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Abstract The performance of an inexpensive, ensemble-
based optimal interpolation (EnOI) scheme that uses a
stationary ensemble of model anomalies to approximate
forecast error covariances, is compared with that of an
ensemble Kalman filter (EnKF). The model to which the
methods are applied is a pair of “perfect”, one-dimensional,
linear advection equations for two related variables. While
EnOI is sub-optimal, it can give results that are comparable
to those of the EnKF. The computational cost of EnOI is
typically about N times less than that of EnKF, where N is
the ensemble size. We suggest that EnOI may provide a
practical and cost-effective alternative to the EnKF for
some applications where computational cost is a limiting
factor. We demonstrate that when the ensemble size is
smaller than the dimension of the model’s sub-space, both
the EnKF and EnOI may require localisation around each
observation to eliminate effects of sampling error and to
increase the effective number of independent ensemble
members used to construct an analysis. However, localisa-
tion can degrade an analysis if the length-scales of the
localising function are too short. We demonstrate that, as
the length-scale of the localising function is decreased,
localisation can significantly compromise the model’s
dynamical balances. We also find that localisation
artificially amplifies high frequencies for applications of
the EnKF. Based on our experiments, for applications
where localisation is necessary, the length-scales of the
localisation should be larger than the decorrelation length-
scales of the variables being updated.
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1 Introduction

For many oceanographic and meteorological centres, the
long-term objective is a global high-resolution forecast
system, coupled to an optimal data assimilation system that
synthesises all available observations to produce realistic,
dynamically consistent analyses. A practical limitation of
such a system is the computational requirements of data
assimilation systems like the ensemble Kalman filter
(EnKF) and four-dimensional variational assimilation,
which, in the case of EnKF, often limit the possible size
of the ensemble.

The EnKF and other related ensemble-based assimila-
tion systems use the Kalman filter equations to blend
observed and modelled fields to produce an ensemble of
analyses. The EnKF uses the statistics from an ensemble of
forecasts to weight and distribute information from
observations onto a model grid.

The sensitivity of the EnKF to ensemble size has been
extensively investigated in the literature, with varied results
(e.g. Houtekamer 1995; Houtekamer and Mitchell 1998;
Keppenne 2000; Mitchell et al. 2002; Keppenne and
Rienecker 2002); it is clear, however, that because the
increments derived from ensemble-based schemes, without
localisation, are a linear combination of ensemble pertur-
bations (Evensen 2003), it is essential for a successful
ensemble-based assimilation that the ensemble adequately
spans the model sub-space. A possible solution to
situations when only a small ensemble is feasible is the
use of a technique called localisation. Localisation is
typically achieved either by masking of covariances
between distant elements of the model state vector (Hamill
et al. 2001; Houtekamer and Mitchell 2001) or by applying
filters locally in physical space (Ott et al. 2004).

In the extreme case, where the computational
resources only afford a single forecast, one could
employ an ensemble-based data assimilation system
that uses a stationary ensemble, such as that described
by Oke et al. (2002), Evensen (2003) and Oke et al.
(2005). Evensen (2003) called this approach ensemble
optimal interpolation (EnOI). Although EnOI typically
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allows the use of a bigger ensemble than an EnKF, it is
often not nearly enough to span the full sub-space of
the model, making it necessary to use localisation.

This manuscript compares the performances of EnKF
and EnOI for a small model application and investigates
the advantages and disadvantages of localisation,
including an analysis of the impacts of localisation on
a model’s dynamical balances. Because of the simplicity
of the model used here, we are able to explicitly assess
the level of imbalance introduced by localisation and
investigate the influence of localisation on the modal
composition of analyses. This sets the current study
apart from previous papers that have examined the
impacts of localisation on a model’s dynamical balance
(e.g. Mitchell et al. 2002).

This paper is organised as follows: The assimilation
methodology is described in Section 2, followed by a
description of the idealised model and the experiment
design in Section 3. The results are presented in
Section 4, followed by a summary and conclusion in
Section 5.

2 Assimilation methodology

2.1 Analysis equations

We define w f as anm-dimensional forecast state, wo is a p-
dimensional set of observations, H is an operator that
interpolates from the model space to the observation space,
P f is anm� m forecast-error covariance matrix and R is a
p� p observation-error covariance matrix. The minimum
error-variance estimate of the analysed state wa is given by
the analysis equation:

wa ¼ w f þ K wo � Hw f
� �

; (1)

where K ¼ P f HT HP f HT þ R
� ��1

(2)

is the gain, or weight, matrix. The matrix K determines the
relative weights of the forecast and the observations in an
analysis and performs the interpolation of the forecast
innovation ðwo � Hw f Þ , on to all model variables at all
model grid points. The main challenge for a successful
application of Eqs. 1 and 2 is the estimation of P f .

