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Abstract 

The Bluelink forecast and reanalysis system is comprised of a high resolution ocean 
general circulation model and an ensemble optimal interpolation (EnOI) system. The 
Bluelink system has been integrated for a series of 15-year reanalyses and is run 
operationally at the Bureau of Meteorology to produce short-range ocean forecasts. This 
system has performed robustly, demonstrating reliable skill that is comparable to other 
ocean forecast systems around the world. One of the key components of Bluelink is the 
EnOI system. This system has proved to be a valuable and flexible tool for both 
operational and research applications. Drawing on Bluelink outcomes and a series of 
experiments with simple models, a case for using EnOI for ocean data assimilation is 
made. This includes a discussion of the benefits of EnOI as well as its known 
limitations. EnOI is robust, flexible, portable, and inexpensive; and is not burdened with 
the technical difficulties that some other methods carry. EnOI is readily applied for 
coupled data assimilation and may be an appropriate choice for coupled forecast 
systems. 

Introduction 

Bluelink is a partnership between the Commonwealth Scientific and Industrial Research 
Organisation (CSIRO), the Bureau of Meteorology (BoM) and Royal Australian Navy 
(RAN). The primary objective of Bluelink is to develop and improve Australia’s 
capabilities in short-range ocean forecasting and reanalysis. The Bluelink forecast 
system (Brassington et al. 2007) first became operational at the BoM in August 2007, 
and has since produced two 7-day forecasts each week. The main components of the 
Bluelink system are the Ocean Forecasting Australia Model (OFAM) and the Bluelink 
Ocean Data Assimilation System (BODAS; Oke et al. 2008). The primary test-bed for 
the Bluelink system is the series of Bluelink ReANalysis (BRAN) experiments – multi-
year data assimilating model runs (e.g., Schiller et al. 2008; Oke et al. 2009a). 

An important aspect of any data assimilation scheme is the estimation of the system’s 
background error covariances. These covariances, together with the observation-error 
covariances, quantify how the background innovations (model-observation misfits) 
project onto the full model state – including all variables at all model grid points. 
Ensemble Kalman Filter (EnKF) methods have been established over many years, with 
their introduction by Evensen (1994) and subsequent refinement by Burgers et al. 
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(1998). Subsequently, many different types of ensemble-based filters have been 
developed (see Tippett et al. 2003). Ensemble Optimal Interpolation (EnOI), first 
described by Oke et al. (2002) and Evensen (2003), involves the use of a stationary 
ensemble of anomalies, or modes, to approximate a system’s background error 
covariances. EnOI has many attractive characteristics, including quasi-dynamically 
consistent, multivariate, inhomogeneous and anisotropic covariances. The ensemble for 
EnOI can be time-invariant (e.g., Oke et al. 2002; 2005; 2008; Fu et al. 2008; Counillon 
and Bertino 2009) or seasonally varying (e.g., Brasseur et al. 2006). 

The analysis step of an EnOI scheme is very similar to that of a traditional EnKF, 
however EnOI is much less expensive. For an application using m ensemble members, 
EnOI is approximately m times less expensive than an EnKF. EnOI requires only a 
single deterministic model run to generate a background state, and only a single solution 
of the analysis equations to update the background. By contrast, an EnKF generally 
requires the integration of m model runs to represent the time-varying background error 
covariances and a background state (often based on the ensemble mean), and m 
solutions of the analysis equations where all ensemble members are updated. Because of 
its simplicity, EnOI does not represent the errors of the day. Rather, for EnOI, it is 
assumed that the background error covariances are not state-dependent, and are well 
represented by a stationary or seasonally varying ensemble. Additionally, EnOI does not 
explicitly include ensemble forecasts, which have proved useful for quantifying forecast 
uncertainty. 

Several factors, somewhat unique to oceanography, support an argument that EnOI is an 
appropriate method for ocean data assimilation. These factors are that: 

[1] the spatial scales of the most energetic components of ocean variability are 
short; 

[2] ocean observations, particularly observations representing the variability of the 
interior of the ocean, are sparse; and 

[3] the user base for ocean forecasting is small. 

The first factor, listed above, means that the spatial resolution of ocean models must be 
relatively high (e.g., 10 km or less) to resolve the dominant processes (i.e., eddies). This 
means that ocean models are generally very computationally expensive, particularly 
global ocean models. The third factor, listed above, means that justification for the 
deployment of significant computational resources for ocean forecasting is a challenge. 
That is, the user demand for ocean forecasting is currently weak. So, with 
computationally expensive forecast systems motivated by only a small user base, the 
computational resource available for ocean forecasting is likely to be a limiting factor 
for the foreseeable future. As a result, optimal data assimilation for ocean applications 
may not be possible. The second factor together with the first, means that the 
background, or forecast, errors of ocean forecasts are often quite large, often with entire 
features (e.g., eddies, meanders, fronts, etc) completely missing in an analysis or 
forecast. That is, because the observations are sparse and the spatial scales are short, 
processes and features that are often unpredictable (e.g., instabilities) may not always be 
either simulated by a model, or detected by the observing system. Taking all of these 
factors into consideration, one may conclude that an appropriate ocean data assimilation 
scheme should be computationally inexpensive, robust to missing observations, and 
capable of introducing, or re-introducing, entire features (e.g., eddies) during any given 
update. EnOI arguably satisfies all of these criteria. 
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In this paper, the Bluelink forecast system is described, followed by a detailed 
description of EnOI, a discussion of ocean data assimilation, and some examples of 
EnOI applied to a global ocean model, followed by a short summary. 

