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Summary

The Bluelink Ocean Data Assimilation System (BODAS) is an ensemble optimal interpolation
system applied to a global ocean circulation model with 10 km resolution around Australia. BODAS
derives estimates of forecast error covariances (FECs) from a stationary 72-member ensemble of
intraseasonal model anomalies. The FECs are localised around each observation to reduce the negative
effects of sampling error and to increase the rank of the ensemble. The FECs have characteristics
that reflect the length-scales and the anisotropy of the ocean circulation in different regions. BODAS
assimilates in situ and satellite-derived observations of temperature, salinity and sea-level anomaly.
Results from a 13-year ocean reanalysis demonstrate that the reanalysed fields are often in very good
agreement with withheld observations, and provide a good synoptic representation of the eddy field
around Australia.
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1. Introduction

Bluelink is an Australian partnership between the Commonwealth Scientific
and Industrial Research Organisation, the Bureau of Meteorology and the Royal
Australian Navy. The primary objective of Bluelink is to develop a forecast
system for the mesoscale ocean circulation in the Australian region. To this
end, the Ocean Forecasting Australia Model (OFAM; Schiller et al. 2005), a
global ocean general circulation model, has been configured and the Bluelink
Ocean Data Assimilation System (BODAS) has been developed. BODAS is an
ensemble optimal interpolation (EnOI) system, similar to that introduced by Oke
et al. (2002) and Evensen (2003). The purpose of this paper is to describe recent
developments in ocean data assimilation in the Australian ocean community. This
paper includes a description of BODAS, examples of its ensemble-based estimates
of FECs and some results from a global application of BODAS.

2. Model

The details of OFAM are described by Schiller et al. (2005). Briefly, OFAM
is based on version 4.0 of the Modular Ocean Model (Griffies et al. 2004), with
local enhancements including the hybrid mixed layer model described by Chen
et al. (1994), an improved parameterisation for the penetration of solar radiation
and vector optimisation for an NEC SX6. OFAM is intended to be used for
reanalyses and short-range prediction. The horizontal grid has 1191 and 968
points in the zonal and meridional directions respectively; with 0.1◦ horizontal
resolution around Australia, between 90◦E and 180◦, and between Antarctica and
16◦N. Outside of this domain, the horizontal resolution decreases to 2◦ in the
North Atlantic Ocean. OFAM has 47 vertical levels, with 10 m resolution down
to 200 m depth. The topography for OFAM is a composite of a range of different
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topography sources. Horizontal diffusion is modelled using isopycnal mixing and
the parameterisation introduced by Gent and McWilliams (1990). Horizontal
viscosity is resolution and state-dependent according to the Smagorinsky viscosity
scheme described by Griffies and Hallberg (2000).

OFAM is initialised with a blend of climatologies from CARS2000 (CSIRO
Atlas of Regional Seas; Ridgway et al. 2002) and Levitus (2001); and is forced at
the surface using 6-hourly fluxes of momentum, heat and freshwater from ERA-
40 (Kallberg et al. 2004) for 1992 to mid-2002; and using ECMWF 6-hourly
forecasts from mid-2002 to 2004. A flux correction is also applied, restoring
the sea surface temperature (SST) to a blend of Reynolds-SST (Reynolds and
Smith 1994) and high-resolution satellite-derived observations over 30 days; and
restoring surface salinity to monthly climatologies (Levitus 2001) over 30 days.
OFAM is spun up without data assimilation for a 9 years simulation for the
period 1994 to 2002. An analysis of the modelled trends of globally averaged sea-
level indicates that the model reaches a state of quasi-equilibrium after 3 years of
integration. Interior temperature and salinity properties require much longer to
properly equilibrate. An important activity in the Bluelink project, is the Bluelink
ReANalysis (BRAN). BRAN is a 13-year run with data assimilation covering the
period 1992-2004. Observations that are assimilated include sea-level anomalies
(SLA) from all altimeters (ERS 1 and 2, Topex/Poseidon, Geosat Follow-On,
Jason and Envisat) and from a coastal tide gauge array around Australia; and
temperature and salinity profiles from a range of field surveys including Argo
(e.g., Argo Science Team 1998), the TAO array (McPhaden et al. 1998), XBTs
and field surveys (e.g., WOCE). BRAN is the first comprehensive ocean reanalysis
that is eddy-resolving around Australia.