2.2 The ensemble Kalman filter (EnKF)

The EnKF approximates Pf in Eq. 2 as

P f ¼ A
0
A

0T
=ðN � 1Þ; (3)

where N is the number of ensemble members and A
0
is an

m� N matrix of ensemble perturbations that are defined
as

A
0 ¼ Af � Af ; (4)

where Af ¼ ½w f
1 ;w

f
2 ; � � � ;w f

N� (5)

is an ensemble of model forecasts, w f
i is the ith ensemble

member in the forecast ensemble and Af is the ensemble
mean. During an assimilation step, each ensemble member
is compared to the observations and is updated according to
the analysis equation (Eq. 1) after substituting an approx-
imation for the covariance matrix (Eq. 3) into the gain
matrix (Eq. 2), yielding

K ¼ A
0 ðHA0 ÞT HA

0
HA

0
� �T

þ N � 1ð ÞR
� ��1

: (6)

For applications to an imperfect model, the covariances
of the model error also need to be included in the evolution
of A

0
. This can be achieved in a number of different ways;

for example, by inflating the ensemble perturbations (e.g.
Anderson and Anderson 1999; Whitaker and Hamill 2002)
or through the addition of spatially correlated noise
(Evensen 2003). When the ensemble members in an
EnKF are appropriately initialised, and evolved in time, the
EnKF arguably offers a nearly optimal method for
assimilation. However, the EnKF is expensive, requiring
N versions of the model to be run simultaneously.

2.3 Ensemble optimal interpolation (EnOI)

An approximation to the EnKF is EnOI. This involves
using a stationary ensemble to define P f in Eq. 3, using

A
0 ¼ α w

0
1;w

0
2; � � � ;w

0
N

h i
; (7)

where N is, again, the number of ensemble members; A
0
is

an ensemble of scaled model anomalies; α is a constant
that scales the magnitude of the model anomalies, and
therefore, the magnitude of the assumed forecast errors and
w

0
i is the ith model anomaly. As an example, a model

anomaly could be an anomaly from a long-term mean, or in
the case of Oke et al. (2005), intraseasonal anomalies in a
long model integration. EnOI doesn’t require each
ensemble member to be integrated with time; the ensemble
is stationary.

The rationale for the EnOI-approach is threefold. Firstly,
one might expect that the magnitude of a model’s forecast
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errors, represented by the diagonal elements of Pf, are
probably related to the variance that the model simulates. So,
in regions of strong variability, where the model is most
likely to produce large errors, the assumed forecast-error
variance is also large. Secondly, if two elements of the model
state are typically correlated in a longmodel integration, then
one might reasonably expect that the errors of those state
elements are also correlated. So, under the above-stated
assumption, if two state elements typically vary together,
then an adjustment to one will result in an adjustment to the
other, and the relativemagnitude of these adjustments will be
directly related to the covariance between these elements.
Thirdly, in the same way as the EnKF, EnOI produces
analyses that lie within the model’s sub-space.

2.4 Localisation

To understand further how ensemble-based assimilation
works, it is helpful to recognise that the increments derived
from these systems can be expressed as

wa � w f ¼ A
0
c; (8)

where c is an N -dimensional column vector. Evensen
(2003) refers to this as a weakly non-linear combination
because the coefficients c depend on the combined vectors
in A . By contrast, Nerger et al. (2005) refer to this as a
weighted average; however, we note that this implicitly
assumes that the coefficients sum to one, which is generally
not the case. When expressed in this form, it is clear why
the success of any ensemble-based data assimilation
system critically depends on the representativeness of its
ensemble members. If the ensemble doesn’t span the same
space as the forecast errors, then it cannot reliably produce
increments that bring the model in agreement with the true
state. This is particularly a problem when a small ensemble
size is used; and unfortunately, for most realistic applica-
tions, the computational resources limit the number of
ensemble members that can be used to a modest size.

For ensemble-based assimilation, the rank of the
estimated forecast error covariance matrix is, at most,
ðN � 1Þ: This rank can be increased significantly using
localisation (e.g. Hamill et al. 2001; Houtekamer and
Mitchell 2001). A typical implementation of localisation
may involve the multiplication of the ensemble-based
covariances in P f by a correlation function so that the
gain matrix in Eq. 2 is re-expressed as

K ¼ ðC � P f ÞHT HT ðC � P f ÞHT þ ðn� 1ÞR� ��1
; (9)

where C is an m� m correlation matrix and the
operation denoted by the open circle is an element-by-
element matrix multiplication (also called a Schur or
Hadamard product); so if B ¼ C � P f , then Bij ¼ CijP

f
ij ,

where Cij is a correlation between the ith and jth state
elements of the model that depends only on the
Euclidean distance between these elements in physical
space. Here, we use a Gaussian function with an e�
folding scale of L . Consider an example where a single
observation is assimilated. Then, the innovation covari-
ance matrix, the matrix to be inverted in Eq. 9, is a
scalar. The distribution of the forecast innovation,
ðw o � Hw f Þ, onto the rest of the model state is determined
by the covariances in P f. When localisation is used, these
covariances are artificially reduced to near zero with an e�
folding length-scale of L .