Bluelink Forecast System 

The ocean model used under Bluelink is based on the GFDL Modular Ocean Model 
(Griffies et al., 2004) and is called the Ocean Forecasting Australia Model (OFAM). To 
date, the developments under Bluelink have focussed on modelling the circulation of the 
upper ocean in the Australian region. This is reflected in the OFAM grid, with 10 m 
vertical grid spacings over the top 200 m, and 1/10o horizontal grid spacings in the 90o-
sector centred on Australia and south of 16oN. The horizontal grid spacing of OFAM is 
0.9o across the Indian and Pacific Ocean and 2o in the Atlantic Ocean. The Arctic basin 
is not included in OFAM. To accommodate the inhomogeneous resolution, the 
horizontal viscosity is resolution and state-dependent based on the Smagorinsky-scheme 
(Griffies and Hallberg, 2000). The bottom topography for the configuration of OFAM 
that is used here was constructed from a range of different sources, as documented by 
Schiller et al. (2008). The turbulence closure model used by OFAM is a version of the 
hybrid mixed-layer scheme described by Chen et al. (1994).  
 
For long model runs, such as free spin-up runs and BRAN experiments, OFAM is 
forced by 6-hourly atmospheric fluxes from the European Center for Medium-range 
Weather Forecasting (ECMWF), using fields from the 40-year ECMWF ReAnalysis 
(ERA-40; Kallberg et al., 2004) for the period prior to August 2002, and 6-hour 
operational forecasts thereafter. The operational Bluelink forecast system uses 6-hourly 
forcing from the BoM Global Atmospheric Prediction System (GASP, e.g., Schulz et al. 
2007) that is soon to be replaced with a version of the Unified Model (Rawlins et al. 
2007), developed at the UK Met Office.  

The Bluelink Ocean Data Assimilation System (BODAS) is described by Oke et al. 
(2005; 2008). BODAS uses an EnOI scheme that is underpinned by a 72-120 member 
ensemble (depending on the application) of intraseasonal model anomalies. The 
ensemble is generated from a long non-assimilating model run. Observations that can be 
assimilated by BODAS include along-track sea-level anomalies from altimeters, in situ 
temperature and salinity observations, and satellite sea-surface temperatures. 

The Bluelink system has been used to perform operational ocean forecasts 
(www.bom.gov.au/oceanography/forecasts), multi-year ocean reanalyses (Oke et al. 
2005; 2008; 2009a; Schiller et al. 2008), and observing system experiments (Oke and 
Schiller 2007). Output from Bluelink applications have been used to explore ocean 
dynamics (e.g., Schiller et al. 2009), for observing system design and assessment (Oke 
and Schiller 2007; Brassington and Divakaran 2007; Oke et al. 2009b), and to support a 
variety of industry groups. 

Ensemble Optimal Interpolation 

Consider the analysis equations, 

),( bba wHdKww −+=       …1 

1)( −+= RHHPHPK TbTb       …2 

where w is the model state vector, d is the vector of observations, K is the gain matrix, 
and H is an operator that maps from model-space to observation-space – often H is 
simply linear interpolation. The matrix P is the background error covariance and R is 
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the observation error covariance. Superscripts a and b denote analysis and background, 
respectively. The analysis equations (1-2), can be readily expressed in terms of an 
ensemble, using 

)1/( −′′= mAAP Tb
oρ       …3 
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where m is the ensemble size, ρ is a correlation function, the open circles denote an 
element-by-element matrix multiplication, and the ensemble A, is given by, 

[ ]mwwwA ′′′=′ L21α       …5 

where α is a scalar, and w’ i is the ith model anomaly. The inclusion of the correlation 
function in equation (3) and (4) represents localisation (e.g., Houtekamer and Mitchel 
2001). Localisation is a necessary part of any ensemble-based data assimilation system 
where the model state dimension exceeds the ensemble size. Localisation acts to reduce 
sampling error that arises from the use of a small ensemble, and to increase the rank of 
the ensemble, so that the system can “fit” the background innovations. One of the 
negative consequences of localisation is the introduction of dynamical imbalance (e.g., 
Mitchell et al. 2002; Lorenc 2003; Oke et al. 2007; Kepert 2009). Without localisation 
(i.e., ρ = 1), it can easily be shown that 

cAww ba ′=−        …6 

where c is a m-element vector. Written in this form, it is clear that when an ensemble is 
used to approximate the background error covariance, the increment, represented by 
equation (6), is simply a linear combination of ensemble members. When localisation is 
used, the coefficients c, in (6) vary in space – though these coefficients are generally not 
computed explicitly. This demonstrates that there is a clear relationship between how an 
ensemble is constructed and the assumptions made when implementing the data 
assimilation system. This permits a clean hypothesis about the system’s background 
errors. This hypothesis can be readily formulated and evaluated. For example, under 
Bluelink we hypothesis that the background errors are proportional to model variability 
on intraseasonal time-scales, relating to the development and evolution of the mesoscale 
eddy field. The ensemble is therefore constructed in a manner that isolates the 
representation of the mesoscale eddy field. In practice this is achieved by computing an 
ensemble of intraseasonal anomalies, through a simple band-pass filter of a long free 
model run.  