3. Assimilation System

(a) Analysis Equations
Analyses of sea surface height η, temperature T , salinity S, and horizontal

currents (u, v), are computed by solving the analysis equations,

wa = wf + K
(
wo −Hwf

)
(1)

K = (C ◦Pf )HT
(
H(C ◦Pf )HT + R

)−1
, (2)

where w = [η T S u v]T (3)

is the state vector; superscripts a, f and o denote analysis, forecast and observed
respectively; K is the gain matrix; C is a correlation matrix; H is an operator that
interpolates from the model grid to observation locations; R is the observation
error covariance matrix; Pf is the FEC matrix; and the open circles denote a
Schur, or Hadamard, product (an element by element matrix multiplication). This
formulation of the analysis equations is the same as that presented by Houtekamer
and Mitchell (2002).

The observation error covariances are assumed to be uncorrelated in space
and time. Therefore R is a diagonal matrix. An estimate for the standard
deviation of the error for each observation is given by

εo =
√

ε2instr + ε2age (4)
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where εinstr is the standard deviation of the instrument error and

εage = β ×RMSmod

(
1− e−0.5|ta−to|/tef

)
, (5)

is the standard deviation of the error associated with the age of an observation; β
is a scalar (typically 3-5); RMSmod is the spatially dependent root-mean-square
of the model fields about a seasonal cycle during a non-assimilating model run;
ta is the analysis time; to is the time of the observation; and tef is an e-folding
time scale (typically 3 days). Therefore, if an observation is made at the analysis
time, εage = 0; and as |ta − to| increases, εage approaches β ×RMSmod, so that
the influence of the observation on the analysis decreases.

Estimates of the FECs in (2) are given by

Pf = AAT /(n− 1), (6)
where n is the ensemble size and

A = α
[
w′

1 w′
2 · · · w′

n

]
(7)

where α is a scalar that can be used to tune the magnitude of the covariances for
a particular application; w′

i is the ith intraseasonal anomaly derived from a model
run with no data assimilation. Each anomaly field consists of all prognostic model
variables included in (3). These anomalies are calculated by removing a 91 day
running mean from a daily mean field of a model run with no data assimilation.
BODAS uses an ensemble size of 72, with one anomaly from every month of
the last 6 years of a 9-year model run with no data assimilation. The parameter
α has not been tuned for this application. A value of α = 0, implies that the
forecasts errors are zero, in which case, K and therefore the analysis increments
are exactly zero. A value of α = 1, implies that the forecast errors are the same
size as the model’s intraseasonal anomalies. For a model with some skill, this
would be an over estimate. With these limits in mind, we regard α = 0.5 as a
reasonable starting point.

The FECs in (6) are localised in the horizontal around each observation
in (2) using the correlation matrix C. Elements of C are defined by the quasi-
Gaussian function of Gaspari and Cohn (1992), after Houtekamer and Mitchell
(2002). Localisation has been shown to reduce the effects of sampling error for
applications of an ensemble Kalman Filter (e.g., Hamill et al. 2001). The localising
correlation function in C forces the FECs to reduce to exactly zero, over L◦ from
an observation location. The present implementation of BODAS uses a uniform
radial distance L=8◦. This has several ramifications for the system’s performance.
Firstly, the rank of the estimated FECs in Pf is increased significantly. Using an
ensemble size of n, the rank of Pf is at most n− 1. By contrast, with localisation,
there are over XY/(2L)2 independent regions in the model domain, where X
and Y are the zonal and meridional dimensions of the model. So, applying a
72-member ensemble to a global model (X = 360, Y = 180) and localising with
L = 8◦, the effective rank of C ◦Pf could beO(104). This enables the assimilation
system to determine analysis increments that fit the forecast innovations well.
There are however, a few drawbacks to localisation. For example, analyses are
not as dynamically balanced as they would be without localisation (Mitchell
et al. 2002). Also, the inversion of the innovation covariance matrix becomes
very expensive, since the techniques for computational efficiency described by
Evensen (2003) aren’t suitable when localisation is used. This makes the practical
implementation of BODAS a challenge.
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(b) Practical Implementation
Throughout BRAN, observations are assimilated once every 3 days, using a

time window of ±5 days for η and ±3 days for T and S observations. Therefore,
there are typically over 106 individual observations available for assimilation
in any application of BODAS to OFAM. Furthermore, the dimension of the
model grid is approximately 2×108. These large dimensions, coupled with the
increased rank of the analysis equations due to the localisation, makes the explicit
solution to (1-2) very expensive and inaccurate. These challenges are overcome by
preprocessing to reduce the number of observations that are assimilated to about
105. This is achieved by selecting only the most complete temperature and salinity
profiles, assuming similar levels of quality, in regions where there are redundant
profiles; and by computing super-observations for the altimeter observations so
that the distribution of super-observations reflects the model grid, with more
(less) observations in the high-resolution (low-resolution) part of the domain.
Using standard error propagation techniques, an updated error estimate for the
super-observations are calculated and used in R. In addition to these savings, the
dimension of the model state is reduced by a factor of 4, by only computing an
analysis on every 2nd horizontal grid point, before interpolating to the full grid.

