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[1] A data assimilation system (DAS) of the wind-driven, mesoscale shelf circulation off
the Oregon coast is developed. The DAS assimilates low-pass filtered surface velocity
measurements, obtained from land-based high-frequency coastal radar arrays, into a
primitive equation coastal ocean model using a sequential optimal interpolation scheme.
Inhomogeneous and anisotropic estimates of the forecast error covariances required for
the assimilation are assumed to be proportional to typical cross-correlations between
modeled variables. These correlations are estimated from an ensemble of model
simulations for 18 different summers. Similarly, the observation error covariances are
assumed to be proportional to the actual covariances of the observations. A time-
distributed averaging procedure (TDAP) that effectively low-pass filters the model
forecast for comparison with the observations and introduces the corrections to the model
state gradually over time is used in order to overcome problems of data compatibility and
initialization. The correlations between direct subsurface current measurements and
subsurface currents obtained from model-only and assimilation experiments for the
summer of 1998 are 0.42 and 0.78, respectively, demonstrating the effectiveness of the
DAS. Our estimates of the error covariances are shown to be appropriate through a series
of objective statistical tests. Analysis of the term balances of the model equations show
that the dominant modeled dynamical balances are preserved by the DAS and that
uncertainties in the spatial variability of the wind forcing are likely to be one source of
model error. By varying the relative magnitudes of the estimated forecast and observation
error covariances the DAS is shown to be most effective when approximately 80% of the
analysis is made up of the model solution. INDEX TERMS: 4263 Oceanography: General: Ocean

prediction; 4219 Oceanography: General: Continental shelf processes; 4255 Oceanography: General:

Numerical modeling; 3337 Meteorology and Atmospheric Dynamics: Numerical modeling and data
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1. Introduction

[2] The purpose of this study is to develop a method for
assimilating surface velocity measurements, obtained from
land-based high-frequency (HF) radar arrays, into a primi-
tive equation coastal ocean model. To this end a data
assimilation system (DAS), designed to model the subiner-
tial, wind-driven continental shelf circulation off the Oregon
coast, is developed. Another aim of this study is to deter-
mine how much information about subsurface fields in the
coastal ocean can be obtained from measurements of surface

currents. Similar questions have been posed with regard to
the assimilation of remotely sensed surface measurements
obtained from satellites [e.g., Hurlburt, 1986; Ghil and
Malanotte-Rizzoli, 1991; Rienecker and Adamec, 1995;
Ezer and Mellor, 1997]. Other studies that have dealt with
issues relating to assimilation of radar derived current
measurements include those of Lewis et al. [1998], Scott
et al. [2000], and Kurapov et al. [2002].
[3] The inputs into a DAS include an observing system

that provides observational data, a model, prior estimates of
the forecast and observation error covariances, and an
algorithm that produces an analysis of the model fields.
The outputs from a DAS include an analysis that depends
on the observations, the model forecast, and the prior error
estimates; an assessment of the analysis; posterior error
estimates; statistical tests for the prior error estimates; and
an assessment of the observing system. For a thorough
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review of data assimilation techniques the reader is referred
to Bennett [1992].
[4] For this study, the observing system is an array of

SeaSonde HF radars, manufactured by CODAR Ocean
Sensors, deployed along the Oregon coast, and the obser-
vations are low-pass filtered surface velocity measurements
off Newport (44.6�N). The model for this system is the
Princeton Ocean Model (POM) [Blumberg and Mellor,
1987] that is utilized in a high-resolution domain with
Oregon continental shelf and slope topography. The surface
velocity measurements are assimilated into the POM using a
sequential optimal interpolation scheme that is based on the
Physical-space Statistical Analysis System [Cohn et al.,
1998]. The corrections to the model state are implemented
using a time-distributed averaging procedure (TDAP) that is
similar to the incremental analysis updating approach cur-
rently utilized by the Data Assimilation Office at NASA/
Goddard Space Flight Center [Bloom et al., 1996]. The
TDAP overcomes the problem of data compatibility that
arises from assimilating low-pass filtered observations into
a model that allows fluctuations at all frequencies and the
problem of initialization that is a consequence of the fact
that primitive equation models are sensitive to introduced
changes in their state variables.
[5] Traditionally, forecast error covariances are assumed

to be homogeneous, isotropic, and stationary [e.g., Ruth-
erford, 1972; Rienecker and Miller, 1991; Bartello and
Mitchell, 1992; Daley, 1993; Chen and Wang, 1999]. We
suggest that such assumptions may be invalid for the coastal
ocean environment, so a method by which an inhomoge-
neous, anisotropic and quasi-nonstationary estimate of the
forecast error covariances is formulated. The approach taken
here assumes that the forecast error covariances are propor-
tional to a universal correlation function that is empirically
derived from an ensemble of typical model simulations. We
show that this approach is effective for application to the
Oregon continental shelf where wind-driven currents are
relatively well-correlated over large spatial scales.
[6] The effectiveness of the DAS is demonstrated

through a series of assimilation experiments where the
analyzed subsurface velocity fields are compared to direct
velocity measurements from a moored acoustic Doppler
profiler (ADP) for the summer of 1998. Additionally, the
prior error statistics are tested for consistency through a
series of objective statistical tests.
[7] When data assimilation is utilized, the correction to

the model state acts as a forcing term in each prognostic
model equation. The role of the correction term in the DAS
is investigated through an analysis of the term balances in
the depth-averaged alongshore momentum equation and the
temperature equation. We find that the dominant dynamical
balances are preserved by the DAS and that uncertainties in
the spatial variability of the wind forcing are likely to be a
primary source of the model error.
[8] The outline of this paper is as follows. Details of the

model configuration are presented in section 2, followed by
various model-data comparisons of surface and subsurface
velocity data for the summer of 1998 in section 3. A
description of the details of the assimilation system, includ-
ing the formulation of the prior error covariances, is
presented in section 4. Results from a series of assimilation
experiments for the summer of 1998 are presented in

section 5. An analysis of the effects of the assimilation
on the modeled dynamics is presented in section 6,
followed by a summary in section 7. Details of the
implementation of the assimilation into the POM are
presented in Appendix A, followed by a description of
the statistical tests for the prior error estimates in Appen-
dices B and C and an outline of the persistence experiments
in Appendix D.

2. Model Configuration

[9] For an in-depth discussion of the POM that is utilized
here the reader is referred to Blumberg and Mellor [1987].
The model grid extends 220 km offshore and 365 km in the
alongshore direction (Figure 1). The maximum grid reso-
lution is 2 km over the shelf in the vicinity of Newport
(44.6�N), with decreased resolution towards the offshore
and alongshore boundaries. The grid is rectangular and the
axes have been rotated to 7�N in order to better align with
the coastline. The horizontal velocity v has components
(u,v) corresponding to the across-shore and alongshore
velocities (depth-averages denoted by V and (U,V )) in the
(x, y) directions, so that u is positive onshore and v is
positive towards the north (Figure 1). The vertical grid
consists of 31 sigma-levels, with eight levels concentrated
near the surface, and four near the bottom in order to resolve
the respective boundary layers.
[10] The model topography (Figure 1) is linearly inter-

polated from a 1-km resolution data set and smoothed so
that the maximum local slope parameter, defined as the ratio
of the depth change to the average depth over each grid cell,
is less than 0.18. Experience suggests [Mellor et al., 1994],
and unforced experiments [Barnier et al., 1998] with the
present model configuration confirm, that if the local slope
parameter is less than 0.4 the effect of pressure gradient

Figure 1. (left) Model topography (contour interval = 50
m) showing the CODAR coverage (shading); the 200-m
isobath is the thick line. The extent of the detailed
topography contoured in Figure 2 is indicated by the box
around the CODAR region. (right) Model grid.
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errors due to the sigma-coordinates is reduced to a tolerable
level. A detailed map of the model topography in the
CODAR region is shown in Figure 2. The locations of data
that are assimilated in the experiments discussed in section
5 are shown, as is the location of the moored ADP that is
referred to throughout this manuscript. Only a representa-
tive subset of the observations from the CODAR region are
used in the assimilation experiments presented in section 5.
The minimum depth is 10 m and the maximum depth is set
to 1000 m in order to reduce the constraint on the time
steps, which are 6 and 180 s for the barotropic and
baroclinic modes, respectively. The vertical and horizontal
viscosity (and diffusion) coefficients are flow-dependent
according to the level 2.5 turbulence closure model of
Mellor and Yamada [1982] and the formulation of Smagor-
insky [1963], respectively. The horizontal diffusion coeffi-
cients are small (typically <10 m2s�1) throughout each
simulation considered in this study.
[11] The alongshore boundary conditions are periodic for

all variables. Consistent with this condition, an f-plane
approximation is used, with f = 1.037 � 10�4 s�1. In
addition, the across-shore topographic section off Coos
Bay (43.3�N), near the southern extent of the domain, is
interpolated over 10 alongshore grid cells to match the

across-shore section off Tillamook Bay (45.6�N), near the
northern extent of the domain, so that the topography is
periodic in the y-direction. The use of periodic boundary
conditions establishes a well-posed and robust model, but
has its limitations. For example the model cannot represent
net alongshore pressure gradients that might result from
large scale, alongshore density gradients. Additionally,
periodic boundary conditions force the modeled flow at
the northern and southern extent of the domain to be equal.
With these limitations noted, we find that this configuration
is capable of reproducing a substantial fraction of the
observed variance in the region of interest [Oke et al.,
2002a]. Additionally, it provides a good testing ground for
research into coastal data assimilation which is very much
in its infancy.
[12] The offshore boundary conditions are zero gradient

for the tangential velocities and elevation h, a modified
radiation condition for the normal velocities [e.g., Chap-
man, 1985], and an upstream advection condition for the
potential temperature q and salinity S [Blumberg and
Kantha, 1985]. Comparisons of simulations run with the
offshore boundary open and with it closed by a vertical wall
indicate that the model solution on the shelf is insensitive to
these conditions. Simulations with the open boundary con-
ditions were spatially smoother however, presumably due to
the reduced reflection of inertia-gravity waves. A partial slip
condition is applied for the alongshore velocities at the
coastal boundary. The alongshore component of the applied
wind stress is calculated from time-varying winds measured
at Newport, Oregon, and is assumed to be spatially uniform.
To reduce the excitation of inertial oscillations the wind is
low-pass filtered with a 40-hour half-amplitude filter. No
surface heat flux is included in this study.
[13] The initial velocity field is at rest and the initial

fields of q and S are horizontally uniform, with vertical
profiles taken from the mean observed profiles during July
1973 at a station approximately 120 km offshore of
Yaquina Head (44.65�N). The experiments discussed in
sections 3 and 5 are spun up by applying observed winds
for 10 days.