The primary benefit of localisation is often considered to
be the reduction of spurious long-range covariances
occurring when a small ensemble is used (Hamill et al.
2001; Houtekamer and Mitchell 2001). Importantly, local-
isation also effectively increases the rank of the system. To
understand this, consider an example where two observa-
tions are assimilated. Suppose these observations are far
enough apart that the off-diagonal elements of HðC � Pf Þ
HT are zero. Then, the combination of ensemble anomalies
that comprise the increment, represented in Eq. 8, around
each observation is effectively independent. So, the
ensemble anomalies can be effectively split into two
separate ensembles, one for each observation, and the
column vector c , in Eq. 8, is effectively doubled in size.
That is, the ensemble size is effectively doubled. More
generally, suppose we have p observations that are greater
than 4L apart; then, the effective ensemble size could be
expected to be about pN .

For an example with many observations that roughly
span the full model domain, the effective ensemble size is
N � Nx , where N is the ensemble size and Nx is the
number of independent sub-domains. For a one-dimen-
sional domain, of length X , we might suppose that the
covariances are near enough to zero at a distance of 2� L
from an observation. So, there are X =ð4LÞ independent
domains in a domain of length X : If X ¼ 1,000 and L ¼ 50,
the rank, or effective ensemble size, could be expected to
be about 5N .

By increasing the rank of the system, an analysis can be
computed that fits the observations better. This explains
why Houtekamer and Mitchell (1998), for example, obtain
satisfactory results using only 16 ensemble members for a
global application. Without appreciating the effects of
localisation, these results seem incredible, given that the
atmospheric model used has many more degrees of
freedom than the size of their ensemble.

The benefits of localising have been demonstrated by
several authors (Hamill et al. 2001; Houtekamer and
Mitchell 2001); however, Evensen (2003) and others have
suggested that it will result in non-dynamical modes being
introduced into the model. This issue has been explored in
the context of an atmospheric general circulation model by
Mitchell et al. (2002). To gain a better understanding on the
effects of localisation on dynamical balance, we present
analyses from a series of experiments with a simple, linear
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model where the model’s dynamical balances are known
exactly.

3 Experiment design

The model used here is a variation of that employed by
Evensen (2004). It is a one-dimensional linear advection
model, solving

da

dt
þ u

da

dx
¼ 0; (10)

where u ¼ 1 is the speed of advection, a is a model
variable, t is time and x is space, ranging from 1 to 1,000,
with grid spacings of 1. The computational domain is
periodic in x . The main difference between this and
Evensen’s (2004) application is that we use two related
model variables, variable a and variable b , where b is
initialised as

b ¼ 0:5þ 10
da

dx
; (11)

where the multiple 10 was chosen to get the range for the
variable b of the same order as for the variable a for fields
generated by the procedure described below. The relation-
ship between a and b in Eq. 11 is motivated by the
relationship between pressure and velocity in oceanic and
atmospheric applications. That is, geostrophic velocities
are proportional to pressure gradients. This experiment
design facilitates an assessment of multivariate ensemble-
based data assimilation when only one variable is
observed. This is somewhat analogous to the case where
sea-level anomalies, from satellite altimetry, are assimi-
lated into an ocean model to adjust all state variables
including ocean currents. We seek to evaluate the extent to
which observations of variable a can be used to adjust
variable b , and additionally, whether the initial dynamical
balance between a and b, represented by Eq. 11, is
maintained during the assimilation process.

Both the ensemble and the true field are generated from
random samples. For each sample, variable a is set as a
linear combination of 25 sine curves with random
uniformly distributed amplitude and phase and a random
offset (generated by the harmonic with k ¼ 0 ):

a0i ¼
X25

k¼0

Ak sinð 2πk1000
iþ ϕkÞ; 1 � i � 1000;

0 < Ak < 1; 0 < ϕk < 2π , where ani is the value of
variable a in the ith grid node at the nth time step.
Subsequently, the vector a0 ¼ ða01; � � � ; a01000ÞT is normal-
ised so that it has a variance of 1. Variable b is initialised as

a centred difference approximation to the second term in
the right-hand side of Eq. 11:

b0i ¼ 5ða0iþ1 � a0i�1Þ;

The first generated sample is offset so that variable a has
a mean of 6 and variable b has a mean of 0.5; it represents a
reference field. The true field is defined as a sum of the
reference field and the next sample. The remaining N
samples are generated to form the ensemble. For each
ensemble sample, the ensemble mean is subtracted and
variable a is normalised to have a variance of 1. The
reference field is then added to each ensemble sample.
Because we subtract the ensemble mean after the initial
normalisation, each ensemble perturbation for a will have
a variance that is slightly different from 1.