For a typical application to OFAM, the model grid is divided into 40 zonal
bands. The analysis in each zonal band is computed independently, on a separate
processor. Each zonal band has a halo of 8◦ to the north and south, from which
an observation can influence the analysis. The size of the halo is chosen to be
consistent with the localising length-scale L. This ensures that adjacent domains
are entirely independent and that analyses in adjacent domains are seamless.
Within each zonal band, the domain is further divided into 10 sub-domains, each
with an 8◦ halo in all directions. An analysis is computed for each sub-domain
independently. Using 40 processors, on an NEC SX6 machine, an analysis is
computed for all model variables at all grid points in 20-30 minutes of wall-clock
time, depending on the number of observations assimilated.

4. Results

(a) Covariances
Two examples of normalised FECs (i.e., correlations) between sea-level from

a reference location and sea-level in the surrounding region for different coastal
regions are shown in Fig. 1. This figure shows the original correlations, without
localisation, and the localised correlations. The localised correlations show the
field of influence of an observation of sea-level during the assimilation process.
The example off the coast Java (Fig. 1a-b) demonstrates that the ensemble-based
covariances reflect the length-scales and the anisotropy of the ocean circulation
near the coast; with longer-decorrelation length-scales in the along-shore direction
and shorter decorrelation length-scales in the across-shore direction. In this region
of the ocean, the dominant currents are wind-driven, and are in the along-shore
direction. Coastal trapped waves also typically propagate to the east off Java,
representing a coastal extension of the tropical wave guide. This example also
demonstrates that the ensemble-based statistics do not artificially extrapolate
information from one ocean basin, across land barriers into an adjacent ocean
basin, unlike most standard optimal interpolation systems that use Gaussian
correlation statistics. Figure 1c-d show an example off western Tasmania. In this
region, the Zeehan Current flows southeastward along the continental shelf edge of
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Figure 1. The original (left) and localised (right) ensemble-based correlation field between sea-level at
a reference location, denoted by the star, and sea-level in the surrounding region for an example off the

coast of Java (top) and off Western Tasmania (bottom).

western Bass Strait and western Tasmania. In winter the Zeehan Current rounds
southern Tasmania and proceeds as far north as about 42◦S (Cresswell 2000).
These characteristics are reflected in the original correlation field, showing highly
correlated sea-level aligned with the continental shelf around southern Tasmania.
For both of these examples, the localised correlations have somewhat shorter
length-scales than the original. Also, much of the noise in the correlations away
from the observation location is much less after localisation.

(b) Reanalyses
One aspect of ocean reanalysis that remains unclear is whether the inte-

grated global ocean observing system, combined with a relatively simple data
assimilation system can constrain the mesoscale features of a high-resolution
ocean general circulation model. To start to address this question, we provide
a series of comparisons between analyses from BRAN and surface drifter paths
from observations obtained from the WOCE Surface Velocity Program. For these
comparisons, we focus on three very different regions around Australia. Namely,
the Tasman Sea, the most energetic region around Australia; a region off the coast
of Java, where the circulation is dominated by upwelling and variability associ-
ated with the Indonesian Throughflow; and off the coast of Western Australia,
where the Leeuwin Current typically sheds a very complex field of mesoscale
eddies (Feng et al. 2005). The time periods we have chosen here correspond to
periods when several surface drifters remained in the corresponding regions for
an extended period; and when their paths highlight some of the well known
phenomena of each region. None of the drifter observations are assimilated and
the modelled SST is only weakly restored to 12-day composites of observed SST.
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Figure 2. A sequence of maps of analysed SLA (15-day averages) from BRAN and surface drifter tracks
for the 15 day period centered at the specified date in early 2000. The contour interval is 0.1 m s−1;

negative is half tone; zero is bold half tone.

