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Abstract

The Bluelink forecast and reanalysis system is aa@d of a high resolution ocean
general circulation model and an ensemble optimirpolation (EnOl) system. The
Bluelink system has been integrated for a seried®fear reanalyses and is run
operationally at the Bureau of Meteorology to praglshort-range ocean forecasts. This
system has performed robustly, demonstrating reliakill that is comparable to other
ocean forecast systems around the world. One dfdiieomponents of Bluelink is the
EnOIl system. This system has proved to be a vauaht flexible tool for both
operational and research applications. Drawing relk outcomes and a series of
experiments with simple models, a case for usin@IBor ocean data assimilation is
made. This includes a discussion of the benefitsEnOIl as well as its known
limitations. EnOl is robust, flexible, portable,damexpensive; and is not burdened with
the technical difficulties that some other methadsry. EnOl is readily applied for
coupled data assimilation and may be an appropchtece for coupled forecast
systems.

I ntroduction

Bluelink is a partnership between the Commonweattientific and Industrial Research
Organisation (CSIRO), the Bureau of Meteorology NBand Royal Australian Navy

(RAN). The primary objective of Bluelink is to ddep and improve Australia’s

capabilities in short-range ocean forecasting agahalysis. The Bluelink forecast
system (Brassington et al. 2007) first became dipera at the BoM in August 2007,
and has since produced two 7-day forecasts eack. whe main components of the
Bluelink system are the Ocean Forecasting Austidibael (OFAM) and the Bluelink

Ocean Data Assimilation System (BODAS; Oke et GD8). The primary test-bed for
the Bluelink system is the series of Bluelink ReAl&s (BRAN) experiments — multi-

year data assimilating model runs (e.g., Schilled.€2008; Oke et al. 2009a).

An important aspect of any data assimilation schesrtbe estimation of the system'’s
background error covariances. These covariancgsther with the observation-error
covariances, quantify how the background innovatigmodel-observation misfits)
project onto the full model state — including aldriables at all model grid points.
Ensemble Kalman Filter (EnKF) methods have beesbéshed over many years, with
their introduction by Evensen (1994) and subsequefihement by Burgers et al.
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(1998). Subsequently, many different types of ende+based filters have been
developed (see Tippett et al. 2003). Ensemble Gybtimterpolation (EnOl), first
described by Oke et al. (2002) and Evensen (2088plves the use of a stationary
ensemble of anomalies, or modes, to approximateystera’'s background error
covariances. EnOl has many attractive charactesistincluding quasi-dynamically
consistent, multivariate, inhomogeneous and ampatrcovariances. The ensemble for
EnOl can be time-invariant (e.g., Oke et al. 2A05; 2008; Fu et al. 2008; Counillon
and Bertino 2009) or seasonally varying (e.g., Beas et al. 2006).

The analysis step of an EnOIl scheme is very simdathat of a traditional EnKF,
however EnOl is much less expensive. For an agmitaisingm ensemble members,
EnOl is approximatelyn times less expensive than an EnKF. EnOl requirdg a
single deterministic model run to generate a bamkgu state, and only a single solution
of the analysis equations to update the backgroBgdcontrast, an EnKF generally
requires the integration o model runs to represent the time-varying backguogmor
covariances and a background state (often basethe@rensemble mean), and
solutions of the analysis equations where all eldemembers are updated. Because of
its simplicity, EnOI does not represent the errofghe day. Rather, for EnOl, it is
assumed that the background error covariances @rstate-dependent, and are well
represented by a stationary or seasonally varymsgrable. Additionally, EnOI does not
explicitly include ensemble forecasts, which haxavpd useful for quantifying forecast
uncertainty.

Several factors, somewhat unique to oceanograpippost an argument that EnOl is an
appropriate method for ocean data assimilationséliactors are that:

[1] the spatial scales of the most energetic componeintscean variability are
short;

[2] ocean observations, particularly observations sspréing the variability of the
interior of the ocean, are sparse; and

[3] the user base for ocean forecasting is small.