This procedure is similar to that described by Evensen
(2004); however, for simplicity, both the penalty for shorter
waves and the improved sampling strategy described by
Evensen are not used here. The decorrelation length-scales
for variables a and b are both around 20, which is equal to
the half-period of the harmonic with the smallest period.

For the experiments that use EnOI, the model is
initialised by the ensemble mean (that is, the reference
field), and the ensemble members do not change with time.
For applications of the EnKF, where each ensemble
member evolves in time, the time-evolving ensemble
mean is used as the best estimate from the system for
comparison with the true field.

To advance the model in time, instead of integrating
Eq. 10 numerically, we use the general solution

aðx; tÞ ¼ f ðx� utÞ;

where f ðxÞ is an arbitrary function; we then choose u ¼ 1
and simply shift at each time step the current values of
variables a and b by one grid node: anþ1

i ¼ ani�1;
i ¼ 1; � � � ; 999; an1 ¼anþ1

1000; bnþ1
i ¼ bni�1; i ¼ 1; � � � ; 999;

bn1 ¼ bnþ1
1000:

For each assimilation experiment, four equally spaced
observations of a are periodically obtained from the true
state and are contaminated with uncorrelated, normally
distributed noise with a variance of 0.01, after Evensen
(2004). Therefore, an observation error variance of 0.01 is
used in all experiments considered in this study. For EnKF,
the normally distributed noise with the same variance is
also independently added to these values for each ensemble
member. These observations are obtained and assimilated
every five time steps.

Because we use 25 orthogonal sine functions with
random phase and amplitude as well as a random offset to
initialise the ensemble fields, the dimension of the model
state space is 51. Therefore, in the following experiments,
ensembles of size N ¼ 10 or N ¼ 20 can be considered
small, ensembles of size N ¼ 50 intermediate and
ensembles of size N ¼ 100 large.
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4 Results

4.1 Ensemble spread as a tuning parameter

The parameter α in Eq. 7 controls the spread of the
stationary ensemble used in EnOI experiments. Larger
values of α are found to give faster initial convergence
rates; however, they also lead to larger asymptotic values of
the root-mean-squared error (RMSE) between the analysed
and true fields. We note that we use the term “asymptotic
value” for the RMSE value reached by both EnOI-based
and EnKF-based systems at the time when it stops
changing in a practical sense.

Overall, using a smaller value of α gives a more
conservative approach in relation to the convergence of an
EnOI system, although this may change for a non-
stationary system when a faster initial convergence rate
may be required for a better performance. For example,
Oke et al. (2005) use values of α ¼ 0:5 for an application
to a global eddy-resolving ocean model. In this study, we
do not focus on the problem of optimal α because it may
depend on many factors, and we use the value α ¼ 0:05
unless stated otherwise.

4.2 General behaviour of the system

Figure 1 shows the convergence in assimilation experi-
ments conducted with EnKF and EnOI using 100 ensemble
members. This figure demonstrates that both variable a
and variable b approach the true field when the EnKF is

used. Similarly, both variables become well aligned with
the true fields using EnOI; however, for small times
(t � 300 ), the EnKF clearly outperforms EnOI. The reason
for this is in the gradual reduction of the ensemble spread in
the EnKF, which leads to a more accurate estimate of the
forecast error covariances. By contrast, the ensemble
spread is unchanged when EnOI is used, and the static
covariances calculated with this static ensemble do not
improve in time. Therefore, the analysis converges to the
true field more gradually.

The same example is repeated using 100 ensemble
members, but with the inclusion of localisation using an e -
folding scale of 50 (Fig. 2). A comparison between Figs. 1
and 2 shows that localisation improves the performance of
both EnOI and EnKF, with the EnKF again having a faster
rate of conversion.

The experiments presented in Figs. 1 and 2 are repeated
using only 20 ensemble members without localisation.
These experiments initially fail to produce reasonable
results for both the EnKF and EnOI (not shown); however,
after reducing α to 0.03, the EnOI-based system robustly,
albeit slowly, converges. This is an example when an EnOI
outperforms EnKF. The reason for this surprising result is
that EnOI does not advect the ensemble, while EnKF does.
Because of that, for EnOI at each assimilation event, the
increment is expanded in an effectively different basis.
While the ensemble itself has insufficient range to
reproduce the true field, being taken with different offsets
over a period of time, it effectively spans the full model
space. To take advantage of this feature of EnOI here, one
needs to use a small ensemble spread to avoid instabilities
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Fig. 1 Example of an EnKF
and EnOI (� ¼ 0:05) experi-
ment showing the true field,
EnKF mean analysis, EnOI
analysis, observations, EnKF
standard deviation and EnOI
standard deviations for variable
a (left) and variable b (right) for
time t ¼ 0, 150 and 300 (top to
bottom) using 100 ensemble
members. Where the truth field
is not visible, the EnKF solution
overlays the truth
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and integrate over a long period of time to allow statistical
accumulation of the increments. In most practical situa-
tions, evolution of the model will prevent this accumula-
tion, which is very slow; however, the stationary character
of the model in hand does allow it.