The ensemble-based background error covariances generated under EnOI are 
anisotropic and inhomogeneous. Some examples of ensemble-based correlations are 
presented in Figure 1. These covariances nicely summarise the dominant processes that 
regularly occur in different regions. They concisely represent the spatially varying 
length-scales, anisotropy, and the variance of the modelled circulation. In the examples 
shown in Figure 1, ensemble-based correlation between sea-level at a reference location 
(denoted by the star) and sea-level in the surrounding region is shown. These fields 
show the region of influence of an innovation at the reference location. These examples 
highlight the long along-shore length-scales and the short across-shore length-scales for 
a region near the coast (Figure 1a), the anisotropy of the circulation along the path of 
the EAC after it separates from the coast (Figure 1b), and the quasi-Gaussian, quasi-
isotropic structures of eddies in a region that is dominated by mesoscale eddies (Figure 
1c). 
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Figure 1: Examples of the ensemble-based cross-correlations between sea-level at a 
reference location, denoted by the star, and sea-level in the surrounding region for 
a reference location on the (a) continental shelf, (b) along the path of the EAC as it 

separates from the coast, and (c) over the deep where EAC-spawned eddies 
regularly occur off eastern Australia (panel d). Contour intervals are 0.2; zero is 

bold, dotted is negative, correlations above 0.6 are shaded.  
 

Ocean Data Assimilation 

In the introduction to this paper, there are three aspects of ocean data assimilation that 
arguably set it apart from atmospheric data assimilation. The first of these is that the 
spatial length-scales of the ocean are short. The dominance of the short time- and space-
scales of the ocean is demonstrated in Figure 2, showing the ratio of the eddy kinetic 
energy (EKE) to the total kinetic energy (TKE), presented as a percentage, for a 15-year 
ocean reanalysis (Schiller et al. 2008). This ratio clearly indicates that for much of the 
ocean, for the region shown, the EKE, representing the short time- and space-scales of 
the ocean, is significant. In many regions, the EKE completely dominates the 
variability. For example, the mid-latitudes are dominated by EKE through the 
abundance of mesoscale eddies (Chelton et al. 2007). There are only a few exceptions to 
this around Australia, including the transition zones between the equatorial current 
systems, regions of strong topographic steering (e.g., south of New Zealand) and in 
some places where persistent continental shelf currents exist (e.g., the Leeuwin Current 
off Western and Southern Australia). 

A sense of the length-scales of the ocean is also obtained by considering a map of sea-
level anomaly (Figure 3). This example is typical of the ocean circulation. It shows 
many relatively small cyclonic and anti-cyclonic features. A time sequence of these 
fields (not shown; see www.cmar.csiro.au/remotesensing/oceancurrents/) shows that the 
ocean circulation is very dynamic, with eddies developing over periods of days, and 
evolving over months. Wave-dynamics are very important in the ocean, with a range of 
fast- and slow-moving waves representing a considerable proportion of the total ocean 
variability. 

To compare NWP to ocean forecasting, consider the typical length-scales of the ocean 
relative to the atmosphere. While atmospheric weather patterns span several hundreds 
and often thousands of kilometres – ocean “weather” patterns typically span 50-300 km. 
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Figure 2: Ratio of eddy kinetic energy to total kinetic energy from BRAN2.1 for 
the period 1993-2001. Units are in %. 

 

Figure 3: Example of a sea-level anomaly (colour) with atmospheric sea-level 
pressure overlaid (white and blue contours). The diagonal tracks denote altimeter 
tracks along which sea-level anomaly is observed, and the black contour shows the 
200 m isobath (sourced from www.cmar.csiro.au/remotesensing/oceancurrents/). 
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Consider the status of the global ocean observing system. Conventional ocean 
observations include sea-level anomaly from satellite altimeters, satellite sea-surface 
temperature, and in situ observations of sub-surface temperature and salinity profiles 
from a range of programs (mainly Argo; Argo Science Team, 1998). The typical 
coverage of the ocean observing system is shown in Figure 4. This includes an example 
of all observations available on a single day (Figure 4a). Clearly, satellite SST 
observations provide excellent coverage of the global oceans. These observations are 
well used by the community and feed through to important applications, like NWP. 
However, from an oceanographic perspective, SST observations often only represent the 
variability in the relatively shallow surface boundary layer. Also, in many regions of the 
ocean SST is isothermal (e.g., a large part of the tropical oceans) and is often somewhat 
unrelated to the mesoscale variability of the ocean. SST observations are crucial to 
ocean forecast systems, for their role in initialising and constraining the properties of 
the upper ocean boundary layer, however, they cannot exclusively constrain the 
mesoscale variability of the ocean (e.g., Oke and Schiller 2007). 