3. Model-Data Comparisons

[14] In order to assess whether the present model config-
uration is capable of adequately representing the dominant
physical processes of the wind-driven shelf circulation off
Oregon, a 3-month simulation is performed for the summer
of 1998, and is compared with CODAR and ADP observa-
tions available for that time. All observed and model results
are low-pass filtered with a 40-hour half-amplitude filter.
Some model-data comparisons with the CODAR data are
summarized in Figure 3. For those comparisons the
CODAR data are linearly interpolated from the original
data locations, with horizontal resolution of approximately 1
km, onto a subset of the horizontal model grid. It should be
noted that only a representative subset of the observations
(Figure 2) are used in the assimilation experiments pre-
sented in section 5. Mean fields of surface vm and vo

(superscripts m and o denote model-only and observations,
respectively) are shown in panels a and b, respectively. This
comparison indicates that the spatial structure of the mean
surface vm and vo are qualitatively similar, but there is a

Figure 2. Detailed model topography in the CODAR
region showing the locations and number of each site at
which surface velocity data are assimilated (dots) and the
location of the moored ADP (cross). The approximate
locations of the radars at Yaquina Head (YH) and Waldport
(WLP) are indicated by the squares and the 100- and 200-m
isobaths are thick lines.
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general difference in the direction of the flow, with vo

exhibiting a more dominant cross-isobath component. Also,
the magnitude of vm is slightly less than vo. The dominant
fluctuations in the surface vm and vo are represented by the
mode 1 EOF (panels c and d) that represents fluctuations in
the strength of the coastal jet. Higher order EOFs (Figures
3e and 3f) represent the structure of the flow associated with
upwelling relaxation [Oke et al., 2002b]. These EOFs
combined represent 73% and 48% of the modeled and
observed variance, respectively. These comparisons dem-
onstrate that the model is capable of reproducing fluctua-
tions of the coastal jet and upwelling relaxation that are in
qualitative agreement with observed fields. Cross-correla-
tions between v7 (location 7) and the surface v elsewhere in

the CODAR region are shown for the model and the
observations (Figures 3g and 3h). These cross-correlation
fields are similar to elements used to define to forecast error
covariance matrix in section 4.4. This comparison demon-
strates that the modeled and observed cross-correlation
fields have similar characteristics with high values in the
direction of the coastal jet. Both cross-correlation fields also
indicate that the decorrelation length scales are longer in the
y-direction than in the x-direction. There is clearly a differ-
ence in the alignment of the maximum cross-correlations
that is related to the above-mentioned differences in the
direction of the surface velocities.
[15] In order to assess the model’s performance at depth,

the dominant EOFs from a vertical profile vo from a
moored ADP located at 124.3�W and 44.65�N (Figure 2)
are compared to the EOFs of vm (Figure 4). The first,
second, and third modes of the EOFs from the model
and the observations are qualitatively similar. For this
comparison the first mode represents the dominant,
alongshore barotropic motion, the second mode represents
the dominant vertically sheared across-shore motion, and
the third appears to represent a baroclinic mode. Again,
while details differ, such as the depth of the zero cross-
ing of the baroclinic mode, in general this comparison is
favorable.
[16] An additional assessment of the model at depth is

obtained by comparing the cross-correlation profiles of
velocity over the water column with the velocity at a fixed

Figure 3. (left) Modeled and (right) observed mean
surface velocity fields (a, b); mode 1 EOF (c, d); higher
order EOF (e, f ). The percent variance explained by each
EOF is displayed in the lower right-hand corners. Cross-
correlations between v7 at location 7 (location indicated by
the star) and elsewhere (g, h).

Figure 4. Dominant EOFs from a profile of velocity at 80
m depth from (left) the model results and from (right) a
moored ADP for summer 1998. The percent variance
explained by each EOF is indicated.
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point (12 m depth) from the model and from the ADP
(Figure 5). Again, these fields are similar to elements used
to formulate the forecast error covariances in section 4.4.
The results indicate that the magnitude and vertical structure
of the cross-correlations obtained from the model results are
in good agreement with observations.
[17] The model-data comparisons presented in this sec-

tion demonstrate that the model is able to qualitatively
represent observed features of the shelf circulation. On the
other hand, we recognize that certain physical effects are
not included in the model configuration, such as the effects
of surface heating that can be important during upwelling
[e.g., Federiuk and Allen, 1995], the influence of the
Columbia River plume that can be important as far south
as Newport, or spatial variability in the wind [e.g.,
Samelson et al., 2002]. The sensitivity of this configura-
tion to each of these factors is investigated in detail by
Oke et al. [2002a]. In section 5 we show that the
assimilation of surface velocity data enables the DAS to
give a quantitatively improved representation of the coastal
circulation.

4. Data Assimilation System

4.1. Analysis Equations

[18] The analysis equations that are based on Kalman
filter theory [e.g., Miller, 1986; Cohn and Parrish, 1991],
relate the analysis wa of the model state that consists of the
prognostic variables (u v q S U V h) at all horizontal grid
locations at all depths to the model forecast w f and the
observations wo. For this application the size of the model

state is n = O(106), and the number of observations is p =
18. The analysis equations are given by

wa ¼ w f þKdw ð1Þ

K ¼ P fHT HP fHT þ R
� ��1

; ð2Þ

where K is the gain matrix (n � p), dw = (wo � Hw f ) is the
innovation vector ( p � 1), H is a matrix that interpolates
from the model space to the observation space ( p � n), P f is
the forecast error covariance matrix (n � n), R is the
observation error covariance matrix ( p � p), and the
superscript T denotes transpose. The innovation covariance
matrix M ( p � p) is given by

M ¼ HP fHT þ R: ð3Þ

[19] The gain matrix K is used to extrapolate information
from the observation sites onto the model domain. When the
full Kalman Filter is implemented, Pf is refined by updating
it after each assimilation step using the model forecast and
knowledge of the error characteristics of the dynamical
equations [e.g., Miller, 1986]. Typically, after a long enough
integration time P f reaches a state of equilibrium, denoted
by P1

f . However, the computational cost of integrating P f is
very high. For this study we have not implemented the full
Kalman filter. We have assumed that our initial estimate of
P f is approximately equal to P1

f , which we derive empiri-
cally, as described in section 4.4, and test for consistency
through a series of objective statistical tests as described in
Appendices B and C.
[20] At each assimilation step, u, v, q, and S are explicitly

adjusted at all grid points. It is important to adjust U, V, and
h in a manner that is consistent with the model formulation
and the adjustments to u and v. Details of this aspect of the
implementation are described in Appendix A.

4.2. Eigenvalue Decomposition (EVD) Approach

[21] For most of the assimilation experiments that are
presented in this study an eigenvalue decomposition (EVD)
of the innovation covariance matrix

M ¼ U�UT ð4Þ

is utilized. The columns of U represent the eigenvectors of
the innovation covariance matrix and the diagonals of � are
the corresponding eigenvalues. It follows from equation (4)
that

M�1 ¼ U��1UT ð5Þ

because U is orthonormal. In most experiments considered
in this study U and � are truncated so that M is
approximated by M̂ ( p � p):

M̂ ¼ Û�̂Û
T
; ð6Þ

where Û ( p � m) contains only the m (where m 	 p)
dominant orthogonal modes of M and the diagonals of
�̂ (m�m) are them largest eigenvalues. For the experiments
discussed in section 5 where p = 18, when the number of

Figure 5. Cross-correlations between ADP velocities at 12
m depth with ADP velocities over the rest of the water
column for the (left) v and (right) u components (dashed
lines). Also shown are corresponding correlations between
model velocities at 12 m depth and model velocities at other
depths (solid lines).
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modes used in Û are 1, 6, 12, and 18, approximately 50%,
90%, 98%, and 100% of the total variance of the original
innovations is represented. For the EVD approach, equations
(1) and (2) are solved in three steps:

step 1 : dŵ ¼ Û
T
dw;

step 2 : ŷ ¼ �̂
�1
dŵ; ð7Þ

step 3 : wa ¼ w f þ P fHT Ûŷ:

Step 1 projects the innovations onto the dominant
orthogonal modes of M, where dŵ (m � 1) represents the
spatially filtered innovation. In step 2, ŷ (m � 1) is obtained
through a simple scalar division of dŵ by the eigenvalues of
the dominant modes. The analysis of the model state wa is
calculated in step 3. The analysis is then used as the initial
conditions for the start of the next assimilation cycle. A
discussion on the justification for the EVD approach is
presented in section 4.6, after the formulation of P f and R is
described.

4.3. Time-Distributed Averaging Procedure (TDAP)

[22] There are two practical difficulties to overcome
when assimilating velocity data into a primitive equation
model. The first issue is that of data compatibility. For
studies of wind-driven circulation the velocity measure-
ments are low-pass filtered with a 40-hour half-amplitude
filter prior to assimilation in order to eliminate the energetic
tidal signals and high frequency fluctuations that are not of
primary interest. The primitive equation model, however,
contains physics that allows fluctuations at all frequencies.
Therefore an assimilation procedure that combines the low-
pass filtered observations with the unfiltered model forecast
to produce dw would involve comparing two incompatible
data sources. This problem is overcome by low-pass filter-
ing the model forecast. The second issue is that of initial-
ization. Simply stated, primitive equation models are
sensitive to discontinuous changes in their model fields
[e.g., Smedstad and Fox, 1994]. This sensitivity typically
triggers an artificial adjustment process that involves a
shock-like response of the model fields to these changes
resulting in high frequency oscillations that may grow in
amplitude. Consequently, the quality of the subsequent
assimilation may be reduced. This difficulty is overcome
by gradually introducing the corrections over time. Alter-
native strategies for overcoming the problem of initializa-
tion include damped time-differencing schemes [e.g., Baker
et al., 1987], initialization methods [e.g., Lynch and Huang,
1992], explicit balance constraints [e.g., Parrish and
Derber, 1992] and nudging [e.g., Stauffer and Seaman,
1990; Smedstad and Fox, 1994; Lewis et al., 1998]. While
each of these strategies are effective for initialization, none
of them deal with the problem of data compatibility.
[23] A practical solution to the issues of data compati-

bility and initialization outlined above is a TDAP, repre-
sented schematically in Figure 6. Beginning with the model
initial conditions at time t = 0, the model is integrated
forward to t = T/4, where T is an inertial period (
17 hours)
and the full model state, required for a ‘‘seamless restart,’’ is
stored. The model is then integrated to t = T and the time

averaged forecast hHw f iT (where h i denotes a time average
over T ), centered at t = T/2, is calculated. The low-pass
filtered observations hwoiT at t = T/2 and the inertially
averaged forecast hHw f iT are then differenced,

hdwi ¼ hwoi � hHw f iT ; ð8Þ

and applied to the analysis equations where the correction

�w ¼ KhdwiT ð9Þ

is calculated and stored. The model is then restarted at t = T/
4, with the full model state that was previously stored, and
the correction is imposed over a quarter of an inertial period
by adding a fraction 1/a (where a is the number of time
steps in the interval T/4) of the correction to the model at
each time step,

wa ¼ w f þ
Xa
1

1

a
�w; ð10Þ

so that at t = T/2 the full correction �w has been added. At
t = T/2 the full model state is again stored and the model is
integrated forward to t = 5T/4 where the inertial average
centered at t = 3T/4 is evaluated and the analysis for the next
assimilation cycle is calculated. The TDAP is then repeated
for subsequent assimilation cycles.
[24] This procedure can be derived by including the time-

averaging in H. However, implementing the procedure in
that way requires storage of the state vector for multiple
time steps, which would be computationally more expen-
sive than the approach that we utilize here.
[25] The computational cost of implementing the TDAP is

equivalent to four model runs in addition to the cost of
solving the analysis equations. Since we want to resolve all