The first factor, listed above, means that theiapegsolution of ocean models must be
relatively high (e.g., 10 km or less) to resolve ttominant processes (i.e., eddies). This
means that ocean models are generally very compuadly expensive, particularly
global ocean models. The third factor, listed abaweans that justification for the
deployment of significant computational resourcasdcean forecasting is a challenge.
That is, the user demand for ocean forecasting ugently weak. So, with
computationally expensive forecast systems motivée only a small user base, the
computational resource available for ocean foraugss likely to be a limiting factor
for the foreseeable future. As a result, optimahdessimilation for ocean applications
may not be possible. The second factor togetheh whe first, means that the
background, or forecast, errors of ocean fore@st®ften quite large, often with entire
features (e.g., eddies, meanders, fronts, etc) ledep missing in an analysis or
forecast. That is, because the observations amsesad the spatial scales are short,
processes and features that are often unpredidille instabilities) may not always be
either simulated by a model, or detected by theedisg system. Taking all of these
factors into consideration, one may conclude tha@propriate ocean data assimilation
scheme should be computationally inexpensive, tobmsnissing observations, and
capable of introducing, or re-introducing, entieatures (e.g., eddies) during any given
update. EnOl arguably satisfies all of these aater
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In this paper, the Bluelink forecast system is dbsd, followed by a detailed
description of EnOl, a discussion of ocean datamalsgion, and some examples of
EnOl applied to a global ocean model, followed tshart summary.

Bluelink Forecast System

The ocean model used under Bluelink is based orGfBL Modular Ocean Model
(Griffies et al., 2004) and is called the Oceane€asting Australia Model (OFAM). To
date, the developments under Bluelink have focuesedodelling the circulation of the
upper ocean in the Australian region. This is #éld in the OFAM grid, with 10 m
vertical grid spacings over the top 200 m, and %4 Hdizontal grid spacings in the 90
sector centred on Australia and south diNL6The horizontal grid spacing of OFAM is
0.9 across the Indian and Pacific Ocean ahith2he Atlantic Ocean. The Arctic basin
is not included in OFAM. To accommodate the inhosrapus resolution, the
horizontal viscosity is resolution and state-degendyased on the Smagorinsky-scheme
(Griffies and Hallberg, 2000). The bottom topognabr the configuration of OFAM
that is used here was constructed from a rangeffefeht sources, as documented by
Schiller et al. (2008). The turbulence closure naged by OFAM is a version of the
hybrid mixed-layer scheme described by Chen €18b4).

For long model runs, such as free spin-up runs BRAN experiments, OFAM is
forced by 6-hourly atmospheric fluxes from the Ewgan Center for Medium-range
Weather Forecasting (ECMWEF), using fields from #teyear ECMWF ReAnalysis
(ERA-40; Kallberg et al., 2004) for the period prito August 2002, and 6-hour
operational forecasts thereafter. The operatiohalBk forecast system uses 6-hourly
forcing from the BoM Global Atmospheric PredictiBgstem (GASP, e.g., Schulz et al.
2007) that is soon to be replaced with a versiothefUnified Model (Rawlins et al.
2007), developed at the UK Met Office.

The Bluelink Ocean Data Assimilation System (BODAS)described by Oke et al.

(2005; 2008). BODAS uses an EnOIl scheme that ignpmhed by a 72-120 member
ensemble (depending on the application) of intresea model anomalies. The

ensemble is generated from a long non-assimilatiadel run. Observations that can be
assimilated by BODAS include along-track sea-lamdmalies from altimeters, in situ

temperature and salinity observations, and saelét-surface temperatures.

The Bluelink system has been used to perform opet ocean forecasts
(www.bom.gov.au/oceanography/forecystsulti-year ocean reanalyses (Oke et al.
2005; 2008; 2009a; Schiller et al. 2008), and obsgrsystem experiments (Oke and
Schiller 2007). Output from Bluelink applicationave been used to explore ocean
dynamics (e.g., Schiller et al. 2009), for obsegvaystem design and assessment (Oke
and Schiller 2007; Brassington and Divakaran 2@kg et al. 2009b), and to support a
variety of industry groups.