When localisation is used with a 20-member ensemble
and an e -folding length scale of 50, both the EnKF and
EnOI produce analyses that converge quickly to the true
field (Fig. 3). Again, when localisation is used, there are
only small differences between the final analyses using
EnOI and EnKF.

In the idealised model used here, the consecutive model
states represent a series of identical shapes moving through
the domain from left to right. In the experiments using the
EnKF, each ensemble member aligns with the true field,
resulting in the regions to the right of the observation points
in an ensemble mean that agrees well with this field, and
rendering the variance of the ensemble near zero. This can
be clearly seen in Figs. 2 and 3 at t ¼ 150 , for example. By
contrast, to the left of each observation, the ensemble
spread is relatively large, and so, the forecast error variance
is also large. When a new set of observations are
assimilated, the regions where the ensemble spread is
small are not significantly changed during the analysis step,
while in the regions where the ensemble spread is larger,
the assimilation of new observations can result in a
significant change to each ensemble member, depending
on the covariances and on the magnitude of the forecast
innovations. For this idealised model, this is exactly how
we expect the EnKF to work.

Now consider the examples with EnOI, where the
ensemble spread is stationary. Initially, the ensemble spread
is too small, so the forecast error variance is assumed to be
smaller than it really is. As a result, observations are under-
utilised. Despite this, the corrections are, on average, in the
right direction, and after several assimilation cycles, the
EnOI-based analysis becomes nicely aligned with the true
field. However, because the ensemble spread does not
decrease as the observations move through the domain, at
some moment, the estimated forecast error variance
becomes larger than it really is. In this case, observations
are over-utilised, and this can degrade the analysis. The
performance of EnOI in this respect can be improved by
gradually reducing the scaling constant α in Eq. 7. For an
application with an imperfect model, this issue is not likely
to be such a problem.

4.3 Sensitivity experiments

We now turn to a statistical comparison of the performance
of the EnKF and EnOI for different configurations of the
assimilation systems. To gain statistically meaningful
results, we generate 50 independent realisations of the
true field and the 100-member ensemble following the
procedure described in Section 3. In the analysis that
follows, we present the RMSE and the anomaly correlation
coefficient (CC) between the true and analysed fields (the
ensemble mean for EnKF applications), averaged over
these 50 independent realisations. The RMSE and CC are
presented as functions of time. With a speed of advection of
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Fig. 2 As for Fig. 1, using 100
ensemble members, except also
using localisation with a length-
scale of 50
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u ¼ 1, and a separation between observation sites of 250, it
takes 250 time steps for the fields to advect from one
observation site to the next. We might therefore expect that
it takes less than 250 time steps for the analysis from an
optimal assimilation system to converge on the true field.

4.3.1 Ensemble size without localisation

Figure 4 presents RMSE and CC as functions of time for
the EnKF and EnOI with 10, 20, 50, and 100 ensemble
members. It clearly demonstrates that ensemble size is of
first-order importance for ensemble data assimilation.
Results range from failures, when only 10 ensemble
members are used for EnOI, to examples where the RMSE
decreases quickly to its asymptotic value and correlations
increase quickly to near one over about 230 time steps.

Applications of both EnKF and EnOI with a 10- and 20-
member ensemble are unable to substantially reduce
RMSE from the initial level. This can be explained by
the fact that the rank of the ensemble is smaller than that
dimension of the model state space (i.e. 51), and the range
of the ensemble does not change over time. Because of that,
the true field cannot be represented as a linear combination
of the ensemble fields, although some minor improvements
in fitting the analyses to the true field can still be made.
This would not necessarily be true for applications with a
non-linear or imperfect model, when the sub-space
spanned by the EnKF ensemble can change over time.
The divergence shown in Fig. 4 for assimilation with EnOI
can be eliminated by reducing the spread parameter α. It

can also be eliminated or reduced by using observations at
random positions rather than fixed positions.

Note that the divergence shown by statistically averaged
performance criteria for an assimilation system does not
necessarily mean that it is present in all or most of the 50
realisations; even one realisation with exponentially
unstable analyses can result in a major deterioration in
the average results.