Figure 6. Schematic representation of the TDAP described
in section 4 where hi in the figure are the same as hiT in
equations (8) and (9) and denote a time average over an
inertial period, T.
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subinertial frequencies, in order to reduce the effects of
aliasing of near-inertial fluctuations a conservative timescale
for each assimilation cycle is T/4. Although, the frequency
response of the box car filter (time average) used in the
TDAP is not ideal [e.g., Smith, 1997], it is demonstrated in
section 5 that the benefits of employing this simple filter are
much greater than any negative influence that may result as a
consequence of its poor frequency response. A linear anal-
ysis of the incremental updating procedure [Bloom et al.,
1996] that is very similar to the time-distributing component
of the TDAP showed that the primary effect of the time-
distribution is to act as a low-pass filter on the system’s
response to the introduced adjustments. This is confirmed in
section 5 by comparing the power spectra of assimilation
results with and without TDAP.

4.4. Forecast Error Model

[26] The most challenging aspect of sequential data
assimilation is the estimation of P f. Note that in practice,
only the columns of P f that relate the forecast errors at the
observation sites to the rest of the model domain need to be
estimated and stored, since P f never appears alone in
equations (1), (2) and (3), but always as P fHT. This is of
practical significance since it reduces the storage of an n � n
matrix P f to that of a n � p matrix P fHT. Similarly, for the
EVD approach only the n � m matrix P fHTÛ needs to be
stored for the assimilation. Many applications of data
assimilation in oceanography and meteorology have
involved the assumptions that P f is homogeneous and
isotropic in space and stationary in time [e.g., Rutherford,
1972; Rienecker and Miller, 1991; Bartello and Mitchell,
1992; Chen and Wang, 1999]. Although such assumptions
may be appropriate for the open ocean, they would seem to
be inappropriate for applications to the coastal ocean.
[27] To avoid these strong assumptions, we have begun

by assuming that P f is proportional to the typical cross-
correlations between the model variables. This enables a
physically consistent inhomogeneous and anisotropic esti-
mate of P f to be estimated using an ensemble of typical
summer simulations, forced with observed winds from
Newport, Oregon. The rationale behind this approach is
that if two elements of the state are typically correlated, then
their forecast errors are also likely to be correlated. More
explicitly, we have formulated P f in terms of the standard
deviations sw

m (n � 1) obtained from a 40-day model-only
simulation for the full assimilation period (superscript m
denotes model-only) and an empirically derived universal
(and stationary in time) correlation function C (n � p). An
element of P f is given by

P
f
ij ¼ sEwi

smwj
Cij; ð11Þ

where sEwi
¼ gismwi

is the effective standard deviation of wi

and Cij ¼ C wi;wj

� �
is the cross-correlation between wi and wj

averaged over the ensemble of 18 summers. The parameter
gi = 0.5 when smwi

corresponds to q or S (denoted by gi
qS )

and is 1.0 otherwise. We found that reducing the standard
deviation of qm and Sm in equation (11) by 50% (gi

qS = 0.5)
significantly improved the comparisons between the
analyzed subsurface velocity fields with observed velocities
at the ADP site. The cross-correlations between modeled
variables for each year C(wi, wj) are calculated (with the

time mean for that year subtracted) in the usual way.
Although the forcing winds are spatially constant there are a
number of effective degrees of freedom in every ensemble
run due to the time variability of the wind. Thus the rank of
M is sufficient for assimilation experiments where 18
independent observations are assimilated. Since only P fHT

is used in the assimilation, Pij
f is only calculated for i = 1...n

and j = 1...p, where the selected j indices correspond to the
velocity components at the observation sites.
[28] Elements of C are similar to the cross-correlation

fields presented in Figures 3 and 5. The positive model-data
comparisons presented in those figures give us reason to
believe that the dependence of P f on C is reasonable. Note
that the standard deviations sw

m of the model state are
derived from a model-only simulation for the particular
year, season or event of interest and are used to scale C,
providing a quasi-nonstationary estimate for P f. Also note
that, although this formulation appears to assume that the
magnitude of the forecast error is comparable to the magni-
tude of the signal, in fact it is the ratio of HP fHT to R in
equation (2) that is important.
[29] The structure of the columns of C provide insight

into the nature of the summer upwelling circulation off
Oregon throughout the model domain. The correlation
fields also contain information about the decorrelation
length scales and the anisotropic nature of the correlation
fields used in the formulation of P f. The standard error of
the averages of C are typically less than 0.05 indicating that
the estimated ensemble average of the cross-correlations is a
good representation of the typical cross-correlation between
modeled fields. An example of fields from C giving
correlations between v6 (location 6; see Figure 2) and u, v,
and q at the surface are shown in Figure 7. The C(v6, u)
fields indicate that when v6 is southwards, u at the surface is
typically offshore in the vicinity of location 6 and shore-
ward to the south of Heceta Bank. The offshore flow is
consistent with wind-driven upwelling and the shoreward
flow demonstrates the importance of the local topography in
steering the coastal jet on the Oregon shelf. The plot of
C(v6, v) indicates that the coastal jet is most coherent in the
y-direction to the north of location 6 and is less coherent on
the shoreward side to the south of location 6. This feature is
due to the tendency for a northward counter current to
develop on the shoreward side of the coastal jet between
44�N and 44.7�N during periods of upwelling relaxation
[Oke et al., 2002b]. The fields of C(v6, q) indicate that the
fluctuations in q are well correlated with the fluctuations in
the coastal jet, as indicated by the high cross-correlations
(>0.8) on the shoreward side of location 6. This field also
indicates that q to the south of Heceta Bank is typically not
well correlated with v6.

4.5. Observation Error Model

[30] Previous experience with HF radar data in other
regions demonstrates that HF radar derived velocities are
not error free, and that low-pass filtering improves the
correspondence between CODAR surface velocities and
near-surface measurements obtained from moored instru-
ments [Paduan and Rosenfield, 1996]. The HF radar data
we use is spatially averaged in the transformation from pairs
of nonorthogonal radial vectors to vectors in a fixed (u, v)
coordinate system. Therefore, the observation error is likely
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to be spatially correlated in a manner that depends in a
complex way on the length scales used in this transforma-
tion as well as the angle of intersection of the radial beams,
even if errors in the raw radial velocities are uncorrelated.
Given that many of the factors that cause errors in the
CODAR measurements (such as environmental factors or
errors in determining the azimuth of received signals) are
likely to effect multiple radial velocities in a similar way, it
is unlikely that the correlation structure in even the raw data
is so simple. We therefore expect data errors to have a
complicated correlation structure with length scales perhaps
only slightly shorter than the correlation length scales of the
signal. We implement this idea in an admittedly approximate
fashion by assuming that R is proportional to the covarian-
ces of the observations (signal plus noise) themselves,

R ¼ bhwowoT i; ð12Þ

where h i denotes a time average over the 40-day analysis
period. Here b is a constant that determines the relative
magnitude of HP fHT and R in equation (2). In the
assimilation experiments that are presented in section 5, b
is varied while elements of P f are held constant, in order to
determine the most appropriate estimate for R relative to
HP fHT. As we discuss below, our model for R is almost
certainly not quite correct. However, we believe this is more
reasonable than a simple isotropic uncorrelated model (R =
s2I). Further efforts to understand error structure in HF radar
derived data are clearly warranted.

4.6. Justification for the Truncation of M

[31] There are small-scale variations in the observations
that cannot adequately be represented by the model due to
limited resolution and numerical noise. Inclusion of these
variations results in a local correction that introduces a

dynamical imbalance that can cause spurious high-fre-
quency oscillations. It is therefore essential to reduce these
small-scale features and noise in the data prior to assim-
ilation. Adding R to HPHT to form the innovation error
covariance M should in principal accomplish this. As
demonstrated in Figures 3g and 3h the modeled surface
velocity fields have longer length scales than the corre-
sponding observed fields. The effect of smaller spatial scale
components of the observed fields on the analysis should
thus be expected to be relatively reduced when dw is
multiplied by M�1. However, computation of the condition
number of R reveals that this matrix is almost as poorly
conditioned as HPHT, leaving some possible short spatial
scale features in the data relatively undamped. These
features must occur only rarely, since eigenvectors of R
associated with small eigenvalues correspond to directions
in the data space with very small variance. However,
contamination of the assimilation by even rare short spatial
scale perturbations may be expected to degrade the perform-
ance of the DAS, and it is best to avoid this possibility. By
truncating M we retain only the realistic components of the
observed velocities to produce the analysis. The value of
this approach is demonstrated in section 5 where the experi-
ments with six modes are shown to give better results than
those with 12 and 18 modes.
[32] The EVD approach is standard in data assimilation

[e.g., Bennett, 1985; Parker, 1994] and it has many practical
benefits. Bennett [1985] noted that in numerical experi-
ments utilizing an EVD approach and truncating the low
eigenvalue modes, as described in section 4.2, performed
better than damping with a diagonal R, especially when the
observations are not error free. Additionally, the EVD is less
computationally expensive and will allow for a larger
number of data to be assimilated more efficiently at a
smaller computational cost, although this benefit has not

Figure 7. Universal cross-correlations between alongshore velocity v6 at location 6, denoted by the
asterisk, and (left) the across-shore velocity u, (middle) alongshore velocity v and (right) temperature q at
the surface (contour interval = 0.1; thick line, zero; dashed line, negative).
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been exploited in this study. Furthermore, when low eigen-
value modes of M are truncated, the performance of the
DAS is less sensitive to misspecification of R. This is
clearly a major concern here, where we have had to
essentially guess a plausible form for the error covariance.
[33] The eigenvalue spectrum of the innovation matrix

provides an indication of how many independent measure-
ments can be extracted from the CODAR array. We find that
the innovations are best represented by six modes, repre-
senting approximately 90% of the total variance, suggesting
that there are only six independent measurements in the
CODAR array that we are utilizing here.
[34] One additional comment is in order on our use of the

EVD approach. In the canonical case where the error
covariance is taken to be isotropic (R = s2I), the EVD is
normally performed on HPHT. With the more complex form
for R assumed here, the standard theory [e.g., Parker, 1994]
suggests that the EVD truncation should be applied to the
transformed problem, obtained by multiplying data and data
functionals by the matrix R�1/2. Although this approach
should be optimal if our model for R were exactly correct,
the transformation is unstable in our case, since R is itself
relatively poorly conditioned. We have thus applied the
EVD to M, and verified through analysis of the resulting
data space projections that the way the truncation is con-
structed has very little effect on the large scale signal
component.

