat-cycle for 
both satellite altimeters and Argo profiling floats is ten days. The 
data coverage over ten days is presented in Fig. 4(c). Together 
with the good SST coverage, the global ocean is relatively well 
observed over a ten-day period, however, even with ten days of 
data, the mesoscale eddy field remains under-sampled. Data as-
similation systems and ocean analysis systems typically use ob-
servations from a time-window of between one and eleven days. 
Those that use data from only one day attempt to correct the 
background state only in regions that are observed (e.g. Martin 
et al. 2007). Those systems that use longer time-windows typical-
ly ascribe larger errors to observations that do not correspond 
to the analysis time, and attempt to reproduce all of the synoptic 
features of the ocean (e.g. Oke et al. 2008). For both cases, the 
ocean observing system is likely to miss entire features, such as 
eddies, fronts, or current meanders. If these features are poorly 
represented in the background field, a subsequent assimilation 
step may have to introduce entire features. As argued above, and 
noting the relation presented in Eqn 6, the ensemble for an EnOI 
system can readily be constructed to facilitate this.
 

Performance of an EnOI system

Experiments with small models
The performance of EnOI and EnKF was compared by Oke et 
al. (2007) for a simple one-dimensional, linear advection sys-
tem, following Evensen (2004). Oke et al. (2007) demonstrat-
ed that the EnKF outperforms EnOI, as expected, and inves-
tigated the impact of localisation on dynamical balance. The 
simple system that Oke et al. (2007) used is a perfect advec-
tion of a one-dimensional field. They consider experiments 
where four evenly spaced observations are assimilated every 
five time steps over a domain of 1000 grid-points. The model 
state is advected at a constant speed of one grid-point per 
time step (hence ‘perfect advection’). Both the ensemble and 
the true field are generated from random samples. For each 
sample, the variable is initialised as a linear combination of 
25 sine curves with random uniform distributed amplitude 
and phase and a random offset. Thus the dimension of the 
system is 51. For this configuration, and because the model 
is linear, it is expected that convergence of the root mean 
squared error (RMSE) is achievable in just under 250 time 
steps; see Oke et al. (2007) for details. 
 The performance of EnOI and EnKF for different en-
semble sizes, with and without localisation is shown in Fig. 5 
(adapted from Oke et al. 2007). For this example, the dimen-
sion of the system is 51, so experiments with ensemble sizes 
of less that 50 require localisation (Fig. 5(a)). This is simply 
because in these cases the ensemble is rank-deficient – that 
is, the dimension of the ensemble sub-space is less than 
the dimension of the model sub-space. For the case with 
an ensemble size of 100 (i.e. greater than the dimension of 
the model sub-space), the EnKF out-performs EnOI. For the 
case with an ensemble size of 50 (i.e. approximately equiv-
alent to the state dimension), the EnKF and EnOI perform 
comparably. For the cases with an ensemble size of 10 or 
20, without localisation the ensemble is rank-deficient (< 51). 
But for these cases with localisation, provided the localising 
length-scale is shorter than the distance between observa-
tions (here it is 50 and the separation distance is 250), the 
effective rank of the ensemble becomes 40 or 80 respectively 
(i.e. number of observations times the ensemble size). So for 
10 members with localisation, the ensemble is almost full 
rank, and for 20 members with localisation, the rank of the 
ensemble exceeds the dimension of the state.
 For the cases with localisation (Fig. 5(b)), all configura-
tions converge on a state that has acceptably small error. 
Clearly, the EnKF is superior to EnOI – displaying faster 
convergence – for equivalent ensemble size. In these cases, 
localisation has acted to increase the rank of the ensemble 
sufficiently to constrain the system.
 The results presented in Fig. 5 are not surprising. They 
clearly indicate that the EnKF outperforms EnOI. However, 
consider the computational resources required to achieve 
these results. Recall that the EnKF is m-times more expen-
sive that EnOI, where m is the ensemble size. Instead of 
comparing the EnKF with 100 members and EnOI with 100 