An example of the available sub-surface observations on a single day is presented in 
Figure 4b. Here, we have regarded altimeter observations as sub-surface. This is 
because the observed sea-level anomaly typically represents the properties of the ocean 
interior in a way that is somewhat analogous to mean sea-level pressure representing the 
properties of the overlying atmosphere. Sea-level anomaly of the ocean is often highly 
correlated to variability of the ocean pycnocline that is typically associated with the 
ocean mesoscale variability. The data distribution in Figure 4b provides quite a different 
story to Figure 4a, indicating that the spatial coverage of sub-surface ocean observations 
is very sparse compared to the spatial scales of ocean variability (e.g., Figure 3). 

Altimeter observations are the most important observation type for constraining the 
mesoscale eddy field in the ocean (Oke and Schiller 2007; Oke et al. 2009c). The 
typical repeat-cycle for both satellite altimeters and Argo profiling floats is 10-days. 
The data coverage over 10-days is presented in Figure 4c. Together with the good SST 
coverage, the global ocean is relatively well observed over a 10-day period, however 
even with 10-days of data, the mesoscale eddy field remains under-sampled. Data 
assimilation systems and ocean analysis systems typically use observations from a time-
window of between 1 and 11 days. Those that use data from only 1-day, attempt to 
correct the background state only in regions that are observed (e.g., Martin et al. 2007). 
Those systems that use longer time-windows typically ascribe larger errors to 
observations that do not correspond to the analysis time, and attempt to reproduce all of 
the synoptic features of the ocean (e.g., Oke et al. 2008). For both cases, the ocean 
observing system is likely to miss entire features, like eddies, fronts, or current 
meanders. If these features are poorly represented in the background field, a subsequent 
assimilation step may have to introduce entire features. As argued above, and noting the 
relation presented in equation (6), the ensemble for an EnOI system can readily be 
constructed to facilitate this. 



Submitted for the special issue of Australian Meteorological and Oceanographic Journal on the 
proceedings of the CAWCR Workshop on Ensemble Prediction and Data Assimilation 2009 

 8 

 
Figure 4: A typical example of observations available in the global ocean observing 
system showing (a) all observations on a single day, (b) sub-surface observations on 

a single day, and (c) sub-surface observations for a 10-day window. SST 
observations (red) typically represent only the shallow surface boundary layer; 

Argo T/S (green) are sub-surface profiles of ocean properties; and altimeter 
observations (black) are here regarded as sub-surface observations because they 

represent depth-integrals of ocean properties over the upper part of the water 
column. This example is centred around 1 January 2008. 
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Performance of an EnOI system 

Experiments with small models 

The performance of EnOI and EnKF was compared by Oke et al. (2007) for a simple 
one-dimensional, linear advection system, following Evensen (2004). Oke et al. (2007) 
demonstrated that the EnKF is outperforms EnOI, as expected, and investigated the 
impact of localisation on dynamical balance.  The simple system that Oke et al. (2007) 
used is a perfect advection of a one-dimensional field. They consider experiments where 
4 evenly spaced observations are assimilated every 5 time steps over a domain of 1000 
grid points. The model state is advected at a constant speed of one grid point per time 
step (hence “perfect advection”). Both the ensemble and the true field are generated 
from random samples. For each sample, the variable is initialised as a linear 
combination of 25 sine curves with random uniform distributed amplitude and phase 
and a random offset. Thus the dimension of the system is 51. For this configuration, and 
because the model is linear, it is expected that convergence of the root-mean-squared 
error is achievable in just under 250 time steps; see Oke et al. (2007) for details.  

The performance of EnOI and EnKF for different ensemble sizes, with and without 
localisation is shown in Figure 5 (adapted from Oke et al. 2007). For this example, the 
dimension of the system is 51, so experiments with ensemble sizes of less that 50 
require localisation (Figure 5a). This is simply because in these cases the ensemble is 
rank-deficient – that is, the dimension of the ensemble sub-space is less than the 
dimension of the model sub-space. For the case with an ensemble size of 100 (i.e., 
greater than the dimension of the model sub-space), the EnKF out-performs EnOI. For 
the case with an ensemble size of 50 (i.e., approximately equivalent to the state 
dimension), the EnKF and EnOI perform comparably. For the cases with an ensemble 
size of 10 or 20, without localisation the ensemble is rank-deficient (< 51). But for these 
cases with localisation, provided the localising length-scale is shorter than the distance 
between observations (here it is 50 and the separation distance is 250), the effective 
rank of the ensemble becomes 40 or 80 respectively (i.e., number of observations times 
the ensemble size). So for 10 members with localisation, the ensemble is almost full 
rank, and for 20 members with localisation, the rank of the ensemble exceeds the 
dimension of the state. 

For the cases with localisation (Figure 5b), all configurations converge on a state that 
has acceptably small error. Clearly, the EnKF is superior to EnOI – displaying faster 
convergence – for equivalent ensemble size. In these cases, localisation has acted to 
increase the rank of the ensemble sufficiently to constrain the system. 