4.7. Limitations of the Data Assimilation System

[35] In section 5, the success of the DAS is demonstrated
through a detailed hindcast study. Here we note that the
details of this system may require adaptations if one is to
apply it to other more complicated regions (e.g., complex
topography and canyons). Clearly, by nature of the assim-
ilation process, the analyzed results are strongly dependent
on the structure of P fHT. Therefore, appropriate estimation
of P fHT is crucial to the system’s success. Application to the
Oregon continental shelf is simplified by the prevalence of
predictable, coherent modes of variability of the flow fields
during the upwelling season, with dominant modes relating
to wind-driven upwelling (Figures 3c and 3d) and relaxation
from upwelling (Figures 3e and 3f). As a result, estimates of
P fHT that have realistic inhomogeneous and anisotropic
structures can be obtained using the relatively simple
approach outlined in section 4.4. For other more compli-
cated situations a state dependent version of P fHT may be
required.
[36] Another limitation of this DAS is the choice of

ensemble members used to formulate P fHT. For simplicity,
we have limited our ensemble to 18 simulations with
spatially uniform wind stress, no surface heating, and no
river forcing, using only one set of initial conditions.
Clearly, by including ensemble members with variations
to these factors, a more complete ensemble could be
established. This approach would also increase the rank
of HP fHT and might enable a greater number of inde-
pendent observations to be assimilated. In section 5 we
find that the DAS works best when only six modes,
representing approximately 90% of M, are used following
the method described in section 4.2. We interpret this as an
indication that there are only 6 independent measurements
in the CODAR array. However, additional variability in

the data might be accommodated by a more complete set
of model forcing errors.

5. Assimilation of HF Radar Data

5.1. Validation of Analysis

[37] The effectiveness of the DAS described in section 4
is demonstrated through a series of assimilation experi-
ments for the summer of 1998. Each experiment uses 18
data (9 u, v pairs) at each assimilation time from the
locations indicated in Figure 2. Experiments are performed
using 1, 6, 12, and 18 modes in M̂ (equation (6)) in order to
test the hypothesis that the small-scale features that are
inadequately supported by the model are projected onto
the higher modes. Similarly experiments are run with and
without the TDAP and with different values for b in
equation (12). The details of the experiments are summar-
ized in Table 1. The control experiment for this study is
experiment 1 (model-only), which is a 40-day model run
after the initial spin-up for the summer of 1998 without
assimilation. Over this period the mean value of the
alongshore wind stress was �0.0084 Pa with a standard
deviation of 0.026 Pa. The performance of each assim-
ilation run is evaluated by comparing analyzed subsurface
velocities with observations from the moored ADP (Figure
2). The ADP data are not used in the assimilation
procedure. The ADP provides subsurface measurements
of u and v at vertical spacings of 4 m between depths of
12 and 72 m. The results from the experiments are
compared to the results from experiment 1 in order to
assess the benefit of each assimilation.

[38] In order to objectively compare the modeled, ana-
lyzed, and observed vector fields the mean and standard
deviation of the magnitude of V, h(U2 + V2)0.5i, and
s

U2þV 2ð Þ0:5 , respectively, are considered, where h i denotes
a time average over the 40-day analysis period. Also the
magnitude of the complex cross-correlation coefficients r*
and the phase angles q* [Kundu, 1976] between the Vo and
Vm or Va are calculated. The value of r* is independent of
the coordinate system of the vector fields and q* is the
average counterclockwise angle of Vm or Va with respect
to Vo, and is only meaningful if r* is significant. The
estimated 95% significance level for r* is 0.51 that is
determined using standard statistical techniques [e.g.,
Brunk, 1965].

Table 1. Summary of Assimilation Experiments Where b
Determines the Magnitude of R According to Equation 12a

Experiment Description

1 no assimilation (model-only)
2–4 b = 0.4, 1.0, 1.6; no TDAP, EVD 6 modes
5–7 b = 0.4, 1.0, 1.6; TDAP, no EVD
8–10 b = 0.4, 1.0, 1.6; TDAP, EVD 12 modes
11–20 b = 0.05, 0.1, 0.2,

0.4,. . .1.6;
TDAP, EVD 6 modes

21–23 b = 0.4, 1.0, 1.6; TDAP, EVD 1 mode
24 exp. 14, TI = T/2
25 exp. 14, TI = T
26 exp. 14, no-wind
27 exp. 14, persistence
aEVD and TDAP refer to different implementations of the assimilation

scheme described in section 4; the assimilation time interval TI = T/4, where
T is an inertial period (
17 hours), in all of the assimilation experiments
except experiments 24 and 25.
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[39] These statistical comparisons are presented in Fig-
ure 8 for experiments 2–23. For the ADP observations,
h(U2 + V2)0.5i is 0.21 m s�1 and s

U 2þV 2ð Þ0:5 is 0.09 m s�1.
In contrast, h(U2 + V2)0.5i and s

U2þV 2ð Þ0:5 from the model-
only experiment are 0.18 and 0.049 m s�1, respectively.
For most of the assimilation experiments h(U2 + V2)0.5i is
less than both the observations and the model-only results,
indicating that there is a bias in the DAS with the magni-
tudes of the analyzed velocities typically 0.05 m s�1 less
than those observed. The reason for this bias is unclear.

However, as discussed in Appendix C, there is no signifi-
cant bias in dŵ. In the assimilation experiments s

U 2þV 2ð Þ0:5
is less than the deviations in the observations and greater
than the deviations in the model-only solution. This indi-
cates that one effect of the assimilation is to increase the
magnitude of the fluctuations of the velocity field so that
they are in better agreement with the observations.
[40] For the model-only experiment, r* = 0.42, which is

below the estimated 95% significance level. In order to
determine whether the EVD approach outlined in section 4
is beneficial, and to determine the most appropriate number
of modes that should be used in this decomposition,
assimilation experiments are performed with various values
for b (0.4, 1.0, and 1.6) in equation (12) using 1, 6, 12, and
18 modes of M̂ in equation (6). The results (Figure 8)
indicate that for most of these assimilation experiments r* is
above the 95% significance level for each value of b.
Furthermore, the experiments that used six modes and the
TDAP had the highest correlations. This result indicates that
the contributions of the forecast and observation errors to
the innovations are smallest when the innovations are
projected onto only six modes. This suggests that our
assumption that the error covariance satisfies equation
(12) is not completely correct. This also demonstrates the
value of the EVD approach in making the assimilation
procedure more robust to violations of our a priori cova-
riance assumptions.
[41] The benefit of the TDAP is demonstrated by

comparing the results in Figure 8 for experiments 2–4
(no TDAP) with experiments 14, 17, and 20 (Table 1). A
comparison of the energy preserving spectra of the princi-
pal component of V for assimilation experiment 14, with
and without TDAP (without TDAP denoted by Va*), from
the model-only experiment and from the observations at
the ADP location (Figure 9) further demonstrates the
benefit of the TDAP. The spectrum of the assimilation
without TDAP shows much greater energy in the high-
frequency regime around the inertial frequency 1.5 cycles-
per-day (cpd). Note that for the frequencies of interest
(<0.4 cpd) the spectrum from experiment 14 typically lies
between that of the observations and the model-only
results, as we expect.Figure 8. Assessment of the analyzed depth-averaged

velocities at the ADP site showing (a) h(U2 + V2)0.5i; (b)
�
U2 þ V 2ð Þ0:5; (c) r*; and (d) q* for assimilation experiments

2–23 with various number of modes used in equation (6)
and for different values of b in equation (12) (Table 1).
Results from each experiment are represented by a single
dot in each panel and experiments with the same number of
modes are joined according to the legend in Figure 8a. The
ADP and model-only experiment 1 values are shown on the
right of each panel.

Figure 9. The energy preserving spectrum of the
principal component of V at the ADP location (denoted
in Figure 2). The superscripts a, a*, m, and o denote
assimilation (experiment 14), assimilation with no TDAP
(experiment 2), model-only (experiment 1), and observa-
tion, respectively.
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[42] Since the experiments with six modes that utilized
the TDAP performed the best, additional experiments 11–
20 with different values of b (0.05, 0.1, 0.2, 0.4, ..., 1.6)
were performed with six modes in order to assess the
effects of changing the relative magnitudes of P f and R.
Interestingly, out of experiments 11–20, all of which used
six modes, the experiment with b = 0.05 performed the
worst, and as b increased r* increased to a maximum of
about 0.78 for b  0.4. For the model-only experiment, q*
= 40� (although r* < 95% significant level), while q* for
most of the assimilation experiments are much less than
this. For experiments 11–20 (six modes), q* 
 11� for
b  0.4.
[43] In addition, a series of objective statistical tests

designed to test the validity of P f and R are performed on
the innovation time series for each experiment. A description
of these tests is presented in Appendix B and C along with
the results. Briefly, these analyses demonstrate that the
hypotheses about the prior error statistics cannot be rejected
for experiments 14 and 15 when six modes are used with b =
0.4 or 0.6. These tests also demonstrate that the variance of
the innovations is reduced when six modes are used com-
pared to when 12 modes or 18 modes (no EVD) are used.
[44] On the basis of the considerations described above,

we conclude that the best analysis is produced by assim-

ilation experiment 14 with b = 0.4 using six modes. Vector
stick plots of Vo from the ADP, Va from assimilation
experiment 14 and Vm from experiment 1 are compared in
Figure 10. These plots indicate that many of the details of
the fluctuations in Vo are well represented in Va. For
example, the fluctuations on days 184, 188, 194, 197, and
202 are well represented by experiment 14, but are poorly
represented by Vm. While some fluctuations in Va are not
evident in Vo (e.g., days 176 and 191), the details of Va are
typically in better agreement with Vo than the details of Vm,
as indicated by the statistical comparisons described above.
The statistics h(u2 + v2)0.5i, s

u2þv2ð Þ0:5 , r*, and q* from
experiments 1 and 14, are plotted as a function of depth
in Figure 11. The improvement in r*, q*, and s