Ensemble Optimal I nterpolation

Consider the analysis equations,
w' =w” +K(d-Hw"), .l
K=P°H"(HP°H" +R)™ .2

wherew is the model state vectat,is the vector of observation,is the gain matrix,
and H is an operator that maps from model-space to vhsen-space — oftei is
simply linear interpolation. The matrRR is the background error covariance dhib
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the observation error covariance. Superscapmsdb denote analysis and background,
respectively. The analysis equations (1-2), carrdalily expressed in terms of an
ensemble, using

P® = po AA'T [(m-1) .3
K = po A(HA) (0o HA(HA) +(m-1)R)"™ A

wherem is the ensemble siz@ is a correlation function, the open circles derexte
element-by-element matrix multiplication, and tmsembleA, is given by,

A=alw, w, - w,] .5

wherea is a scalar, and/’; is theith model anomaly. The inclusion of the correlation
function in equation (3) and (4) represents loadils (e.g., Houtekamer and Mitchel
2001). Localisation is a necessary part of any rbsebased data assimilation system
where the model state dimension exceeds the ensesizlel. Localisation acts to reduce
sampling error that arises from the use of a ser@kmble, and to increase the rank of
the ensemble, so that the system can “fit” the gamknd innovations. One of the
negative consequences of localisation is the inrtdn of dynamical imbalance (e.qg.,
Mitchell et al. 2002; Lorenc 2003; Oke et al. 208¢&pert 2009). Without localisation
(i.e.,p=1), it can easily be shown that

Wa_szA'C 6

wherec is am-element vector. Written in this form, it is cladat when an ensemble is
used to approximate the background error covarjathee increment, represented by
equation (6), is simply a linear combination of @mble members. When localisation is
used, the coefficients in (6) vary in space — though these coefficiemesgenerally not
computed explicitly. This demonstrates that thera clear relationship between how an
ensemble is constructed and the assumptions mads whplementing the data
assimilation system. This permits a clean hypothafiout the system’s background
errors. This hypothesis can be readily formulated avaluated. For example, under
Bluelink we hypothesis that the background erroespmoportional to model variability
on intraseasonal time-scales, relating to the dgveént and evolution of the mesoscale
eddy field. The ensemble is therefore constructedai manner that isolates the
representation of the mesoscale eddy field. Intm&chis is achieved by computing an
ensemble of intraseasonal anomalies, through alesiband-pass filter of a long free
model run.

The ensemble-based background error covariance®rajed under EnOIl are
anisotropic and inhomogeneous. Some examples aneis-based correlations are
presented in Figure 1. These covariances nicelyranmse the dominant processes that
regularly occur in different regions. They concyseepresent the spatially varying
length-scales, anisotropy, and the variance ofitbdelled circulation. In the examples
shown in Figure 1, ensemble-based correlation lextvgea-level at a reference location
(denoted by the star) and sea-level in the surrogncegion is shown. These fields
show the region of influence of an innovation & thference location. These examples
highlight the long along-shore length-scales amdstiort across-shore length-scales for
a region near the coast (Figure 1a), the anisotodpe circulation along the path of
the EAC after it separates from the coast (Figlk &nd the quasi-Gaussian, quasi-
isotropic structures of eddies in a region thataminated by mesoscale eddies (Figure
1c).
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Figure 1. Examples of the ensemble-based cross-correlations between sea-level at a
reference location, denoted by the star, and sea-level in the surrounding region for
areferencelocation on the (a) continental shelf, (b) along the path of the EAC asit
separ ates from the coast, and (c) over the deep where EAC-spawned eddies
regularly occur off eastern Australia (panel d). Contour intervalsare0.2; zerois
bold, dotted is negative, correlations above 0.6 ar e shaded.

Ocean Data Assimilation

In the introduction to this paper, there are thaspects of ocean data assimilation that
arguably set it apart from atmospheric data asatioi. The first of these is that the
spatial length-scales of the ocean are short. ©harthnce of the short time- and space-
scales of the ocean is demonstrated in Figure @yisly the ratio of the eddy kinetic
energy (EKE) to the total kinetic energy (TKE), geated as a percentage, for a 15-year
ocean reanalysis (Schiller et al. 2008). This ratearly indicates that for much of the
ocean, for the region shown, the EKE, represerttiegshort time- and space-scales of
the ocean, is significant. In many regions, the EK&mpletely dominates the
variability. For example, the mid-latitudes are diomted by EKE through the
abundance of mesoscale eddies (Chelton et al. 20B&)e are only a few exceptions to
this around Australia, including the transition esnbetween the equatorial current
systems, regions of strong topographic steering.,(south of New Zealand) and in
some places where persistent continental sheléotgrexist (e.g., the Leeuwin Current
off Western and Southern Australia).