The results presented in Figure 5 are not surprising. They clearly indicate that the EnKF 
outperforms EnOI. However, consider the computational resources required to achieve 
these results. Recall that the EnKF is m-times more expensive that EnOI, where m is the 
ensemble size. Instead of comparing the EnKF with 100-members and EnOI with 100-
members, perhaps we should compare the EnKF with 10-members and the EnOI with 
100-members. For these cases, EnOI is still more computationally efficient than the 
EnKF, requiring significantly less resources, but performs better than the EnKF with 
and without localisation – in both cases achieving a smaller RMSE. For the case with 
localisation, the EnKF with 10-members still beats EnOI with 100-members – achieving 
convergence faster – but the asymptotic skill is better for EnOI. This prompts the 
question – for an operational system, where computational resources are limited, and 
where throughput is critical, are we better running an EnKF system with a small 
dynamic (time-evolving) ensemble, or an EnOI system with a large stationary (time-
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invariant) ensemble? The answer to this question is unclear, but is something that we 
think should be pursued. 

 

 

Figure 5: Time series of the root-mean-squared error for an idealised linear 
advection experiment using an EnKF or EnOI with different ensemble sizes, m, (a) 

without localisation, and (b) with localisation. Adapted from Oke et al. (2007). 

 

Experiments with general circulation models 

Under Bluelink, an EnOI-based data assimilation system has been used for ocean 
reanalyses (e.g., Oke et al. 2005; 2008; 2009a; Schiller et al. 2008) and operational 
ocean forecasting (Brassington et al. 2007). An example of output from the Bluelink 
system is presented in Figure 6. This example shows monthly mean sea-level fields 
from BRAN (version 2p2) with drifter-derived velocities and trajectories overlaid. The 
drifter data are from the entire month. The drifter data represents the time-varying ocean 
circulation and is therefore a measure of the time-integrated circulation. This is not 
necessarily well represented by the monthly mean sea-level fields of BRAN. However, 
provided the variability of the circulation over each month is not too large, this 
comparison provides an independent assessment of the reanalyzed circulation. Note that 
data from the surface drifting buoys are not assimilated into BRAN. In general there is 
good agreement between the drifter trajectories and the sea-level contours, indicating 
that there is independent agreement between the reanalyzed and observed circulation. 
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The examples in Figure 6 include situations where the drifter trajectories cross the sea-
level contours. This is due on occasions to the effects of wind, or may be because a 
mean field (sea-level) is being compared to a Lagrangian description of the circulation 
(drifters). It may also be because the mesoscale features reproduced in BRAN are not 
precisely in the correct positions, or with the correct structures. Nevertheless, this 
comparison demonstrates that an EnOI system can constrain an ocean general 
circulation model to reproduce realistic ocean variability. 
 
 

 

Figure 6: Monthly mean sea-level from BRAN (version 2p2), with surface drifter 
velocities and trajectories overlaid. 

 
 
 

The Global Ocean Data Assimilation Experiment (GODAE), and its successor GODAE 
OceanView, is an international effort to demonstrate the feasibility of operational ocean 
forecasting (www.godae.org/). GODAE partners include institutions from Australia, 
Canada, China, France, Italy, Japan, Norway, UK, and the USA. Most of the systems 
developed under GODAE perform operational short-range forecasts of the ocean – 
some for specific regions, others for the global ocean. The data assimilation tools used 
by these systems include EnOI (e.g., Australia, France), multivariate optimal 
interpolation (MvOI; USA, UK), EnKF (Norway), and variational methods (Japan). 
Most of these systems are still being developed and improved. To assess the 
performance of different systems and methods, an inter-comparison exercise was 
undertaken for a 3-month period in 2008. Some results from this inter-comparison 
activity are presented below to demonstrate the current state-of-the-art in operational 
oceanography, and to demonstrate how the EnOI-based systems perform relative to the 
other operational systems. 



Submitted for the special issue of Australian Meteorological and Oceanographic Journal on the 
proceedings of the CAWCR Workshop on Ensemble Prediction and Data Assimilation 2009 

 12 

Here, we compare the performance of systems developed in the USA (HYCOM), 
France (Mercator), Australia (Bluelink), and the United Kingdom (UKMet). The US-
HYCOM system is run by the US Navy using a 1/12o resolution global model and an 
MvOI scheme (Cummings 2005). The French Mercator system uses a global 1/4o 
resolution model and a SEEK filter implemented with a seasonally-varying ensemble 
(Brasseur et al. 2006). The UK system (Martin et al. 2007), uses a 1/4o global model 
and an MvOI based system. Results from Bluelink include BRAN (a delayed-mode 
reanalysis; Schiller et al. 2008; Oke et al. 2009a), OMAPS-hc (an operational hind-cast; 
Brassington et al. 2007) and OMAPS-fc (an operational forecast). Of these systems, 
HYCOM, Mercator, UKMet, and BRAN can each be considered “best estimates”. In 
each case, these are produced using delayed-model atmospheric fluxes and research 
quality ocean observations. By contrast, OMAPS-hc is an operational hind-cast and 
OMAPS-fc is an operational forecast, using operational atmospheric fluxes and near-
real-time ocean observations (often with missing and incomplete fields due to data 
latency). 