u2þv2ð Þ0:5 from
assimilation experiment 14 compared to experiment 1 is
evident. These comparisons imply that information from the
surface velocity data is reliably projected over depth at this
location, as supported by the value of r* > 0.8 around 65 m
depth. From Figure 11, h(u2 + v2)0.5i doesn’t change as a
result of assimilation as much as s

u2þv2ð Þ0:5 , indicating that
the assimilation enhances variability. As mentioned above
however, the mean values from experiments 1 and 14 are
both less than the observations.
[45] In all of the assimilation experiments described above,

the assimilation interval TI = T/4 where T is an inertial period

Figure 10. (a) The alongshore wind stress near Newport. Vector stick plots of V from (b) the moored
ADP, (c) assimilation experiment 14 (b = 0.4, six modes), and (d) model-only experiment 1 for the
summer of 1998.
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as described in section 4. In order to test the sensitivity of the
results to TI additional experiments were performed for b =
0.4 using six modes with TI = T/2 and TI = T, experiments 24
and 25, respectively. The analysis is in poorer agreement with
the ADP velocities for these cases, with r* = 0.65 and q* =
17� for TI = T/2, and r* = 0.61 and q* = 20� for TI = T.
Possibly a different value of b may be appropriate for these
assimilation timescales.
[46] Additional assimilation experiments with b = 0.4

using six modes were performed in order to test the
sensitivity of the results to the choice of gi

qS in equation
(11). Experiments with the above-mentioned elements of
gi

qS = 1 and 0 were performed and the comparisons with the
ADP velocities showed that r* = 0.48 and q* = 23� for gi

qS =
1 and r* = 0.75 and q* = 5� for gi

qS = 0. This result shows
that an improved analysis is obtained when the density field
is adjusted less, rather than more, and the analyzed velocity
field is allowed to advectively adjust the density field during
the time distribution of the adjustments.
[47] In order to further demonstrate the influence of the

observations on the analyzed fields, a no-wind assimilation
experiment (experiment 26), that is equivalent to experi-
ment 14 with no wind forcing, is performed. This experi-
ment is designed to give insight into the relative
importance of the surface wind forcing and the forcing
due to the assimilation. In addition, a series of persistence
experiments [e.g., Murphy, 1992], where the dynamical
model is not utilized, are performed in order to further test
the validity of P f. A description of the persistence experi-
ment is presented in Appendix D. A comparison between
the resulting analyzed and observed depth-averaged veloc-
ities resulted in r* = 0.74 for the no-wind experiment and
r* = 0.7 for the persistence experiment. These results
demonstrate that in the vicinity of the ADP the forcing due
to the assimilation is more important for the success of the
DAS than the wind forcing, and that the error covariances
used to project the surface velocities over depth at the
ADP location are appropriate. For the assimilation experi-
ments that did utilize the model and the wind forcing the
highest value of r* = 0.78 is achieved. This represents
only a minor improvement from the no-wind assimilation
and persistence experiments. Beyond the range of influ-

ence of the assimilated observations, however, we expect
the assimilation to perform better than the no-wind and
persistence experiments.

5.2. Assessment of the Observing System

[48] Since the estimated observation and forecast error
covariances satisfy the statistical tests outlined in Appendix
C, an assessment of the relative contributions of the obser-
vations and the model to the analysis is appropriate. These
relative contributions are determined by the relative magni-
tudes of HP fHT and R that are used to formulate K in
equation (2). This idea can be understood by considering the
diagonal elements of the reduced gain HK that may be
represented, approximately, for the kth element as

HKkk 

s2
� f

k

s2
� f

k

þ s2�o
k

; ð13Þ

where sX
2 is the variance of the scalar quantity X. The

values of HKkk are indicative of the relative magnitudes of
the forecast and observation errors, �k

f and �k
o, respectively.

The ratio of model to observation that is used to produce the
analysis therefore reflects these relative errors. When
the EVD is used the innovations are spatially filtered by
the dominant modes of M prior to the assimilation. In that
case,

ĤK ¼ HP fHTM̂
�1 ð14Þ

determines the ratio of forecast to observation that is used to
produce each analysis. Observations with a low signal to
noise ratio are primarily represented by the higher modes of
M. These modes are omitted when the EVD approach is
used and so observations with a low signal to noise ratio are
not heavily weighted in step 1 of equation (7). If the kth
observation is expected to have a low signal to noise ratio,
ĤKkk � HKkk. The analysis at each observation location is
approximately given by

wa
k 
 1� ĤKkk

� �
w

f
k þ ĤKkkw

o
k : ð15Þ

[49] Elements HKkk and ĤKkk corresponding to the
velocity components (u, v) at each observation location
are displayed for experiment 14 in Figure 12. The mean
of HKkk � 100 for (u, v) is (50,64) indicating that we expect
uo and uf to have similar error variances. Similarly, we
expect the typical errors of vo to be less than v f. The
minimum in HKkk for u, corresponding to the maximum
expected observation error, is adjacent to the coast where
the angle of intersection of the radial beams from the
CODAR transmitters are almost parallel. This is consistent
with the expected limitations of the CODAR system in
resolving both components of velocity [Lipa and Barrick,
1983; Leise, 1984].
[50] The fields of ĤKkk in Figure 12 (right panel) show

the relative weights of the (uo, vo) and (u f,v f ) that are used to
produce (ua, va) when six modes are used in the EVD of M.
A comparison at location 7 (Figure 2) showsHKkk � ĤKkk ,
which indicates that the observations at location 7 are
primarily noise. Conversely, vo at location 1, where HKkk

Figure 11. Plots of (a) r*; (b) q*; (c) h(u2 + v2)0.5i; and (d)
�

u2þv2ð Þ0:5 plotted as a function of depth for the ADP
observations vo, the model-only experiment 1 vm and
assimilation experiment 14 va.
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 ĤKkk , consists mostly of a signal that is coherent with the
other observations and is thus almost entirely represented by
the dominant eigenvectors of M. In general, Figure 12
indicates that when the EVD approach is used, the observa-
tions are typically not as heavily weighted compared to when
no EVD is used. This is to be expected since the projection
of the innovations onto the dominant modes ofM is a spatial
filter of the original innovations.
[51] The average value of ĤKkk indicates that the DAS

performs most effectively when, on average, 80% of the
analysis is made up of the model solution. This percentage
is strongly dependent on the number of modes used in the
assimilation (e.g., if 18 modes were used, only 43% of the
analysis is made up of the model solution). This analysis
provides an informative, but incomplete, measure of the
relative contributions of the observations with respect to
the forecast since each model forecast depends heavily on
the previous analysis, which in turn depends on the obser-
vations. The temporal influence of a single datum can be
better understood by considering an idealized, depth-aver-
aged alongshore momentum equation where the accelera-
tion depends only on wind forcing, linear bottom friction,
and the assimilation:

Vt þ
rV

h
¼ tSy

r0h
þ�Vc; ð16Þ

where r is the bottom friction coefficient, h is the water
depth, r0 is a reference density, tSy is the alongshore wind
stress, and �V c is the depth average of �j = 1

p Kijdwj/�t,
which is the correction term where Kij are the appropriate
elements of the gain matrix. Integrating equation (16) [e.g.,
Lentz and Winant, 1986] shows that

V ¼
Z t

0

tSy

r0h
þ�Vc

� �
e� t�sð Þ=Tf dsþ Vte

� t�t0ð Þ=Tf ; ð17Þ

where Tf = h/r is the frictional timescale that is
approximately 4.5 days for the barotropic flow [e.g., Brink
and Allen, 1978] and V0 is the initial velocity. This solution
indicates that, just as the instantaneous wind stress affects
the circulation for some time after it occurs, the correction at
each assimilation cycle likewise affects the circulation over

similar timescales that are greater than the assimilation cycle
(
4 hours). This indicates that the ratio of forecast to
observation used to produce the analysis is not completely
represented by HKkk or ĤKkk.

6. Analysis

6.1. Analyzed Versus Modeled Fields

[52] The surface fields of v and potential density sq
produced by assimilation experiment 14, the model-only,
the no-wind assimilation, and the persistence experiment
(superscripts a, m, nw, and p, respectively) are presented in
Figure 13. The fields from va, vnw, and vp show the coastal
jet following the isobaths offshore as the continental shelf
broadens over Heceta Bank (denoted in Figure 2). Also, va

and vnw show a cold-core meander located immediately to
the south of Heceta Bank between the 100- and 200-m
isobaths. The field of vm shows the coastal jet flowing
southwards over the mid- to inner-shelf with minimal
apparent effects of the topography. Additionally, va shows
the coastal jet separating near Newport, with the main jet
flowing offshore, and a weaker jet continuing along the
coast. The standard deviations of the surface velocity
magnitudes show very high fluctuations in va and vnw,
and to a lesser extent v p, over Heceta Bank.
[53] The mean surface sq fields indicate that the amount

of upwelled water at the surface is much greater for the
assimilation experiments, with water that is denser than
1024 kg m�3 at the surface over Heceta Bank out to the
200-m isobath. Also, the assimilation experiments show that
there is typically a dense pool of water between the 100-
and 200-m isobaths near Heceta Bank. This dense pool of
water corresponds to the cyclonic circulation in the surface
velocity field. Recent hydrographic observations off Oregon
[Barth et al., 2001] show the presence of such a feature
during summer 1999. The model-only and persistence
experiments show the upwelled water confined near the
coast, and concentrated off Newport. Similarly, the sq
fluctuations are much greater over Heceta Bank, and along
most of the continental shelf for the assimilation experi-
ments compared to the model-only solution and the persis-
tence experiment. We find that in the persistence experiment
increasing the effective standard deviations of qm and Sm, by
increasing gi from 0.5 to 1.0 in equation (11), gives a sq
field that is closer to the analyzed sq from the assimilation
experiment. However the comparison with the ADP obser-
vations are less favorable. This aspect of the error cova-
riance estimates is investigated further below.
[54] The mean and standard deviations of v and sq fields

for an across-shore section over Heceta Bank (44.25�N)
from assimilation experiment 14, the model-only, the no-
wind assimilation, and the persistence experiments, are
shown in Figure 14. The across-shelf section over Heceta
Bank (44.25�N) is located immediately to the north of the
dense pool of water discussed above and evident in Figure
13. The fields of hvai, hvnwi, and hv pi show that the main
coastal jet is located offshore, over the shelf break, with an
area of weak northward flow over the mid-shelf that is
associated with the eddy evident in the mean surface
velocities (Figure 13). Also, there is evidence of a weak,
southward jet adjacent to the coast. These fields demon-
strate the separation of the coastal jet as discussed above. In