A sense of the length-scales of the ocean is ditmred by considering a map of sea-
level anomaly (Figure 3). This example is typicéltloe ocean circulation. It shows
many relatively small cyclonic and anti-cyclonicaferes. A time sequence of these
fields (not shown; se@ww.cmar.csiro.au/remotesensing/oceancurrgstsiws that the
ocean circulation is very dynamic, with eddies depimg over periods of days, and
evolving over months. Wave-dynamics are very imgoarin the ocean, with a range of
fast- and slow-moving waves representing a conaderproportion of the total ocean
variability.

To compare NWP to ocean forecasting, considerytpiedl length-scales of the ocean
relative to the atmosphere. While atmospheric werapfatterns span several hundreds
and often thousands of kilometres — ocean “weatbatterns typically span 50-300 km.
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Figure 2: Ratio of eddy kinetic energy to total kinetic energy from BRAN2.1 for
the period 1993-2001. Unitsarein %.
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Figure 3: Example of a sea-level anomaly (colour) with atmospheric sea-level
pressure overlaid (white and blue contours). The diagonal tracks denote altimeter
tracks along which sea-level anomaly is observed, and the black contour showsthe

200 m isobath (sourced from www.cmar .csir 0.au/r emotesensing/oceancurrents/).
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Consider the status of the global ocean observiggiesr. Conventional ocean
observations include sea-level anomaly from s&telitimeters, satellite sea-surface
temperature, and in situ observations of sub-sartamperature and salinity profiles
from a range of programs (mainly Argé&rgo Science Team, 1998The typical
coverage of the ocean observing system is showdigimre 4. This includes an example
of all observations available on a single day (Fegdla). Clearly, satellite SST
observations provide excellent coverage of the glazeans. These observations are
well used by the community and feed through to irtgyd applications, like NWP.
However, from an oceanographic perspective, SS&rghsons often only represent the
variability in the relatively shallow surface bowamg layer. Also, in many regions of the
ocean SST is isothermal (e.g., a large part ofrthy@cal oceans) and is often somewhat
unrelated to the mesoscale variability of the oce®®T observations are crucial to
ocean forecast systems, for their role in initinisand constraining the properties of
the upper ocean boundary layer, however, they daerolusively constrain the
mesoscale variability of the ocean (e.g., Oke atdllSr 2007).

An example of the available sub-surface observatimm a single day is presented in
Figure 4b. Here, we have regarded altimeter obsens as sub-surface. This is
because the observed sea-level anomaly typicaiesents the properties of the ocean
interior in a way that is somewhat analogous tonrss-level pressure representing the
properties of the overlying atmosphere. Sea-lemehaaly of the ocean is often highly
correlated to variability of the ocean pycnoclitmattis typically associated with the
ocean mesoscale variability. The data distribuitoRigure 4b provides quite a different
story to Figure 4a, indicating that the spatialer@age of sub-surface ocean observations
is very sparse compared to the spatial scalesezrocariability (e.g., Figure 3).

Altimeter observations are the most important olesgyn type for constraining the
mesoscale eddy field in the ocean (Oke and Schi#)7; Oke et al. 2009c). The
typical repeat-cycle for both satellite altimetensd Argo profiling floats is 10-days.
The data coverage over 10-days is presented inrd-i1 Together with the good SST
coverage, the global ocean is relatively well obsdrover a 10-day period, however
even with 10-days of data, the mesoscale eddy fiefdains under-sampled. Data
assimilation systems and ocean analysis systentatlypuse observations from a time-
window of between 1 and 11 days. Those that usa fiain only 1-day, attempt to
correct the background state only in regions thatodbserved (e.g., Martin et al. 2007).
Those systems that use longer time-windows typicaécribe larger errors to
observations that do not correspond to the analiyse and attempt to reproduce all of
the synoptic features of the ocean (e.g., Oke .eR@08). For both cases, the ocean
observing system is likely to miss entire featurllse eddies, fronts, or current
meanders. If these features are poorly represémtib@ background field, a subsequent
assimilation step may have to introduce entireuiest As argued above, and noting the
relation presented in equation (6), the ensemhbieafo EnOIl system can readily be
constructed to facilitate this.
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Figure 4: A typical example of observations available in the global ocean observing
system showing (a) all observations on a single day, (b) sub-surface observations on
asingle day, and (c) sub-surface observationsfor a 10-day window. SST
observations (red) typically represent only the shallow surface boundary layer;
Argo T/S (green) are sub-surface profiles of ocean properties; and altimeter
observations (black) are here regar ded as sub-surface obser vations because they
represent depth-integrals of ocean propertiesover the upper part of the water
column. Thisexampleiscentred around 1 January 2008.
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Performance of an EnOI system
Experiments with small models