The experiments with 10- and 20-member ensembles
show that, in the case of a perfect linear model, some
realisations diverge when a small ensemble is used without
localisation. We also find that, with a 100-member
ensemble, the EnKF system outperforms the EnOI system.
With 50 members, the final states at t ¼ 500 for EnOI and
EnKF are almost the same, which occurs because of the
premature collapse of the 50-member EnKF. Interestingly,
the 100-member EnOI outperforms the 50-member EnKF.
For this comparison, the 100-member EnOI involves the
computation of one model integration and one analysis; by
contrast, the 50-member EnKF involves the computation of
50 model integrations and 50 analyses. That is, in this case,
EnOI is about 50 times less expensive than the EnKF if we
neglect the differences in the computational cost of
computing an analysis with a 50- or 100-member
ensemble. In general, these results support the contention
that EnOI may offer a reasonable alternative to the EnKF
for some applications. For example, suppose for the
application considered here that only a 10- or, even, a
50-member ensemble could be afforded for the EnKF, but a
100-member ensemble could be afforded for EnOI. For this
case, EnOI offers a practical alternative to the EnKF.
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using 20 ensemble members and
localisation with a length-scale
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Figs. 1 and 2 because a different
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4.3.2 Ensemble size with localisation

We repeat the series of experiments presented in Fig. 4, but
with localisation with a localising length-scale of 50
(Fig. 5). When localisation is used, all experiments
successfully reproduce the true field, with low RMSE

and correlations near 1.0. For both the EnKF and EnOI, the
performance starts to deteriorate when a 10-member
ensemble is used, but even in this case the systems with
localisation outperform systems without localisation and an
ensemble size of 50. Interestingly, Fig. 5 shows worse
performance for variable b compared with variable a . This
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may indicate a violation of the dynamic balance; we will
investigate this issue in more detail later. Similar to the
experiments without localisation, the performance of EnOI
is inferior to that of the EnKF, in particular concerning the
convergence rate. This indicates that the EnKF is more
optimal than EnOI, as we expect. However, EnOI can
achieve equivalent and sometimes smaller asymptotic
values of the RMSE compared to the EnKF. For example,
for both variables a and b; the 10-member EnOI has a
smaller asymptotic RMSE value than the 10-member
EnKF. For experiments with 20, 50 and 100 ensemble
members the EnKF has smaller asymptotic RMSE values
for variable a: By contrast, these experiments show that
EnOI has smaller asymptotic RMSE values for variable b:

Based on the estimates in Section 2.4, we argue that, for
the experiments with N ¼ 20 and L ¼ 50, for a domain of
length 1,000 with p ¼ 4 equally spaced observations, the
effective rank of the ensemble is roughly pN ¼ 80 . We
therefore expect this experiment to outperform the exper-
iment with N ¼ 50 , with no localisation, and to perform
marginally worse than the experiment with N ¼ 100 , with
no localisation. The results in Figs. 4 and 5 support this
contention.

4.3.3 Localisation length-scale

We perform a series of 50 experiments using a 20-member
ensemble with a range of different length-scales for the
localisation (Fig. 6). Recall that a 20-member ensemble can
be considered small because the dimension of the model
state space is 51. For a 20-member ensemble, the
experiments that perform the worst are the ones that did

not use localisation. For both variable a and variable b , the
configuration that performs the best is the EnKF with
localisation using an e�folding length-scale of 50. For
EnOI, the analyses generally improve as the localising
length-scale decreases.

As the localising length-scale reduces, the assimilation
starts to approach data insertion. This increasingly results in
producing analyses outside the model state space and
violating constraints between the model variables (dynam-
ical balance). This aspect of localisation is examined below.

Figure 6 shows the existence of an optimal localisation
length, with the experiments using L ¼ 50 and 100,
outperforming those using L ¼ 25 and 1 . If the
localisation length-scale is too short, the model’s dynamical
balances may be violated and the effective range of the
ensemble is increased;whereas if the localisation length-scale
is too long, the effective range of the ensemble may be less
than that of the model’s sub-space.

4.4 Impact of localisation on dynamical balances

Variable b is defined as a derivative of variable a . To
investigate violations of the dynamical balance in the data
assimilation, one can calculate the discrepancy between the
analyses of b and the values given by a centred difference
approximation to Eq. 11, given an analysis of variable a; we
will refer to the former as bassim and the latter as bbalanced . To
assess how localisation impacts the dynamical balance of the
system, we calculate time series of the RMS difference
between bassim and bbalanced for a number of different
localising length-scales using both the EnKF and EnOI.
Analysis of the results of these experiments presented in
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Fig. 7, which demonstrates two important points. Firstly,
the degree of imbalance increases with a decrease of
localisation length-scale. Secondly, in the limit of no
localisation, L ¼ 1 , variables a and b are perfectly
balanced, as we expect.