Figure 12. Elements of (left) HKkk and (right) ĤKkk

multiplied by 100 for each (u, v) pair for assimilation
experiment 14. Each number represents the percent of
(uk

a,vk
a) that was made up of (uk

o, vk
o) (e.g., when the EVD

is used (right panel), u1
a 
 0.91u1

f + 0.09u1
o and v1

a 
 0.21v1
f

+ 0.79v1
o).
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Figure 13. (top) Mean surface velocity vectors overlaying the standard deviation of the velocity
magnitudes, (middle) mean surface sq (thick line, 1024 kg m�3), and (bottom) standard deviation of
surface sq (thick line, 0.3 kg m

�3) from (left to right) the assimilation experiment 14 (b = 0.4, six modes),
model-only, no-wind, and persistence experiments. The 100- and 200-m isobaths are contoured in gray.
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Figure 14. Fields of hvi (�v = 0.05 m s�1; dashed line, southward; thick solid line, zero), sv (�v =
0.025 m s�1); hsqi (�sq = 0.25 kg m�3; thick solid line, 24 kg m�3), and (�sq = 0.05 kg m�3) from (left
to right) the assimilation experiment 14, model-only, no-wind, and persistence experiments over Heceta
Bank 44.25�N.
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contrast, hvmi consists of a single, coherent coastal jet
located over the mid- to inner-shelf. The fields of sva and
svm are also very different over Heceta Bank. The analyzed
fields have strong fluctuations over the shelf break, where
the main coastal jet is located, while the model-only
fluctuations are greatest near the coast. The field of hsqai
shows denser water outcropping over much of the shelf,
while hsqmi and hsqpi show weaker upwelling concentrated
near the coast. The field of hsqnwi is closer to that of hsqai
than hsqmi. This implies that the forcing due to assimilation
has a larger impact than the wind forcing. The standard
deviations of the sq fields again indicate greater fluctuations
over a larger area in the assimilation experiment compared
to the model-only experiment.
[55] As discussed in section 4.4 (Figure 7), C(v6, v) are

small to the south of Heceta Bank. However, v over Heceta
Bank in the persistence experiment shows a region of
northward flow below the surface (Figure 14), associated
with the cyclonic meander evident in the surface fields of the
assimilation and no-wind assimilation experiments in Figure
13. This feature is not evident in the surface fields from the
persistence experiment in Figure 13 because the northward
flow does not extend to the surface. Therefore the generation
of the cyclonic meander is directly related to the assimila-
tion. Apparently the observed currents in the CODAR array
typically provide favorable conditions for this meander to be
generated and maintained for most of the assimilation. Since
the effect of the assimilation is to increase the magnitude of
the fluctuations of the coastal jet locally around the sites of
the CODAR observations, then the inertia of the stratified
coastal jet might be causing it to cross contours of constant
depth in the vicinity of Heceta Bank resulting in the
generation of positive relative vorticity that may be contri-
buting to the persistent cyclonic meander.

6.2. Depth-Averaged Alongshore Momentum Balance

[56] In the assimilation experiments the correction acts as
a forcing on the right-hand side of the prognostic model
equations. For the assimilation runs to be useful for inves-
tigating dynamical balances, the correction term should be
small with respect to the other terms in the model equations.
Alternatively, if the correction term does significantly con-
tribute to the dynamical balances, then it would be useful if
the nature of the correction term could be interpreted to help
identify which term or terms in the model require correc-
tion.
[57] In order to investigate the role of the correction in the

assimilation, we consider the term balances of the depth-
averaged alongshore momentum equation (V-equation):

h�1 VDð ÞtþV:r VDð Þ � Fy þ f UDþ DPyr�1
0 � tSyr�1

0

�

þ tByr�1
0 ��VcD 2�t*

	 
�1

� ¼ 0; ð18Þ

where r = i@/@x + j@/@y; D = h + h where h is the water
depth and h is the elevation; Fy = [(h2AMVy)y + (hAM(Uy +
Vx))x] is the horizontal viscosity term; subscripts x, y, and t
denote derivatives; f is the Coriolis parameter; Py is the
alongshore pressure gradient; r0 is a constant reference
density; tSy and tBy are the alongshore components of
the surface and bottom stress, respectively; �V c is the
correction to V; and �t* is the barotropic time step. The

mean and standard deviation of the terms in the V-equation
are shown in Figure 15. The pressure gradient term and the
Coriolis term are added together and presented as the
ageostrophic term, in order to identify when the dynamical
balances are significantly ageostrophic. Also, the advection
term and the horizontal viscosity term are added together for
conciseness. The horizontal viscosity term makes a negli-
gible contribution to the dynamical balances, but is added so
that the contribution of all terms is shown. Since the
ageostrophic term is nonzero, we conclude that the
alongshore momentum balance is ageostrophic as anticipated
by typical scaling arguments [e.g., Allen, 1980]. Clearly, the
dominant ageostrophic balance is between the ageostrophic
term (h�1[ f UD + DPyr0

�1]) and the nonlinear advection plus
horizontal viscosity term (h�1[V.r(VD) � Fy]), which have
relatively high magnitudes in the means and standard
deviations around Heceta Bank and adjacent to Newport.
After these terms, the surface stress (�h�1[tSyr0

�1]), bottom
stress (h�1[tByr0

�1]), and correction (�h�1[�VcD (2�t*)�1])
terms all have comparable magnitudes in the means. The
standard deviations of the tendency (h�1[(VD)t]) are similar
in magnitude and structure to the standard deviations of the
correction term.
[58] The effect on V of the correction term is to add a net

southward (or northward) velocity when the correction term
is positive (negative). In an area over the mid-shelf, between
Yaquina Head and Waldport, the mean of the correction
term is negative in the region of northward flow associated
with the cold-core meander over Heceta Bank evident in
Figure 13. Additionally, the correction term is positive over
the inner-shelf adjacent to Newport, where the inner branch
of the coastal jet is evident in the mean fields, and around
the 100- and 200-m isobaths, where the main coastal jet is
located in the assimilation experiment.
[59] The similarities in the magnitude and structure of the

standard deviations of the tendency and correction terms
suggests that the correction dominated the tendency, acting
to adjust the modeled fields toward the analyzed state. This
indicates that the contribution of the correction term is
comparable to the other ageostrophic terms in the V-equa-
tion. Conversely, consideration of the term balances in the
U-equation indicates that the dynamical balances are almost
purely geostrophic. In addition, for the U-equation the
contributions of the correction term are small compared to
the ageostrophic terms in the equation that are themselves
small compared to the geostrophic terms.
[60] If two terms in a model equation, with all terms on

the same side, have a significant negative correlation, and if
the magnitudes of both terms are comparable, one can
conclude that there is a quasi-balance between them. This
idea is applied to the alongshore momentum equation in
order to determine whether the correction typically balanced
or enhanced any of the terms in the momentum equation.
[61] Figure 16 shows a map of the cross-correlations

between the correction and the terms in the V-equation. The
results show a significant negative correlation between the
correction term and the surface stress term adjacent to
the coast. The sign of the correlation indicates that the
correction typically acts to reduce the effective strength of
the wind. The structure of this correlation field seems to
suggest that the correction term is trying to introduce a curl in
the wind stress near the coast. The effects of wind stress curl
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on coastal upwelling have previously been documented [e.g.,
Enriquez and Friehe, 1995]. Notably, the region of high
negative correlation between the correction term and the
surface stress term corresponds to the region where the
correction term is most dominant in the momentum balance
with a high standard deviation (Figure 15). On the other hand
it is possible that elsewhere in the domain a significant
amount of the true wind stress is unrepresented by the applied
wind stress field [e.g., Samelson et al., 2002], and because the

correction term has a weaker signal away from the coast, this
analysis does not identify it as a significant source of error.
[62] In order to assess whether the claims that the

assumption of spatially uniform wind is a source of model
error, two additional experiments are performed. In both
cases the spatial structure of the wind is objectively derived
from the correlation between the surface stress and the
correction term at every horizontal grid location C(SS, �).
In case A the spatial structure of tSy also depends on the

Figure 15. (top) Mean and (bottom) standard deviation of the terms in the V-equation (equation (18))
from assimilation experiment 14. The 100- and 200-m isobaths are plotted in gray.

Figure 16. Cross-correlation fields between ��VcD(2�t)�1 and the terms in the V-equation (equation
(18)) from assimilation experiment 14. The 100- and 200-m isobaths are plotted.
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standard deviation of the surface stress s(S.S) and the
correction s(�):

tSy x; y; tð Þ¼tSy tð Þ 1þ CðSS;�Þ s �ð Þ
s SSð Þ

� �
1þ CðSS;�Þ s �ð Þ

s SSð Þ

� ��1

;

ð19Þ

where the subscript denotes evaluation at Newport. Here the
structure function depends on x and y and is normalized by
values at Newport because Newport is the only location
where the true wind is observed. In case B,

tSy x; tð Þ ¼ tSy tð Þ 1þ C SS;�ð Þy � C SS;�ð Þy
	 


; ð20Þ

where C SS;�ð Þy is the average ofC(SS.,�) in the y-direction.
The correlation field C SS;�ð Þy is negative at the coast and
approaches zero near the offshore boundary as indicated in
Figure 16. The across-shore structure function in equation
(20) is remarkably similar to the structure of the alongshore
average of the first EOF of the modeled alongshore wind
stress from a 3-month, high resolution simulation of the
coastal atmosphere [Samelson et al., 2002]. This function
increases from 1 at the coast to a maximum of 1.75 near the
offshore boundary with a structure that varies like tSy(x, t) =
tSy(t) (1 + x0.5/20), where x is the distance offshore, in
kilometers, from the coast.
[63] In both of the structure functions in equations (19) and

(20) the applied wind stress at Newport is derived directly
from observed winds, and the correction field from the
assimilation experiment is used to objectively determine
the spatial structure of the applied wind stress. Themagnitude
of the complex cross-correlation between modeled and
observed V for the model-only experiment is r* = 0.42; for
case A it is r* = 0.46; and for case B it is r* = 0.52. Both cases
demonstrate a modest improvement confirming that the
assumption that the wind is spatially uniform is a source of
error. Clearly, there are other important model errors that are
not addressed here including the lateral boundary conditions,
as noted in section 2, initial conditions, and surface heating.
[64] The correlation between the correction term and the

bottom stress term is negative to the north of Yaquina Head
and south of Heceta Bank over the continental shelf. This
relationship indicates that the correction acts to decrease the
effective magnitude of the bottom stress fluctuations at
these locations. The bottom stress could be overestimated
if the magnitude of the bottom velocity is overestimated.
This could occur if the baroclinic structure of the flow is
inadequately represented.
[65] The correction term is significantly negatively corre-

lated with the tendency term over most of the domain,
which indicates that most of the correction is simply
absorbed by the model tendency. This result suggests that
even though the correction term is well correlated with the
surface and bottom stress terms at some locations, the
assimilation does not correct the inadequacies of these
terms. Rather, the fluctuations of the correction term merely
compensate for the inadequacies of these terms through
corrections to the analyzed fields.
[66] Further insight into the role of the correction term

is gained by considering a time series of the term balance
of the V-equation. The time period between day 186 and
200 is considered because it demonstrates well the role of
the correction term during a period in which the temporal
variations in the wind forcing are significant. A time series
of observed, analyzed (experiment 14), and model-only
surface velocities, aligned in the direction of their principal
axis, from location 1 (see Figure 2) over the inner-shelf,
are shown in Figures 17a–17c. The analyzed velocity
typically represents a combination of the observed and
model-only velocity, as we would expect.
[67] It is clear from Figure 17d that the surface stress term

is negatively correlated with the correction term, as already
seen in Figure 16. Additionally, their average magnitudes
are comparable during this time period. The correction term
is typically acting to decrease the effective magnitude of the
surface stress. As a result, the magnitude of the tendency is

Figure 17. Time series of (a) observed, (b) analyzed, and
(c) model-only surface velocity. Terms in the V-equation
(equation (18)) from (d) assimilation experiment 14 and from
(e) the model-only experiment at location 1 (see Figure 2).
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reduced in the assimilation compared to the model-only
experiment, and va is weaker than vm. This analysis dem-
onstrates how the correction term acts as a local forcing
term during the assimilation.