The performance of EnOl and EnKF was compared by €@kal. (2007) for a simple
one-dimensional, linear advection system, followkhgensen (2004). Oke et al. (2007)
demonstrated that the EnKF is outperforms EnOlexgected, and investigated the
impact of localisation on dynamical balance. Timepse system that Oke et al. (2007)
used is a perfect advection of a one-dimensioe#l.fiThey consider experiments where
4 evenly spaced observations are assimilated évérge steps over a domain of 1000
grid points. The model state is advected at a enhspeed of one grid point per time
step (hence “perfect advection”). Both the ensenalnid the true field are generated
from random samples. For each sample, the varigblenitialised as a linear
combination of 25 sine curves with random uniforistributed amplitude and phase
and a random offset. Thus the dimension of theegys$ 51. For this configuration, and
because the model is linear, it is expected thavemence of the root-mean-squared
error is achievable in just under 250 time steps;Ske et al. (2007) for details.

The performance of EnOl and EnKF for different enkke sizes, with and without
localisation is shown in Figure 5 (adapted from @keal. 2007). For this example, the
dimension of the system is 51, so experiments witkemble sizes of less that 50
require localisation (Figure 5a). This is simplychese in these cases the ensemble is
rank-deficient — that is, the dimension of the emisle sub-space is less than the
dimension of the model sub-space. For the case avittensemble size of 100 (i.e.,
greater than the dimension of the model sub-sp#oe)EnKF out-performs EnOl. For
the case with an ensemble size of 50 (i.e., appratdly equivalent to the state
dimension), the EnKF and EnOIl perform comparably. the cases with an ensemble
size of 10 or 20, without localisation the ensemblenk-deficient (< 51). But for these
cases with localisation, provided the localisinggt-scale is shorter than the distance
between observations (here it is 50 and the saepardistance is 250), the effective
rank of the ensemble becomes 40 or 80 respectfiely number of observations times
the ensemble size). So for 10 members with lodaisathe ensemble is almost full
rank, and for 20 members with localisation, thekraf the ensemble exceeds the
dimension of the state.

For the cases with localisation (Figure 5b), alhftgurations converge on a state that
has acceptably small error. Clearly, the EnKF igesor to EnOI — displaying faster
convergence — for equivalent ensemble size. Inetltases, localisation has acted to
increase the rank of the ensemble sufficientlyaiastrain the system.

The results presented in Figure 5 are not surgridihey clearly indicate that the EnKF
outperforms EnOI. However, consider the computalioasources required to achieve
these results. Recall that the EnKFrisimes more expensive that EnOl, wherés the
ensemble size. Instead of comparing the EnKF wiiBrhembers and EnOl with 100-
members, perhaps we should compare the EnKF witmeiibers and the EnOI with
100-members. For these cases, EnOl is still morepatationally efficient than the
EnKF, requiring significantly less resources, batforms better than the EnKF with
and without localisation — in both cases achievangmaller RMSE. For the case with
localisation, the EnKF with 10-members still beatgd! with 100-members — achieving
convergence faster — but the asymptotic skill igebefor EnOI. This prompts the
question — for an operational system, where contipnt@ resources are limited, and
where throughput is critical, are we better runneng EnKF system with a small
dynamic (time-evolving) ensemble, or an EnOl systeith a large stationary (time-
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invariant) ensemble? The answer to this questiamdear, but is something that we
think should be pursued.