Fig. 4  A typical example of observations available in the 
global ocean observing system showing (a) all obser-
vations on a single day, (b) subsurface observations 
on a single day, and (c) subsurface observations for a 
ten-day window. SST observations (red) typically rep-
resent only the shallow surface boundary layer; Argo 
T/S (temperature/salinity) (green) are subsurface pro-
files of ocean properties; and altimeter observations 
(black) are here regarded as subsurface observations 
because they represent depth integrals of ocean prop-
erties over the upper part of the water column. This 
example is centred around 1 January 2008.
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members, perhaps we should compare the EnKF with 10 
members and the EnOI with 100 members. For these cases, 
EnOI is still more computationally efficient than the EnKF, 
requiring significantly less resources, but performs bet-
ter than the EnKF with and without localisation – in both 
cases achieving a smaller RMSE. For the case with localisa-
tion, the EnKF with 10 members still beats EnOI with 100 
members – achieving convergence faster – but the asymp-
totic skill is better for EnOI. This prompts the question – for 
an operational system, where computational resources are 
limited, and where throughput is critical, are we better run-
ning an EnKF system with a small dynamic (time-evolving) 
ensemble, or an EnOI system with a large stationary (time-
invariant) ensemble? The answer to this question is unclear, 
but is something that we think should be pursued.

Experiments with general circulation models
Under Bluelink, an EnOI-based data assimilation system has 
been used for ocean reanalyses (e.g. Oke et al. 2005; 2008; 
2009a; Schiller et al. 2008) and operational ocean forecast-
ing (Brassington et al. 2007). An example of output from the 
Bluelink system is presented in Fig. 6 which shows monthly 
mean sea-level fields from BRAN (version 2p2) with drifter-
derived velocities and trajectories overlaid. The drifter data 
are from the entire month. The drifter data represent the 
time-varying ocean circulation and are therefore a measure 
of the time-integrated circulation. This is not necessarily well 
represented by the monthly mean sea-level fields of BRAN. 

However, provided the variability of the circulation over 
each month is not too large, this comparison provides an 
independent assessment of the reanalysed circulation. Note 
that data from the surface drifting buoys are not assimilated 
into BRAN. In general there is good agreement between the 
drifter trajectories and the sea-level contours, indicating that 
there is independent agreement between the reanalysed and 
observed circulation. The examples in Fig. 6 include situa-
tions where the drifter trajectories cross the sea-level con-
tours. This is due on occasions to the effects of wind, or may 
be because a mean field (sea level) is being compared to a 
Lagrangian description of the circulation (drifters). It may 
also be because the mesoscale features reproduced in BRAN 
are not precisely in the correct positions, or with the correct 
structures. Nevertheless, this comparison demonstrates that 
an EnOI system can constrain an ocean general circulation 
model to reproduce realistic ocean variability.
 The Global Ocean Data Assimilation Experiment (GO-
DAE), and its successor GODAE OceanView, is an inter-
national effort to demonstrate the feasibility of operational 
ocean forecasting (www.godae.org). GODAE partners in-
clude institutions from Australia, Canada, China, France, 
Italy, Japan, Norway, UK, and the USA. Most of the systems 
developed under GODAE perform operational short-range 
forecasts of the ocean – some for specific regions, others for 
the global ocean. The data assimilation tools used by these 
systems include EnOI (e.g. Australia, France), multivariate 
optimal interpolation (MvOI; USA, UK), EnKF (Norway), and 
variational methods (Japan). Most of these systems are still 
being developed and improved. To assess the performance 
of different systems and methods, an intercomparison exer-
cise was undertaken for a three-month period in 2008. Some 
results from this intercomparison activity are presented be-
low to demonstrate the current state-of-the-art in operation-
al oceanography, and to demonstrate how the EnOI-based 
systems perform relative to the other operational systems.

Fig. 5 Time series of the root mean squared error (RMSE) 
for an idealised linear advection experiment using 
an EnKF or EnOI with different ensemble sizes, m, (a) 
without localisation, and (b) with localisation. Adapt-
ed from Oke et al. (2007).