Another result in Fig. 7 is that the degree of model
imbalance is greater using the EnKF than it is using EnOI.
The reason for this is clear. In the EnKF, the dynamical
balance of the ensemble is degraded at each assimilation
step because of the localisation. By contrast, the ensemble
for EnOI is stationary, and is therefore always dynamically
balanced. Consequently, the degree of imbalance in the
EnOI analysis is not as severe as for the EnKF. However,
we note that, for more realistic applications, the dynamical
imbalances may be restored by the model.

The impact of localisation on dynamical imbalance is
further highlighted by contrasting the mean power spectral
density (PSD) of variables a , b and bbalanced for a series of
50 experiments using the EnKF with a 20-member
ensemble and localisation with a length-scale of 100
(Fig. 8) and 50 (Fig. 9). We present the PSD of the true field
and the ensemble mean at t ¼ 0 and t ¼ 500 . For
the experiments with L ¼ 100 (Fig. 8), the PSD of the
ensemble mean becomes well aligned with the PSD of the
true field after 500 time steps for both variables a and b.
Similarly, the PSD of b and bbalanced are also in good
agreement. We also find that the mean PSD of the ensemble
perturbations of b and bbalanced become well aligned
by t ¼ 500 . This demonstrates that, for L ¼ 100 , the
dynamical imbalance introduced by localisation is rela-
tively insignificant. However, consideration of the mean
PSD of the ensemble perturbations for the experiments
when L ¼ 50 (Fig. 9) renders quite a different story. We
find that the agreement between b and bbalanced becomes

very poor, particularly for the higher frequencies. The
ramifications of this for a linear model are not severe;
however, for a non-linear model, such imbalance will likely
cause serious initialisation problems that are likely to
degrade future forecasts. This demonstrates that the length-
scales used with an EnKF should be chosen with great care.

We also note that the power in the PSD of the mean in
Figs. 8 and 9 is virtually zero for modes 26–50, for which
the amplitude of the true field is zero. By contrast, the mean
PSD of the ensemble perturbations shows considerable
power in higher frequencies that are not spanned by the true
field (mode 26–40) or the initial ensemble. The absence of
any significant power at these frequencies in the ensemble
mean indicates that the components of the ensemble
perturbations at these frequencies must cancel out in the
ensemble mean.

4.5 Analysis of the gain

Estimates of elements of the true gain matrix obtained for a
single observation of a at an isolated location and variables
a and b are shown in the top panels of Figs. 10 and 11,
respectively. These estimates are calculated from the
average of 50 independent realisations of the gain from
1,000-member ensembles. We compare this estimate of the
true gain to estimates of the gain for a range of different
ensemble sizes, both with and without localisation. We
define the error of the gain to be the difference between the
estimated true gain and the gain calculated from an
individual ensemble. For both variables a and b , the
RMSE of the gain increases as the ensemble size is reduced
(second panels of Figs. 10 and 11). This is what we expect
because sampling error is more significant for a smaller
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ensemble. For both variables, sampling error is smallest at
the observation location and largest adjacent to the
observation.

Finally, we consider the RMSE in the gain when a 20-
member ensemble is used with a range of localising length-
scales. When L ¼ 100 , the RMSE of the gain is almost
unchanged from when localisation is not used. When
L ¼ 50, the RMSE is reduced for both variables a and b
almost everywhere. There is a region at about X � X o ¼
50–70, where localising with L ¼ 50 increases the RMSE
of the gain, but in general, the RMSE of the gain is
significantly reduced, and particularly for variable a at
jX � X oj > 100. This reduction will clearly have a positive

impact on analyses calculated using this gain. When L ¼
25, the RMSE of the gain is reduced almost everywhere;
however, it is significantly increased at about X � X o ¼
50–70 for both variables a and b . In this case, the
localisation is too severe, and is acting to reduce the gain to
near zero in regions where it should be non-zero. Recall
that the decorrelation length-scales of a and b are about
20. It appears as though there is a window of length-scales
over which localisation is beneficial. If the localisation
length-scale is too small, then the gain can be degraded. If
the localisation length-scale is too large, then the sampling
error is not significantly influenced. For this application, a
localising length-scale of 50 appears to be most appro-
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priate. This aspect of localisation clearly needs to be tuned
for specific applications, but it seems obvious that the
localising length-scale must be greater than the decorrela-
tion length-scales of the fields being adjusted in a model.