EnKF (m=100)
EnOIl (m=100)
|— — EnKF (m=50)
" | = = EnOI (m=50)
— - — EnKF (m=20)
1=+ = EnOI (m=20)
------ EnKF (m=10)
J 10 van EnOl (m=10)
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Time

50 150 250 350 450 750 1250 1750
Time

Figure5: Time series of theroot-mean-squared error for an idealised linear
advection experiment using an EnKF or EnOl with different ensemble sizes, m, (a)
without localisation, and (b) with localisation. Adapted from Oke et al. (2007).

Experiments with general circulation models

Under Bluelink, an EnOl-based data assimilationtespyshas been used for ocean
reanalyses (e.g., Oke et al. 2005; 2008; 2009aill&ckt al. 2008) and operational
ocean forecasting (Brassington et al. 2007). Anmpta of output from the Bluelink
system is presented in Figure 6. This example showsthly mean sea-level fields
from BRAN (version 2p2) with drifter-derived veltieis and trajectories overlaid. The
drifter data are from the entire month. The drittata represents the time-varying ocean
circulation and is therefore a measure of the ftimegrated circulation. This is not
necessarily well represented by the monthly meareseel| fields of BRAN. However,
provided the variability of the circulation over cbamonth is not too large, this
comparison provides an independent assessmere ofdimalyzed circulation. Note that
data from the surface drifting buoys are not adaiend into BRAN. In general there is
good agreement between the drifter trajectoriesthadsea-level contours, indicating
that there is independent agreement between tmalygad and observed circulation.

10
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The examples in Figure 6 include situations whbeedrifter trajectories cross the sea-
level contours. This is due on occasions to thectdf of wind, or may be because a
mean field (sea-level) is being compared to a Lagjem description of the circulation
(drifters). It may also be because the mesoscaleirfes reproduced in BRAN are not
precisely in the correct positions, or with the reot structures. Nevertheless, this
comparison demonstrates that an EnOIl system castragn an ocean general
circulation model to reproduce realistic oceanafaitity.

Mar-2008

2B\

152°E 156°E 160°E 164°E

-0.9 -0.6 -0.3 -0 0.3
sea-level (m)

Figure 6: Monthly mean sea-level from BRAN (version 2p2), with surfacedrifter
velocities and trajectories overlaid.

The Global Ocean Data Assimilation Experiment (G@)Aand its successor GODAE
OceanView, is an international effort to demonstitéie feasibility of operational ocean
forecasting \www.godae.org/ GODAE partners include institutions from Ausiaal
Canada, China, France, Italy, Japan, Norway, UH, the USA. Most of the systems
developed under GODAE perform operational shorgeaforecasts of the ocean —
some for specific regions, others for the globaarc The data assimilation tools used
by these systems include EnOIl (e.g., Australia,née&p multivariate optimal
interpolation (MvOI; USA, UK), EnKF (Norway), andawiational methods (Japan).
Most of these systems are still being developed anproved. To assess the
performance of different systems and methods, aer-comparison exercise was
undertaken for a 3-month period in 2008. Some tedubm this inter-comparison
activity are presented below to demonstrate theeatirstate-of-the-art in operational
oceanography, and to demonstrate how the EnOl-tb@stdms perform relative to the
other operational systems.

11
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Here, we compare the performance of systems deselap the USA (HYCOM),
France (Mercator), Australia (Bluelink), and theitdd Kingdom (UKMet). The US-
HYCOM system is run by the US Navy using a }/i&solution global model and an
MvOI scheme (Cummings 2005). The French Mercat@tesy uses a global /4
resolution model and a SEEK filter implemented watlseasonally-varying ensemble
(Brasseur et al. 2006). The UK system (Martin et2@07), uses a 174jlobal model
and an MvOI based system. Results from Bluelinkuthe BRAN (a delayed-mode
reanalysis; Schiller et al. 2008; Oke et al. 200@MIAPS-hc (an operational hind-cast;
Brassington et al. 2007) and OMAPS-fc (an operalidarecast). Of these systems,
HYCOM, Mercator, UKMet, and BRAN can each be coestd “best estimates”. In
each case, these are produced using delayed-muodes@heric fluxes and research
quality ocean observations. By contrast, OMAPSsam operational hind-cast and
OMAPS-fc is an operational forecast, using operaticatmospheric fluxes and near-
real-time ocean observations (often with missing amcomplete fields due to data
latency).