An example of these inter-comparisons is presented in Figure 7, showing the root-mean-
squared difference (RMSD) between modelled and observed temperature and salinity 
for a region off the east coast of Australia. Based on these comparisons it is clear that 
the EnOI-based systems (i.e., Bluelink and Mercator) perform as well as other groups. 
A more comprehensive series of inter-comparisons between GODAE systems in the 
Australian region are available from www.cmar.csiro.au/staff/oke/GODAE.htm. The 
results presented in Figure 7 are typical. These results of the inter-comparisons 
performed to date indicate that the majority of the ocean is reasonably well constrained 
by a stationary, or seasonally varying, ensemble. The likely advantage of an EnKF 
occurs when and where the time-evolving background error statistics significantly 
depart from a stationary ensemble estimate, and where a dynamic ensemble has skill at 
quantifying these time-evolving statistics. We expect that this would occur in regions of 
energetic currents, such as western boundary currents, or in regions where strong 
transitions occur, such as strong wind-driven upwellings, or eddy generation. The 
justification for the additional resources for an EnKF, or other more advanced 
approaches, should be based on a demonstration of how important these extreme events 
are to the user community – and more importantly, on how much better an EnKF 
performs compared to the less expensive EnOI-based systems.  
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Figure 7: Depth-profiles of the root-mean-squared differences (RMSD) between 
observed and modelled temperature (left) and salinity (right) from Argo 

observations and GODAE systems. 
 

Potential extensions 

There is a lot of potential for optimising EnOI-based systems. For example, the 
extension to a four-dimensional ensemble, where the time-lagged covariances of a 
system are exploited is relatively straightforward (e.g., Hunt et al. 2004). An example of 
four-dimensional ensemble-based correlation is presented in Figure 8. This example 
shows ensemble-based correlations between sea-level from a reference location adjacent 
to the coast off central eastern Australia at some time T=0, and sea-level in the 
surrounding region for times T=-5,…,+5. For this example, the ensemble-based 
correlation indicates that a positive sea-level anomaly at the reference location at the 
coast is typically preceded by a positive anomaly of sea-level to the south and east (see 
correlation maps for T<0). By contrast, Figure 8 indicates that a positive sea-level 
anomaly at the reference typically leads a positive sea-level anomaly to the north and a 
negative anomaly to the east and south-east (see correlation maps for T>0). These 
characteristics are consistent with a Rossby wave, or an eddy, propagating westwards 
(T<0) and hitting the coast to the south of the reference location, and generating a 
northward propagating coastal trapped wave. A dynamical explanation for the negative 
correlation to the east for T>0 is less clear. So, by using these four-dimensional 
ensemble-based covariance fields, one could readily produce a four-dimensional 
analysis that extrapolates the influence of an observation in both time and space in a 
manner that is analogous to variational representers obtained by adjoint-based 
assimilation systems (e.g., Bennett 1992). 



Submitted for the special issue of Australian Meteorological and Oceanographic Journal on the 
proceedings of the CAWCR Workshop on Ensemble Prediction and Data Assimilation 2009 

 14 

 

Figure 8: Example four-dimensional ensemble-based correlation maps showing the 
spatio-temporal influence of a sea-level observation (at the star at T=0) off the 

central New South Wales coast. 

 

The extension of EnOI to coupled data assimilation, like the EnKF (e.g., Zhang et al. 
2007), is also technically simple. For such applications, the ensemble is augmented by 
state elements from other systems. Examples of such coupled data assimilation systems 
could include ocean-atmosphere, ocean-sea-ice, ocean physics-biogeochemistry, and 
others. 

The application of hybrid EnOI-EnKF has been explored by Counillon et al. (2009). 
They show that the performance of a hybrid EnOI-EnKF system, using 10 dynamic 
members and 100 stationary members, outperforms both an EnKF with 100 dynamic 
members and EnOI with 100 stationary members. This option may represent a 
compromise between the expensive, but potentially optimal EnKF, and the efficient, 
robust, but sub-optimal EnOI. 

EnOI-based systems can be readily used for observing system design and assessment. 
Oke and Schiller (2007) used the Bluelink EnOI-based system to perform a series of 
standard observing system experiments to assess the relative importance of different 
components of the global ocean observing system. Alternatively, methods developed for 
ensemble square-root filters, together with the stationary ensemble of an EnOI system, 
can be used to estimate analysis errors obtained by assimilating existing and/or 
hypothetical observations, as described by Oke et al. (2009b). An example of such an 
application is presented in Figure 9. This shows the assumed background field (BGF) 
errors from the Bluelink ensemble – simply the standard deviation of the ensemble – 
and an estimate of the analysis error when a typical array of ocean observations is 
assimilated. Note that the fields of analysis error for SST are blocky. This is because 
SST observations are here assumed to be on a fixed grid. Analysis error close to these 
grid points tends to be smaller than analysis error in between grid points. This example 



Submitted for the special issue of Australian Meteorological and Oceanographic Journal on the 
proceedings of the CAWCR Workshop on Ensemble Prediction and Data Assimilation 2009 

 15 

shows the impact of standard ocean observations, but Oke et al. (2009b) also assesses 
the impact of the assimilation of data from land-based high frequency radar arrays, in 
situ gliders, and ship-borne T/S sections, at different latitudes along the New South 
Wales (NSW) coast. Similarly, Brassington and Divikaran (2007) analyse 
characteristics of an EnOI system to evaluate the potential impact of assimilating sea-
surface salinity observations on a data assimilation ocean model. These types of studies 
help evaluate the potential benefits of future observation programs on ocean forecast 
and reanalysis systems. 