4.6 Can localisation enrich an ensembles spectrum?

We compare the PSD of the mean and ensemble for a series
of 50 experiments with an EnKF using 20-ensemble
members and localisation with a length-scale of 100,
except where the ensemble is initialised with zero
amplitudes for a range of harmonics that are spanned by
the true field (Fig. 12). Therefore, the initial ensemble does
not span the full sub-space of the true field. We seek to
determine whether localisation can enrich the spectrum of

an ensemble by expanding the effective sub-space that is
spanned by the ensemble. We find that by t ¼ 500, the PSD
of the ensemble mean is in close agreement with the true
field (Fig. 12a,b), despite the fact that the ensemble did not
initially span sufficient space to represent all the modes of
the true field (Fig. 12c,d). The mean PSD of the
perturbations at t ¼ 500 shows that the dimension of the
final ensemble is greater than that of the initial ensemble
(Fig. 12c,d) and that it spans roughly the same space as the
true field. This demonstrates that localisation has the effect
of enriching the spectra so that the effective sub-space of an
ensemble is increased.

We repeat the analysis described above for a series of 50
experiments using EnOI with a 20-member ensemble and
localisation with a length-scale of 100. Again, the
ensemble is initialised with zero amplitudes for a range
of harmonics that are spanned by the true field (Fig. 13).
Obviously, the ensemble perturbations for EnOI remain
unchanged throughout these experiments. However, again
we see that one effect of localisation is to enrich the spectra,
and the analysis gradually comes into agreement with the
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true field for all frequencies that are represented in the true
field.

Therefore, this series of experiments demonstrates that
localisation can effectively expand the sub-space spanned
by an ensemble, even for EnOI, where the ensemble
remains unchanged.

5 Summary and conclusions

We have demonstrated on a simple linear model that, while
EnOI is less optimal than the EnKF, for some cases the
performance of EnOI may be comparable (e.g. 50-member
ensembles without localisation), or even superior, to that of
the EnKF. For example, we find that without localisation, a
100-member EnOI outperforms a 50-member EnKF. For
this case, EnOI is significantly less computationally
expensive than EnKF. In practice, for a large-scale
application, using comparable computational resources,
one might be able to afford either EnOI with a large
ensemble or EnKF with a small ensemble. Based on the
results of this study, we suggest that in such cases EnOI
may offer a reasonable alternative to the EnKF. An
example of such an application where EnOI was success-

fully applied to an application for which an EnKF was not
feasible is described by Oke et al. (2005). For both the
EnKF and EnOI, when a small ensemble is used (e.g. n ¼
20), the estimated forecast error covariances may require
localisation around each observation to achieve reasonable
results. We find that the performance of either the EnKF or
EnOI is sensitive to the length-scales used in the localisa-
tion. If the localisation is too strong, or too weak, the
analyses can be degraded. This is consistent with the
conclusions of Mitchell et al. (2002) and others. There are
two reasons why localisation improves the performance:
sampling error is reduced and the effective rank of the
system is increased. This allows the ensemble to give a
good fit to the forecast innovations, thus making the system
more optimal.

The effect of localisation in reducing the influence of
noise in the covariance matrix at large distances caused by
the limited ensemble size has been underlined in previous
studies by Hamill et al. (2001) and Houtekamer and
Mitchell (2001). In our opinion, the effect of the increase in
the effective rank of the ensemble is more important for the
performance of the EnKF. Figure 14 shows the best
possible RMSE with a given ensemble and true field as a
function of ensemble size, averaged over 50 realisations.
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For a given ensemble A and true field xt , the best possible
RMSE σmin may be calculated as the residual of the
solution of the system

As ¼ xt

in the least squares sense:

s ¼ ðATAÞ�1ATxt;σmin ¼ jjAs� xtjj: (12)

This value remains quite large even for relatively large
ensembles, with ensemble size close to the dimension of
the model state space of 51. For example, the expected best
possible RMSE for an ensemble of 40 members (calculated
by Eq. 12 and averaged over 50 realisations) is approxi-
mately 0.46. This means that even with an optimal system,
one cannot achieve successful data assimilation with an
ensemble of insufficient rank without localisation. In
contrast, with localisation, it is possible to obtain an
RMSE that is close to zero with an ensemble with as few as
20 or 10 members, or even fewer. The effective size of the
model state space depends on a particular application, but
one can perhaps expect dimensions of the order of 103 –104

or greater in high-resolution operational oceanographic and
meteorological models. This means that, in practical
ensemble-based assimilation in oceanography or meteo-
rology, localisation may be considered a necessary attribute
of a data assimilation system.

We find that localisation degrades the dynamical
balances of model fields, and as the localisation becomes
more severe, the imbalance in these fields increases. We
find that the length scales of the localisation should be
larger than the decorrelation length-scales of the variables
being updated. The problem of dynamical balance is more

severe for the EnKF, where dynamical imbalance can
accumulate over time. However, we note that this effect is
likely to be more serious in the linear model that which we
used for our experiments. We expect that this will not be as
serious for applications to a non-linear model, which can
gradually restore the underlying dynamical balances.
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