Fig. 6 Monthly mean sea-level from BRAN (version 2p2), 
with surface drifter velocities and trajectories overlaid.
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 Here, we compare the performance of systems developed 
in the USA (HYCOM), France (Mercator), Australia (Bluelink), 
and the United Kingdom (UKMet). The US-HYCOM system 
is run by the US Navy using a 1/12° resolution global model 
and an MvOI scheme (Cummings 2005). The French Mercator 
system uses a global 1/4° resolution model and a SEEK filter 
implemented with a seasonally varying ensemble (Brasseur et 
al. 2005). The UK system (Martin et al. 2007) uses a 1/4° global 
model and an MvOI-based system. Results from Bluelink in-
clude BRAN (a delayed-mode reanalysis; Schiller et al. 2008; 
Oke et al. 2009a), OMAPS-hc (an operational hindcast; Brass-
ington et al. 2007) and OMAPS-fc (an operational forecast). Of 
these systems, HYCOM, Mercator, UKMet, and BRAN can 
each be considered ‘best estimates’. In each case, these are 
produced using delayed-model atmospheric fluxes and re-
search quality ocean observations. By contrast, OMAPS-hc is 
an operational hindcast and OMAPS-fc is an operational fore-
cast, using operational atmospheric fluxes and near-real-time 
ocean observations (often with missing and incomplete fields 
due to data latency).
 An example of these intercomparisons is presented in Fig. 
7, showing the root mean squared difference (RMSD) be-
tween modelled and observed temperature and salinity for a 
region off the east coast of Australia. Based on these compari-
sons it is clear that the EnOI-based systems (i.e. Bluelink and 
Mercator) perform as well as other groups. A more compre-
hensive series of intercomparisons between GODAE systems 
in the Australian region are available from www.cmar.csiro.
au/staff/oke/GODAE.htm. The results presented in Fig. 7 are 
typical. These results of the intercomparisons performed to 
date indicate that the majority of the ocean is reasonably well 
constrained by a stationary, or seasonally varying, ensemble. 
The likely advantage of an EnKF occurs when and where the 
time-evolving background error statistics significantly depart 
from a stationary ensemble estimate, and where a dynamic 
ensemble has skill at quantifying these time-evolving statis-
tics. We expect that this would occur in regions of energetic 
currents, such as western boundary currents, or in regions 
where strong transitions occur, such as strong wind-driven 
upwellings, or eddy generation. The justification for the ad-
ditional resources for an EnKF, or other more advanced ap-
proaches, should be based on a demonstration of how impor-
tant these extreme events are to the user community – and 
more importantly, on how much better an EnKF performs 
compared to the less expensive EnOI-based systems. 

Potential extensions

There is a lot of potential for optimising EnOI-based systems. 
For example, the extension to a four-dimensional ensemble, 
where the time-lagged covariances of a system are exploited 
is relatively straightforward (e.g. Hunt et al. 2004). An example 
of four-dimensional ensemble-based correlation is presented 
in Fig. 8. This example shows ensemble-based correlations 
between sea-level from a reference location adjacent to the 
coast off central eastern Australia at some time T=0, and sea-

level in the surrounding region for times T= −5,…,+5. For this 
example, the ensemble-based correlation indicates that a pos-
itive sea-level anomaly at the reference location at the coast 
is typically preceded by a positive anomaly of sea level to the 
south and east (see correlation maps for T<0). By contrast, Fig. 
8 indicates that a positive sea-level anomaly at the reference 
typically leads a positive sea-level anomaly to the north and 
a negative anomaly to the east and southeast (see correla-
tion maps for T>0). These characteristics are consistent with 
a Rossby wave, or an eddy, propagating westwards (T<0) and 
hitting the coast to the south of the reference location, and 
generating a northward propagating coastal trapped wave. 
A dynamical explanation for the negative correlation to the 
east for T>0 is less clear. So, by using these four-dimensional 
ensemble-based covariance fields, one could readily produce 
a four-dimensional analysis that extrapolates the influence 
of an observation in both time and space in a manner that 
is analogous to variational representers obtained by adjoint-
based assimilation systems (e.g. Bennett 1992).
 The extension of EnOI to coupled data assimilation, like 
the EnKF (e.g. Zhang et al. 2007), is also technically simple. 
For such applications, the ensemble is augmented by state 
elements from other systems. Examples of such coupled 
data assimilation systems could include ocean-atmosphere, 
ocean-sea-ice, ocean physics-biogeochemistry, and others.
 The application of hybrid EnOI-EnKF has been explored 
by Counillon et al. (2009). They show that the performance 
of a hybrid EnOI-EnKF system, using 10 dynamic members 
and 100 stationary members, outperforms both an EnKF 
with 100 dynamic members and EnOI with 100 stationary 
members. This option may represent a compromise be-
tween the expensive, but potentially optimal EnKF, and the 
efficient, robust, but sub-optimal EnOI.