The comparison in the Tasman Sea is shown in Fig. 2 for December 1999 to
March 2000. This is the time of year when the East Australian Current (EAC)
is very strong and when its eddy field is typically very rich. Fig. 2 shows a
sequence of 15-day averaged SLA, spaced approximately 2 weeks apart, with
drifter paths overlaid for the 15-day averaging period for each panel. These
comparisons show excellent qualitative agreement between the drifter paths and
the analysed SLA. Specifically, this sequence demonstrates that the path of the
East Australian Current (EAC), after it separates from the coast (≈ 31◦S) is well
reproduced in BRAN. Further, it provides a good illustration of the variability in
the Tasman Sea and shows that even some of the small-scale cold-core eddies are
correctly depicted in BRAN. This demonstrates that for this period of BRAN, the
eddy-field in the Tasman Sea is well represented by the reanalysis. By contrast,
the equivalent SLA fields from the model-only run, with no data assimilation,
demonstrate no correspondence between the eddy field and the drifter paths.

A comparison off the coast of Java is shown in Fig. 3, for a period in late-1997.
This figure shows a comparison between daily-averaged SST fields from BRAN
and 3-day SST composites from AVHRR. Observed drifter paths are overlaid
for the 7-day time interval centered on the date of the individual SST maps.
The drifter paths seem to correspond well with the SST fields in BRAN. The
period covered in Fig. 3 corresponds to a period of strong upwelling off Java. The
SST fields in BRAN show narrow filaments of cold, upwelled water penetrating
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offshore. This penetration seems to correspond to one of the drifter paths on
November 29. Also evident in this sequence of maps, is the warm water from
the Indonesian Archipelago flowing through Sunda and Lombok Straits. There is
generally good agreement between the modelled and observed SST, although the
observed SST doesn’t show the same level, or complexity, of upwelling off Java.
The lack of a strong upwelling signal in the observed SST is likely to be due to
the horizontal advection of warm Indonesian throughflow water that neutralises
the surface upwelling signature (Du et al. 2005).

A qualitative assessment of the variability off Western Australia is shown in
Fig. 4, for a period in late-1998. This figure shows daily-averaged SST fields from
BRAN and 3-day composite SST fields from AVHRR. Observed drifter paths
are overlaid for the 15-day time interval centered on the date of the individual
SST maps. From these examples, it is clear that at least two specific features
of the drifter paths are well represented in BRAN; firstly, the development and
persistence of a large warm core eddy at about 29◦S; and secondly, the generation
of a much smaller cold-core feature at about 114◦E. The paths of the other
surface drifters in the region also correspond quite nicely with the mesoscale
variability in BRAN. There is good correspondence between the observed and
modelled mesoscale SST variability in this example, however, there is a warm
bias in BRAN.

The qualitative comparisons presented in Fig. 2-4 are for selected periods
when the circulation in BRAN corresponds well to the drifter observations. There
are periods during BRAN when similar comparisons are not as favourable. How-
ever, in general, the agreement between the drifter paths and the circulation rep-
resented by BRAN in the high-resolution region of the model (90◦E-180◦E, south
of 16◦N) is typically quite good. This is demonstrated, in part, by a statistical
comparison of the 6-hourly interpolated velocities of surface drifters and the daily-
averaged fields from BRAN. Observations from the surface drifters include SST
and the zonal and meridional component of the horizontal currents at 15 m depth
(u and v respectively). We compute statistics for the period between the start of
1997 and the end of 2002 for the high-resolution region of the model, a total of
500 drifters. The drifter velocity estimates are the 6-hourly estimates from the
GLD DAC krigging process, so we exclude estimates below 0.1 m s−1, which are
probably mostly due to data gaps. The comparisons are between daily averaged
fields from BRAN and 6-hourly instantaneous observations from drifters. The
cross-correlations between these independent observations and the corresponding
fields in BRAN are around 0.6, 0.45 and 0.6 for u, v, SST respectively. These
correlations are all statistically significant at the 99% confidence level. The root-
mean-squared error is 0.24 m s−1, 0.21 m s−1 and 1.4◦C for u, v and SST respec-
tively; and the mean bias is less than 1 cm s−1 for u and v and is 0.85◦C for SST,
with BRAN producing surface temperatures that are too warm.

Throughout BRAN, there is a warm bias (note the different colour axis
in Fig. 3 and 4). This bias results from two deficiencies in the model; firstly,
the albedo was inadvertently omitted when the surface fluxes were applied; and
secondly, the surface heat fluxes were too warm during the spin-up phase of the
run resulting in initial conditions that were too warm. Additionally, we find that
the mixed layer depths in BRAN are generally much too deep. Subsequent to
the completion of BRAN, the problems with heat fluxes were corrected and the
mixed layer depths were improved by adjusting parameters in the mixed layer
scheme.
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Figure 3. A sequence of maps off Java, showing daily averaged SST from BRAN (top) and from a
3-day composite from AVHRR (bottom) and surface drifter tracks for the 7 day period centered at the

specified date.