An example of these inter-comparisons is present&igure 7, showing the root-mean-
squared difference (RMSD) between modelled andrgbdetemperature and salinity
for a region off the east coast of Australia. Basadhese comparisons it is clear that
the EnOl-based systems (i.e., Bluelink and Merggterform as well as other groups.
A more comprehensive series of inter-comparisons/deEn GODAE systems in the
Australian region are available fromww.cmar.csiro.au/staff/oke/GODAE.htnThe
results presented in Figure 7 are typical. Theslt® of the inter-comparisons
performed to date indicate that the majority of tltsean is reasonably well constrained
by a stationary, or seasonally varying, ensemble Tikely advantage of an EnKF
occurs when and where the time-evolving backgroendr statistics significantly
depart from a stationary ensemble estimate, andendnelynamic ensemble has skill at
quantifying these time-evolving statistics. We ectglat this would occur in regions of
energetic currents, such as western boundary dsrren in regions where strong
transitions occur, such as strong wind-driven upags, or eddy generation. The
justification for the additional resources for amKE, or other more advanced
approaches, should be based on a demonstratiamoinportant these extreme events
are to the user community — and more importantty,how much better an EnKF
performs compared to the less expensive EnOl-bsyssdms.
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Figure 7: Depth-profiles of the r oot-mean-squar ed differences (RM SD) between
observed and modelled temper atur e (Ieft) and salinity (right) from Argo
observations and GODAE systems.

Potential extensions

There is a lot of potential for optimising EnOl-bdssystems. For example, the
extension to a four-dimensional ensemble, wheretitne-lagged covariances of a
system are exploited is relatively straightforwéedy., Hunt et al. 2004). An example of
four-dimensional ensemble-based correlation isqgmesl in Figure 8. This example
shows ensemble-based correlations between seafleneh reference location adjacent
to the coast off central eastern Australia at sdimee T=0, and sea-level in the
surrounding region for times T=-5,...,+5. For thisaewple, the ensemble-based
correlation indicates that a positive sea-levelnaaly at the reference location at the
coast is typically preceded by a positive anomdlgea-level to the south and east (see
correlation maps for T<0). By contrast, Figure 8ligates that a positive sea-level
anomaly at the reference typically leads a postira-level anomaly to the north and a
negative anomaly to the east and south-east (seelatmn maps for T>0). These
characteristics are consistent with a Rossby wav@n eddy, propagating westwards
(T<0) and hitting the coast to the south of theemefice location, and generating a
northward propagating coastal trapped wave. A dycanexplanation for the negative
correlation to the east for T>0 is less clear. By, using these four-dimensional
ensemble-based covariance fields, one could reggibduce a four-dimensional
analysis that extrapolates the influence of an mfasen in both time and space in a
manner that is analogous to variational representtained by adjoint-based
assimilation systems (e.g., Bennett 1992).

13



Submitted for the special issueAudistralian Meteorological and Oceanographic Jourpalthe
proceedings of the CAWCR Workshop on Ensemble Btiedi and Data Assimilation 2009

T=4

T=+0

156°E 159°E

T=+2 156°E 150°E

=]
=]
i\) [\V]
Correlation

arE 150°E 155°E 156°E 150° 0.6
153°E 56°1

153°E 156°E 159°E.

153°E 156°E. 159°E -1.0
153°E 156°E 159°E

Figure 8. Example four-dimensional ensemble-based correlation maps showing the
spatio-temporal influence of a sea-level observation (at the star at T=0) off the
central New South Wales coast.

The extension of EnOl to coupled data assimilatliwe, the EnKF (e.g., Zhang et al.
2007), is also technically simple. For such appilices, the ensemble is augmented by
state elements from other systems. Examples of soigpled data assimilation systems
could include ocean-atmosphere, ocean-sea-ice nopbgsics-biogeochemistry, and
others.

The application of hybrid EnOI-EnKF has been exgptbby Counillon et al. (2009).
They show that the performance of a hybrid EnOI-Endystem, using 10 dynamic
members and 100 stationary members, outperfornts dootEnKF with 100 dynamic
members and EnOIl with 100 stationary members. TdpSon may represent a
compromise between the expensive, but potentigiyal EnKF, and the efficient,
robust, but sub-optimal EnOl.