Fig. 7 Depth-profiles of the root mean squared differences 
(RMSD) between observed and modelled tempera-
ture (left) and salinity (right) from Argo observations 
and GODAE systems.
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 EnOI-based systems can be readily used for observing 
system design and assessment. Oke and Schiller (2007) 
used the Bluelink EnOI-based system to perform a series 
of standard observing system experiments to assess the 
relative importance of different components of the global 
ocean observing system. Alternatively, methods devel-
oped for ensemble square-root filters, together with the 
stationary ensemble of an EnOI system, can be used to 
estimate analysis errors obtained by assimilating existing 
and/or hypothetical observations, as described by Oke 
et al. (2009b). An example of such an application is pre-
sented in Fig. 9 which shows the assumed background 
field (BGF) errors from the Bluelink ensemble – simply the 
standard deviation of the ensemble – and an estimate of 
the analysis error when a typical array of ocean observa-
tions is assimilated. Note that the fields of analysis error 
for SST are blocky. This is because SST observations are 
here assumed to be on a fixed grid. Analysis error close to 
these grid-points tends to be smaller than analysis error 
in between grid-points. This example shows the impact of 
standard ocean observations, but Oke et al. (2009b) also 
assess the impact of the assimilation of data from land-
based high frequency radar arrays, in situ gliders, and 
ship-borne temperature/salinity (T/S) sections, at differ-
ent latitudes along the New South Wales (NSW) coast. 
Similarly, Brassington and Divikaran (2008) analyse char-
acteristics of an EnOI system to evaluate the potential im-
pact of assimilating sea-surface salinity observations on 

a data assimilation ocean model. These types of studies 
help evaluate the potential benefits of future observation 
programs on ocean forecast and reanalysis systems.

Conclusions

The performance of an EnKF and an EnOI system was com-
pared by Oke et al. (2007) for a simple linear advection sys-
tem. They showed that while EnKF outperforms EnOI, EnOI 
is a robust system that can produce results of comparable 
performance to the EnKF. Based on their results, and on 
considerations of the relative computational cost of EnKF 
compared to EnOI, we have here argued that for some ap-
plications it may be worth considering running an EnOI sys-
tem with a large stationary ensemble, rather than an EnKF 
system with a small dynamic ensemble. 
 To date the application of EnOI to realistic global systems 
is limited to the Bluelink and Mercator systems, under GO-
DAE OceanView. Bluelink uses a stationary ensemble, while 
Mercator uses a seasonally varying ensemble of anomalies, 
or modes, to approximate the system’s background error co-
variances. Comparisons between the performance of these 
EnOI-based systems and other operational ocean forecast-
ing systems demonstrate that they produce results that com-
pare well to other methods. Preliminary investigations into 
the potential of a hybrid EnOI-EnKF, where a small dynamic 
ensemble is supplemented by a larger stationary ensemble, 
show promising performance (Counillon et al. 2009).

Fig. 8 Example of four-dimensional ensemble-based correlation maps showing the spatio-temporal influence of a sea-level ob-
servation (at the star at T=0) off the central New South Wales coast.
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 In this paper we present a series of arguments to make a 
case for using EnOI for ocean data assimilation. Specifically, 
we refer to the dominance of short spatial scales of the ocean 
and the relative sparseness of the ocean observing system. 
Together, these factors mean that an eddy-resolving, data 
assimilation ocean model is likely to miss entire features, 
such as eddies or fronts, that are not always represented by 
observations or forecasts. We note that EnOI is particularly 
well suited to introducing new dynamical features, because 
of the user’s control over the types of features and scales 
represented by a stationary ensemble. We also refer to the 
relationship between the ensemble anomalies, or modes, 
and the increments. That is, that the increments are a linear 
combination of ensemble anomalies. This recognition pro-
vides guidance for how an ensemble should be generated 
– and allows the user to make and test hypotheses about the 
system’s background errors. Together, we present these ar-
guments as justification for why EnOI may be a good choice 
for ocean data assimilation.
 Finally, we note the natural extensions of EnOI. These 
include an extension to four-dimensional analyses, using 
a time-lagged ensemble, and to coupled data assimilation, 
where the ensemble is augmented with fields from coupled 
systems (e.g. atmosphere-ocean). We also demonstrate the 
application of EnOI to objective observing system assess-
ment and design.
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