Figure 4. As for Fig. 3, except off Western Australia with surface drifter tracks for the 15 day period
centered at the specified date.
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Figure 5. Comparisons between the low-pass filtered observed (half tone), BRAN (solid) and model-only
(dashed) (a) NINO3.4 index, and (b-e) temperature at 100 m along the equator.

TABLE 1. Comparisons between the model-only run, BRAN and observations of temperature
and 100 m depth along the equator in the Pacific and Atlantic Oceans

Mean (◦C) Standard Deviation (◦C) RMSE (◦C)

Longitude ∆x Model BRAN Obs. Model BRAN Obs. Model BRAN

156◦E 0.1◦ 28.68 27.85 26.89 1.50 1.84 2.19 1.70 1.61
205◦E 0.9◦ 25.52 25.20 24.25 1.95 2.36 2.57 2.11 1.63
265◦E 0.9◦ 18.83 17.48 15.18 1.67 1.90 1.98 3.86 2.63
325◦E 2.0◦ 24.89 24.67 21.11 1.04 1.70 2.85 4.67 4.34

∆x refers to the model’s zonal resolution; RMSE is the root-mean-squared error; RMSEs, means and
standard deviations are calculated for the periods when all three sources have data available.

An assessment of the temperature variability in the equatorial Pacific and
Atlantic Oceans in BRAN is provided in Fig. 5 and Tab. 1, where the observed,
reanalysed and model-only times series of NINO3.4 index are presented along
with a series of comparisons of the low-pass filtered temperature anomalies from
100 m depth. Importantly, both BRAN and the model-only run are relaxed to
SST over the same times scale (30 days). The comparisons of the NINO3.4 index
demonstrate that BRAN gives a good representation of basin-scale phenomenon,
such as El Nino. By contrast, and despite using SST observations in the same
way as BRAN, the model-only run appears to give a poorer representation of
El Nino. Anomalies of the sub-surface temperature fields along the equator are
well represented in both BRAN and the model-only run. The magnitude of the
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temperature variability, represented in Table 1 by the standard deviations, is
more realistic in BRAN and similarly the root-mean-squared error (RMSE) is
smaller in BRAN than it is in the model-only run. The temperature comparisons
are presented for four different longitudes along the equator. Of these longitudes,
the model’s zonal resolution is highest at 156◦E and decreases to the east, to a
maximum of 2◦ at 325◦E. The comparisons in Fig. 5 and Table 1 demonstrate that
in both of the runs described here, the quantitative agreement with observations
is worse in the coarser resolution parts of the domain, as we expect. However,
we note that there is still reasonable qualitative agreement between the observed
and modelled fields in the coarse regions of the domain.

5. Concluding Remarks

This paper describes recent developments in ocean data assimilation in
Australia. This has involved the development of BODAS, an ensemble optimal
interpolation system, and its application to OFAM, a global ocean general
circulation model. A 13-year ocean reanalysis, BRAN, has been performed,
providing the first comprehensive ocean reanalysis with high resolution in the
Asian-Australian region for the period 1992-2004. Comparisons with independent
observations demonstrate that BRAN typically provides a good representation
of the mesoscale ocean variability around Australia much of the time. This
suggests that the integrated global ocean observing system, in combination
with a relatively simple ocean data assimilation system, is able to reproduce
the mesoscale eddy-fields in a high-resolution global ocean circulation model.
Ongoing developments involve the generalisation of BODAS so that it can be
easily applied to any ocean model on a range of different horizontal and vertical
grids. In addition to OFAM, other applications to which BODAS has been
applied range from high resolution coastal models for short-range prediction to
coarse resolution global models for seasonal prediction. An ensemble Kalman
filter version of BODAS has also been developed and is being applied to various
regional applications. The next step in the Bluelink project is to modify this
system for operational implementation at the Australian Bureau of Meteorology.
The operational system will vary from BRAN in a number of important ways that
may reduce the performance from what is demonstrated in this article. These
variations include the use of near real-time observations which are reduced in
both quantity and quality to delayed mode observations; the use of surface fluxes
from operational atmospheric forecasts rather than reanalyses; and the system
configuration changes that are required to perform robustly. A significant effort
towards this end is currently underway.
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