6.3. Depth-Averaged Heat Balance

[68] The potential temperature equation (q-equation) is
given by

qDð Þtþv3:r3 qDð Þ � KhD
�1qz

� �
z
�Fq ��qcD 2�tð Þ�1¼ 0; ð21Þ

where v3 is the velocity with components (u, v, w), where w
is the vertical velocity; r3 = i@/@x + j@/@y + k@/@z; Fq =
(hAhqx)x + (hAhqy)y is the horizontal diffusion term and Kh

and Ah are the vertical and horizontal diffusion coefficients,

respectively; �qc is the correction to q and �t is the
baroclinic time step. The depth-averaged mean and standard
deviation of the terms in the q-equation are shown in Figure
18. An analogous analysis of the salinity equation yields
similar results. In the discussion that follows, overbars
denote a depth integral. In this study the depth-integral of
the vertical diffusion ð�h�1ðKhD�1qzÞzÞ is zero due to the
neglect of surface heating. Adjacent to the coast, to the
north of 44.2�N and south of 43.6�N there is a local balance
between the diffusion term ð�h�1½Fq�Þ and the nonlinear
term ðh�1½v3:r3ðqDÞ�Þ, indicating that most of the upwelled
water is diffused over the inner-shelf. The dominant terms
over the mid- and outer-shelf are the tendency ðh�1½ðqDÞt�Þ,
the correction term ð�h�1½�qcDð2�tÞ�1�Þ, and the nonlinear
term. The structure of the nonlinear term over Heceta Bank

Figure 18. (top) Mean and (bottom) standard deviation of the depth-averaged terms in the q-equation
(equation (21)) from assimilation experiment 14. The zero contour is highlighted (thick solid line) and the
100- and 200-m isobaths are plotted (gray).
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reflects the structure of the mean surface velocities, with the
change in sign reflecting the change in direction of the mean
v. The nonlinear term is also important adjacent to the coast
over much of the coastline representing a mean upwelling of
isotherms in response to the local, upwelling favorable wind
forcing. Where the correction term is positive the effect of
assimilation is to decrease q. Clearly, the assimilation acted
to decrease q over the shelf, effectively increasing the
amount of upwelling, as demonstrated in Figure 13. The
tendency is typically negative over the shelf, also consistent
with a mean upwelling during the assimilation. By
comparing the locations where the nonlinear and correction
terms are high and positive, it is clear that the negative
tendency is due to the correction term in the region where
the surface velocities are assimilated (Figure 2) and that the
nonlinear term additionally decreased q over the 200-m
isobath beyond Heceta Bank. This feature of the term
balance demonstrates how the nonlocal effects of the
assimilation in the momentum equations, that strengthened
the southward jet beyond Heceta Bank, adjusted the density
field beyond the field of influence of the CODAR
observations, as quantified in the universal correlation
fields (e.g., see Figure 7, which shows that C(v6, q)
decreases to an insignificant level around the 200-m isobath
to the south of Heceta Bank).
[69] The standard deviations of the terms in the q-equa-

tion indicate that the fluctuations of the tendency, nonlinear,
and correction terms are high adjacent to the coast to the
north of 44�N. Additionally, the standard deviation of the
tendency and correction terms are also high over the mid-
shelf in the region where CODAR data is assimilated. This
suggests that much of the variations of the tendency are in
response to the corrections. The nonlinear term also has a
region of high standard deviation extending from the region
where CODAR data is assimilated out to the 200-m isobath,
beyond Heceta Bank. This is a region where the magnitude
of the fluctuations of the coastal jet is increased in response
to the assimilation (see Figure 13).
[70] The dominance of the correction term over the shelf

demonstrates that, even when the effective standard devia-
tions of qm and Sm are reduced by choosing gi = 0.5 in
equation (11), the contributions of the assimilation to the
q-equation are very significant. Efforts to find an optimal
choice for g were not fully pursued.

6.4. Are the Adjustments in Geostrophic Balance?

[71] We find that in order to overcome the problem of
initialization that results from imbalanced adjustments, the
correction must be gradually introduced using the TDAP,
enabling the model to further adjust the corrected fields.
Scaling arguments for subinertial coastal fields imply that v
should be in approximate geostrophic balance [e.g., Allen et
al., 1995]. In order to determine whether the adjusted v, sq,
and h are consistent with a geostrophic balance of v, the
geostrophic velocities vG,

fvG ¼ g
@h
@x

þ gD

r0

Z 0

s

@sq
@x

� s
D

@D

@x

@sq
@s

� �
ds; ð22Þ

are calculated for assimilation experiment 14, the model-
only, the no-wind assimilation, and the persistence experi-
ments. Because h is not available for the persistence

experiment (see Appendices A and D), vG is estimated in
that case by vertically integrating the thermal wind relation
referenced to v at mid-depth.
[72] Fields of hvi are compared to hvGi in Figure 19 for

the across-shore section over Heceta Bank near the dense
pool of water (44.25�N) shown in Figure 13. Also plotted in
Figure 19 are the mean ageostrophic velocities hv � vGi and
the standard deviation of the ageostrophic velocities sv�vG .
The magnitudes of hvm � vG

mi are typically between 0 and
0.08 m s�1. Similarly, hva � vG

ai and hvnw � vG
nwi are

between 0 and 0.09 m s�1, indicating that the dominant
mean dynamical balance in the model�only solution is
preserved in the assimilation experiments. The magnitudes
of hv p � vG

pi are typically between 0 and 0.13 m s�1,
indicating that this nondynamical assimilation typically
generated much stronger ageostrophic currents than the
model. Sections of svp�v

p

G
show that v p is also strongly

ageostrophic over a much greater region of the shelf
compared to va and vm. In experiment 2 without the TDAP,
sva�va

G
is of the same magnitude as svp�v

p

G
. This indicates

that the time-distribution of the correction in the TDAP is
necessary to allow the model to effect geostrophic adjust-
ment as the assimilation corrections are gradually intro-
duced into the model. An alternative approach for correcting
sq fields could be to apply a balance constraint, where the
corrections to sq are derived directly from the corrections to
v, subject to the thermal wind relation for example. This
approach has not been explored in this study because u is
not necessarily in geostrophic balance and the variable
topography makes the identification of an approximate local
alongshore direction difficult.

7. Summary

[73] A DAS of the subinertial, wind-driven continental
shelf circulation off the Oregon coast is described. The DAS
assimilates low-pass filtered surface velocity measurements,
obtained from land-based HF radars at intervals of approx-
imately 4 hours. The corrections to the model fields are
imposed through a TDAP that allows the model dynamics
to continuously adjust the analyzed fields so as to preserve
appropriate dynamical balances. The DAS utilizes inhomo-
geneous and anisotropic estimates of the forecast error
covariances to distribute the corrections throughout the
model domain. In order to demonstrate the capabilities of
the DAS, a series of hindcast experiments for a 40-day
period during the summer of 1998 is presented. The
analyzed fields are partially verified against direct subsur-
face velocity measurements at one location. Due to a
limitation on the number of additional independent obser-
vations, the analyzed state could not be validated over an
extended spatial domain. However, several features that are
generated in the assimilation experiments are qualitatively
consistent with recent observations. Furthermore, the val-
idity of the prior error estimates is supported through a
series of objective statistical tests. Thus we suggest that the
assimilative coupling between the statistically based analy-
sis equations and the dynamically based model should
enable an improved estimate of the three-dimensional fields
over a region that extends beyond the CODAR array.
[74] The relative magnitude of the forecast and observa-

tion error covariances are varied to find the most appropriate
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Figure 19. Fields of (top to bottom) hvi, hvGi, hv � vGi, and from (left to right) the assimilation, model-
only, no-wind assimilation, and persistence experiments over Heceta Bank (44.25�N) (top three rows, �v
= 0.05 m s�1; dashed line, southward; thick line, zero; bottom row, �v = 0.01 m s�1).
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estimate of the gain in a series of assimilation experiments.
As a result, an assessment of the observing system is made,
indicating that the DAS is most effective when the analyzed
fields are composed of 80% model and 20% observations.
This assessment indicates that the model is suitable for use
as a dynamical interpolator, constraining the analyzed fields
to the dominant physics of the region. It is shown that by
introducing the corrections gradually over time, the magni-
tude of the ageostrophic currents in the assimilation experi-
ment are of the same order as those in the model-only
experiment. Conversely, the magnitude of the ageostrophic
currents in the persistence experiment are much greater than
those in the model-only experiment. We therefore conclude
that the gradual imposition of the corrections through the
TDAP adequately preserves the expected dominant dynam-
ical balances of the model.
[75] Through an analysis of the V-equation, and the

depth-average of the q-equation, efforts are made to identify
the dynamical significance of the correction terms. On the
basis of the correlations between the terms in the V-
equation, we hypothesize that one effect of the assimilation
is to compensate for unrepresented components of the
applied wind stress and wind stress curl. We verify that
the lack of spatial variability in the wind field is indeed one
source of model error by performing model-only experi-
ments with spatially variable wind, where the spatial struc-
ture of the wind is derived from the correction term and
observed wind at Newport. This type of analysis might
assist the coastal ocean modeling community by identifying
the weaknesses of existing models or of specific model
configurations, and possibly by identifying which attributes
of a model are essential for any given region (e.g., river
outflow, surface heating, spatially varying winds, etc.). It is
clear that with further development and refinement, simple
sequential data assimilation techniques will prove to be very
useful from both an operational and scientific perspective.
Data assimilation systems, such as the one described here,
provide improved physical fields that could be coupled with
sediment transport and biogeochemical/ecosystem models.