EnOl-based systems can be readily used for obggesyatem design and assessment.
Oke and Schiller (2007) used the Bluelink EnOl-lblasgstem to perform a series of
standard observing system experiments to asseseldteve importance of different
components of the global ocean observing systeteridtively, methods developed for
ensemble square-root filters, together with thé@tary ensemble of an EnOl system,
can be used to estimate analysis errors obtainedadsymilating existing and/or
hypothetical observations, as described by Okd. d2@09b). An example of such an
application is presented in Figure 9. This shovesabhsumed background field (BGF)
errors from the Bluelink ensemble — simply the dtad deviation of the ensemble —
and an estimate of the analysis error when a ty@ioay of ocean observations is
assimilated. Note that the fields of analysis efosrSST are blocky. This is because
SST observations are here assumed to be on adn@dAnalysis error close to these
grid points tends to be smaller than analysis errdretween grid points. This example
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shows the impact of standard ocean observationQke et al. (2009b) also assesses
the impact of the assimilation of data from landdxh high frequency radar arrays, in
situ gliders, and ship-borne T/S sections, at hffié latitudes along the New South
Wales (NSW) coast. Similarly, Brassington and Davén (2007) analyse
characteristics of an EnOl system to evaluate titerjiial impact of assimilating sea-
surface salinity observations on a data assimiadicean model. These types of studies
help evaluate the potential benefits of future oleon programs on ocean forecast
and reanalysis systems.
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Figure 9: Estimates of the background field (BGF) error (top) and the analysis
error when observations of sea-level anomaly, SST, and Argo T/S areassimilated
(bottom) for the Bluelink system for variables surface velocities (u and v), and SST
(left-right). The legend showsthe normalised error. Each panel isnormalised by
the number shown in thetop left corner of each panel. Adapted from Okeet al.
(2009b).

Conclusion

The performance of an EnKF and EnOl system was aosapby Oke et al. (2007) for a
simple linear advection system. They showed thalednKF outperforms EnOl, EnOI
is a robust system that can produce results of acae performance to the EnKF.
Based on their results, and on considerationseofdéfative computational cost of EnKF
compared to EnOIl, we have here argued that for samppdéications it may be worth
considering running an EnOIl system with a largéigtary ensemble, rather than an
EnKF system with a small dynamic ensemble.

To date the application of EnOl to realistic globgstems is limited to the Bluelink and
Mercator systems, under GODAE OceanView. Bluelidesua stationary ensemble,
while Mercator uses a seasonally-varying ensemiflearmmalies, or modes, to
approximate the system’s background error covaesn€omparisons between the
performance of these EnOl-based systems and ofherational ocean forecasting
systems demonstrate that they produce resultscthrapare well to other methods.
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Preliminary investigations into the potential othgbrid EnOI-EnKF, where a small
dynamic ensemble is supplemented by a larger statfoensemble show promising
performance (Counillon et al. 2009).

In this paper we present a series of argumentsateera case for using EnOl for ocean
data assimilation. Specifically, we refer to themilmance of short spatial scales of the
ocean and the relative sparseness of the ocearvolgssystem. Together, these factors
mean that an eddy-resolving, data assimilation rogeadel is likely to miss entire
features, such as eddies or fronts, that are neyal represented by observations or
forecasts. We note that EnOl is particularly welited to introducing new dynamical
features, because of the user’s control over thestyf features and scales represented
by a stationary ensemble. We also refer to thetioalship between the ensemble
anomalies, or modes, and the increments. Thathat, the increments are a linear
combination of ensemble anomalies. This recognipoovides guidance for how an
ensemble should be generated — and allows thetaseake and test hypotheses about
the system’s background errors. Together, we ptabese arguments as justification
for why EnOIl may be a good choice for ocean dasarakation.

Finally, we note the natural extensions of EnOle3éinclude an extension to four-
dimensional analyses, using a time-lagged enserahtiéto coupled data assimilation,
where the ensemble is augmented with fields frooplm systems (e.g., atmosphere-
ocean). We also demonstrate the application of EoOdbjective observing system

assessment and design.
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