 

Figure 9: Estimates of the background field (BGF) error (top) and the analysis 
error when observations of sea-level anomaly, SST, and Argo T/S are assimilated 

(bottom) for the Bluelink system for variables surface velocities (u and v), and SST 
(left-right). The legend shows the normalised error. Each panel is normalised by 
the number shown in the top left corner of each panel. Adapted from Oke et al. 

(2009b). 
 

Conclusion 

The performance of an EnKF and EnOI system was compared by Oke et al. (2007) for a 
simple linear advection system. They showed that while EnKF outperforms EnOI, EnOI 
is a robust system that can produce results of comparable performance to the EnKF. 
Based on their results, and on considerations of the relative computational cost of EnKF 
compared to EnOI, we have here argued that for some applications it may be worth 
considering running an EnOI system with a large stationary ensemble, rather than an 
EnKF system with a small dynamic ensemble.  

To date the application of EnOI to realistic global systems is limited to the Bluelink and 
Mercator systems, under GODAE OceanView. Bluelink uses a stationary ensemble, 
while Mercator uses a seasonally-varying ensemble of anomalies, or modes, to 
approximate the system’s background error covariances. Comparisons between the 
performance of these EnOI-based systems and other operational ocean forecasting 
systems demonstrate that they produce results that compare well to other methods. 
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Preliminary investigations into the potential of a hybrid EnOI-EnKF, where a small 
dynamic ensemble is supplemented by a larger stationary ensemble show promising 
performance (Counillon et al. 2009). 

In this paper we present a series of arguments to make a case for using EnOI for ocean 
data assimilation. Specifically, we refer to the dominance of short spatial scales of the 
ocean and the relative sparseness of the ocean observing system. Together, these factors 
mean that an eddy-resolving, data assimilation ocean model is likely to miss entire 
features, such as eddies or fronts, that are not always represented by observations or 
forecasts. We note that EnOI is particularly well suited to introducing new dynamical 
features, because of the user’s control over the types of features and scales represented 
by a stationary ensemble. We also refer to the relationship between the ensemble 
anomalies, or modes, and the increments. That is, that the increments are a linear 
combination of ensemble anomalies. This recognition provides guidance for how an 
ensemble should be generated – and allows the user to make and test hypotheses about 
the system’s background errors. Together, we present these arguments as justification 
for why EnOI may be a good choice for ocean data assimilation. 

Finally, we note the natural extensions of EnOI. These include an extension to four-
dimensional analyses, using a time-lagged ensemble, and to coupled data assimilation, 
where the ensemble is augmented with fields from coupled systems (e.g., atmosphere-
ocean). We also demonstrate the application of EnOI to objective observing system 
assessment and design. 

Acknowledgements 

Financial support for this research is provided by CSIRO, the Bureau of Meteorology, 
and the Royal Australian Navy as part of the Bluelink project, and the US Office of 
Naval Research (Grant No. N00014-07-1-0422). The author also acknowledges the 
many contributions of the Bluelink science team and the comments of two anonymous 
reviewers, Dr. J. Kepert and Dr. S. Marsland I suspect. Satellite altimetry is provided by 
NASA, NOAA, ESA and CNES. Drifter data are provided by NOAA-AOML and SST 
observations are provided by NASA, NOAA and Remote Sensing Systems. 

References 

Argo Science Team, 1998: On the design and implementation of Argo: An initial plan 
for a global array of profiling floats. International CLIVAR Project Office Rep. 
21, GODAE Rep. 5, GODAE Project Office, Melbourne, Australia, 32 pp. 

Bennett, A. F., 1992: Inverse Methods in Physical Oceanography. Cambridge 
University Press, 346 pp. 

Brasseur, P., Bahurel, P., Bertino, L., Birol, F., Brankart, J.-M., Ferry, N., Losa, S., 
Remy, E., Schrter, J., Skachko, S., Testut, C.-E., Tranchant, van Leeuwen, P.-J., 
Verron, J. 2006: Data assimilation in operational ocean forecasting systems: the 
MERCATOR and MERSEA developments. Quarterly Journal of the Royal 
Meterological Society, 131, 3561-3582. 

Brassington, G. B., Pugh, T. F., Spillman, C., Schulz, E., Beggs, H., Schiller, A., Oke, 
P. R., 2007: BLUElink> development of operational oceanography and servicing 
in Australia. Journal of Research Practice Information Technology, 39, 151–
164. 



Submitted for the special issue of Australian Meteorological and Oceanographic Journal on the 
proceedings of the CAWCR Workshop on Ensemble Prediction and Data Assimilation 2009 

 17 

Brassington, G. B., Divakaran, P., 2008: The theoretical impact of remotely sensed sea 
surface salinity observations in a multi-variate assimilation system, Ocean 
Modelling, 27, 70-81 10.1016/j.ocemod.2008.12.005 

Burgers, G., van Leeuwen, P. J., Evensen, G., 1998: Analysis scheme in the ensemble 
Kalman filter. Mon. Wea. Rev., 126, 1719–1724. 

Chelton, D. B., Schlax, M. G., Samelson, R. M., de Szoeke, R. A., 2007: Global 
Observations of Large Oceanic Eddies. Geophys. Res. Lett., 34, L15606, 
doi:10.1029/2007GL030812. 

Counillon, F., Bertino, L., 2009: Ensemble Optimal Interpolation: multivariate 
properties in the Gulf of Mexico. Tellus-A, 61, 296 – 308. 