Appendix A: Implementation in the POM

[76] The POM uses a mode splitting technique, solving for
the depth-averaged barotropic velocity V and elevation h
more frequently than the baroclinic velocity v, the density,
and the other baroclinic variables. Before each baroclinic
time step, v is adjusted by the model so that

R
�1
0 vds =V. It is

therefore important that both the barotropic and baroclinic
velocities are adjusted by the assimilation procedure in a
consistent fashion. This is achieved by calculating the cor-
rection term for v only, and applying its depth-average to V:

va ¼ v f þ�v ðA1Þ

Va ¼ V f þ
Z 0

�1

�vds: ðA2Þ

The adjustment to h is not applied directly, but rather is
accomplished through the tendency term in the barotropic
conservation equation:

@h
@t

þr: DVað Þ ¼ 0; ðA3Þ

where r = i@/@x + j@/@y and D = h + h, where h is the
water depth. This approach ensures that both the barotropic
and baroclinic conservation equations are satisfied.

Appendix B: Assessment of Error Estimates

[77] The validity of the estimated forecast error covarian-
ces P f is assessed by comparing the magnitude of the
elements of the true forecast error � f, determined by sub-
tracting the model forecast w f from the true state of the
ocean wt, with the expected standard deviation of the
forecast error, denoted by s� f . In reality, wt is never known.
Here velocity data from a moored ADP over the mid-shelf
off Newport that are not used in the assimilation experi-
ments are considered to be the best available estimate of the
truth. This assumption is based on the expectation that
�ADP
o � � fGT, where G is a matrix that interpolates from
the model space to the observation space of the ADP
measurements. Consequently, we estimate the true forecast
error to be

� f 
 wt
ADP �Gwf : ðB1Þ

If the estimate of P f is correct, then �k
f should be less than

s� f
k

approximately 68% of the time, where

s� f
k

¼ GP fGT
� �

kk

h i0:5
: ðB2Þ

[78] The analysis error covariance matrix Pa is defined by

Pa ¼ I�KHð ÞP f

� P f � P fHTM�1 P fHT
� �T

; ðB3Þ

and it provides a means by which the validity of the error
estimates and the analyzed circulation can be tested. In an
analogous fashion to the above-mentioned test of P f, the
analysis error can be estimated,

�a 
 wt
ADP �Gwa; ðB4Þ

and �k
a compared to the expected standard deviation of the

analysis errors

s�a
k
¼ GPaGT

� �
kk

h i0:5
: ðB5Þ

Again, �k
a should be less than s�a

k
approximately 68% of the

time.
[79] A comparison between the true and estimated fore-

cast and analysis errors at the ADP site is presented in
Figure B1 for experiment 14, showing the percent of time
that � f,a are less than s�

f,a. If the prior and posterior error
estimates are correct, then each point in Figure B1 would be
68%. The standard deviations of the errors are underesti-
mated if the percent of time that � f,a < s�

f,a is less than 68%.
This analysis indicates that the forecast error estimates of
the alongshore velocities � fv at the ADP location are suitable
in the upper half of the water column. The error estimates of
the analyzed alongshore velocity �av, and the forecast and
analyzed across-shore velocities � fu and � au, respectively,
are underestimated over the entire water column. Although
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this analysis demonstrates that the magnitudes of most of the
errors are underestimated at the ADP site, they are typically
within the expected ranges for about 50% of the time, instead
of the expected 68% of the time. These results indicate that
although the magnitude of the error estimates are not exactly
correct, they are reasonably close.

Appendix C: Innovation Statistics

[80] One practical way to assess the optimality of the
DAS and the validity of the estimated forecast and obser-
vation error covariances is to consider the statistics of the
innovations. Recall that the innovation vector dw = wo �
Hw f is the difference between the observations and the
forecasts at each observation location.

C1. Optimality

[81] The first measure of the optimality of the assim-
ilation is obtained by considering the whiteness of the
innovation sequences. Since white noise contains no
systematic information, if the innovation sequence is
white in time, then all of the information in the data
has been extracted [e.g., Chan et al., 1996]. The white-
ness of the innovation sequences can be estimated by
considering the autocorrelation function. The lag time of
the first zero crossing of the autocorrelation function
provides an estimate of the decorrelation timescale of a
given sequence. Perfectly white noise has a decorrelation
timescale TD of zero. As TD increases, so does the color
of the sequence indicating that information is not effi-
ciently extracted from the data. Since the model variables
are expected to fluctuate on timescales that are compara-
ble to the wind, which has a decorrelation timescale of
TD(t

Sy) 
 2.8 days, then an acceptable upper timescale
for TD(dw) should be 2.8 days. The decorrelation time-
scale of the model innovation dwm = wo � Hwm, where

wm is the model solution with no assimilation, is 2.4 days,
which provides a refined acceptable upper timescale for
TD(dw). Due to the time averaging employed in the
TDAP, we should not expect TD(dw) to be less than an
inertial period TI 
 0.7 days. Thus, if TI < TD(dw) <
TD(dw

m), we can conclude that information is being
extracted from the data at an acceptable level for the
suboptimal scheme being employed here.

C2. Chi-Squared Test

[82] In order to determine whether the distributions of the
actual innovation covariances are consistent with the esti-
mated innovation covariance matrix M, we consider the
variable

X2 ¼ dwTM�1dw; ðC1Þ

which should have a c2 distribution with p degrees of
freedom, where p is the number of observations used in
each assimilation. This assumes that dw is normally
distributed with zero mean. The mean values of dw and
dŵ are �0.03 ± 0.027 m s�1 and �0.0016 ± 0.034 m s�1,
respectively, indicating that the above-mentioned assump-
tion is valid for this application. Therefore hX2i should
equal p, where for example p = 18 for experiments 5–7 with
no EVD. Furthermore, the standard deviation sX2 should be
approximately

ffiffiffiffiffi
2p

p
¼ 6 for a c2 distribution with 18

degrees of freedom. For the EVD approach, the data is first
projected onto its orthogonal modes with only m of the
modes used in each assimilation. In those cases an
equivalent statistic to X2 is X̂2,

X̂
2 ¼ dŵT �̂

�1
dŵ; ðC2Þ

which should have a c2 distribution with m degrees of
freedom. Therefore hX̂2i should equal m for the assimilation
experiments that utilize the EVD approach, and sX̂2 should
be approximately

ffiffiffiffiffiffi
2m

p
.

C3. Results

[83] In order to summarize these diagnostic statistics for
all of the experiments in a single figure, hX̂2i and sX̂2 are
normalized:

khX̂2ik¼ X̂
2

m
ðC3Þ

ks
X̂
2 k¼

s
X̂

2ffiffiffiffiffiffi
2m

p ; ðC4Þ

where m is the number of modes used in the EVD of M in
equation (6).
[84] A summary of the innovation statistics outlined

above are presented in Figure C1 for experiments 2–23.
For all of the assimilation experiments, TD(dw) is approx-
imately 1.5 days (Figure C1), which falls within the accept-
able range as outlined above. This indicates that although
the assimilation scheme is not optimal it is capable of
extracting information from the innovations within the
acceptable timescales.
[85] If the c2 test is satisfied then one cannot reject the

hypothesis that the prior error estimates are valid. The values

Figure B1. The percent of time that � f and �a in the
assimilation experiment 14 (b = 0.4, six modes) are less than
the expected standard deviations s�f and s�a , respectively, at
the ADP location. The 68% level is denoted by the thick
vertical line.
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of ||hX̂2i||, defined in equation (C3) indicate that the above-
mentioned criterion is satisfied for b 	 0.6 when six modes
are used, for 0.8 	 b 	 1.0 when 12 modes are used, and for
b = 1.6 when 18 modes are used. Additionally, the values of
k s

X̂
2 k, indicate that the hypothesis about the prior error

statistics cannot be rejected for b = 0.4 or 0.6 when six modes
are used and for b = 1.0 when 12 modes are used. Therefore,

consideration of both the mean and standard deviations of X̂2

indicates that the prior error estimates for the experiments
using six modes with b = 0.4 or 0.6 cannot be rejected.
[86] Examples of the empirical probability density func-

tion (PDF) of X̂2 (scaled histogram) are presented in Figure
C2 for the experiments using six modes with b = 0.4 and
1.0. These two experiments provide examples of distribu-
tions of X̂2 when the c2 test is satisfied (b = 0.4) and is not
satisfied (b = 1.0).
[87] The statistical tests described above assess the val-

idity of the estimated forecast and observation error statistics
P f and R, respectively. When considered with the assess-
ments of the analyzed subsurface velocities at the ADP
location, in section 5, we conclude that the best analysis is
produced when six modes are used in the EVD ofM and b is
0.4. Furthermore, the tests indicate that the hypothesis
about the prior error statistics cannot be rejected for the
experiments when six modes are used and b = 0.4 or 0.6.

Appendix D: Persistence Experiments

[88] A persistence experiment [e.g., Murphy, 1992]
involves a statistical model that utilizes observations and
estimated error covariance statistics without the benefit of a
dynamical model and is implemented given an initial
condition w0 and a time series of observations w1. . .N

o . By
utilizing the estimated forecast and observation error cova-
riances that are used to formulate the gain matrix K defined
in equation (2), a persistence analysis w1. . .N

p
can be

obtained sequentially by solving a form of equation (1),

w
p
1 ¼ w0 þK wo

1 �Hw0

� �
ðD1Þ

w
p
2 ¼ w

p
1 þK wo

2 �Hw
p
1

� �
ðD2Þ

..

.

w
p
N ¼ w

p
N�1 þK wo

N �Hw
p
N�1

� �
: ðD3Þ

Such experiments are commonly used in numerical weather
forecasting as a kind of zero-skill base fromwhich to evaluate

Figure C1. (a) Decorrelation timescale of dw; (b) ||hX̂2i||
and the theoretical hcp

2i (thick line); and (c) k s
X̂

2 k and
the theoretical sc2

p
(thick line) for assimilation experiments

2–23 described in Table 1 with various number of modes in
equation (6) and for different values for b in equation (12).

Figure C2. Distributions of X̂2 (from equation (C2)) for b = 1.0 and 0.4 with the expectedc6
2 probability

density functions overlayed.
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more sophisticated forecast systems [e.g., Fraedrich and
Leslie, 1988]. In our applications, the initial conditions are
the model fields at the end of the 10-day spin-up period.
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