Counillon, F., Sakov, P., Bertino, L., 2009: Application of a hybrid EnKF-OI to ocean 
forecasting. Ocean Dynamics, submitted.  

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic 
model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 
99, 10 143–10 162.  

Evensen, G., 2003. The Ensemble Kalman Filter: theoretical formulation and practical 
implementation. Ocean Dyn., 53, 343–367. 

Evensen G., 2004. Sampling strategies and square root analysis schemes for the EnKF. 
Ocean. Dyn., 54, 539–560 

Fu W., Zhu, J., Yan, C., 2008. A comparison between 3DVAR and EnOI techniques for 
satellite altimetry data assimilation. Ocean Modelling, 26, 206-216. 

Houtekamer, P. L., Mitchell, H. L., 2001. A sequential ensemble Kalman filter for 
atmospheric data assimilation. Mon. Weath. Rev., 129, 123–137.  

Hunt, B. R., Kalnay, E., Kostelich, E. J., Ott, E., Patil, D. J, Sauer, T., Szunyogh, I., 
Yorke, J. A., Zimin, A. V., 2004. Four-dimensional ensemble Kalman filtering. 
Tellus, 56A, 273–277. 

Kepert, J.D., 2008. Covariance localisation and balance in an ensemble Kalman filter. 
Quart. J. R. Meteor. Soc., 135, 1157-1176. 

Lorenc A. C., 2003. The potential of the ensemble Kalman filter for NWP – a 
comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 3183–3203. 

Martin, M. J., Hines, A., Bell, M. J., 2007. Data assimilation in the FOAM operational 
short-range ocean forecasting system: a description of the scheme and its 
impact. Quart. J. R. Meteor. Soc., 133, 981–995.  

Mitchell, H. L., Houtekamer, P. L., Pellerin, G., 2002. Ensemble size, balance, and 
model-error representation in an ensemble Kalman filter. Mon. Weath. Rev.,130, 
2791–2808.  

Oke, P. R., Allen, J. S., Miller, R. N., Egbert, G. D., Kosro, P. M., 2002. Assimilation of 
surface velocity data into a primitive equation coastal ocean model. J. Geophys. 
Res., 107, 3122. doi:10.1029/2000JC000511. 

Oke, P. R., Schiller, A., Griffin, D. A., Brassington, G. B., 2005. Ensemble data 
assimilation for an eddy-resolving ocean model of the Australian Region. Quart. 
J. R. Meteor. Soc., 131, 3301–3311. 



Submitted for the special issue of Australian Meteorological and Oceanographic Journal on the 
proceedings of the CAWCR Workshop on Ensemble Prediction and Data Assimilation 2009 

 18 

Oke, P. R., Sakov, P., Corney, S. P., 2007. Impacts of localisation in the EnKF and 
EnOI: experiments with a small model. Ocean Dyn., 57, 32–45. 

Oke, P. R., A. Schiller. 2007. Impact of Argo, SST and altimeter data on an eddy-
resolving ocean reanalysis. Geophysical Research Letters, 34(L19601): 
doi:10.1029/2007GL031549. 

Oke, P. R., Brassington, G. B., Griffin, D. A., Schiller, A., 2008. The Bluelink Ocean 
Data Assimilation System (BODAS), Ocean Modelling, 21, 46-70, 
doi:10.1016/j.ocemod.2007.11.002. 

Oke, P. R., Brassington, G. B., Griffin, D. A., Schiller, A., 2009a. Data assimilation in 
the Australian Bluelink system. Mercator Ocean Quarterly Newsletter, 34, 35-
44. 

Oke, P. R., Sakov, P., Schulz, E., 2009b: A comparison of shelf observation platforms 
for assimilation into an eddy-resolving ocean model. Dynamics of Atmospheres 
and Oceans, 48, 121-142, doi:10.1016/j.dynatmoce.2009.04.002. 

Oke, P. R., Balmaseda, M. A., Benkiran, M., Cummings, J. A., Dombrowsky, E., Fujii, 
Y., Guinehut, S., Larnicol, G., Le Traon, P.-Y., Martin, M. J., 2009c. Observing 
System Evaluations using GODAE systems. Oceanography, 22(3), 144-153. 

Schiller, A., Oke, P. R., Brassington, G. B., Entel, M., Fiedler, R., Griffin, D. A., 
Mansbridge, J. V., 2008. Eddy-resolving ocean circulation in the Asian-
Australian region inferred from an ocean reanalysis effort. Progress in 
Oceanography, 76, 334-365. 

Schiller, A., Ridgway, K. R., Steinberg, C. R., Oke, P. R., 2009. Dynamics of Three 
Anomalous SST Events in the Coral Sea. Geophysical Research Letters, 36, 
L06606, doi:10.1029/2008GL036997.  

Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M.,  Whitaker, J. S., 2003. 
Ensemble square root filters. Mon. Wea. Rev., 131, 1485–1490. 

Zhang, S., Harrison, M. J., Rosati, A., Wittenberg, A., 2007. System Design and 
Evaluation of Coupled Ensemble Data Assimilation for Global Oceanic Climate 
Studies. Mon. Weath. Rev., 135, 3541-3564. 

 


