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Abstract 

The use of models and data assimilation tools to aid the design and assessment 
of ocean observing systems is increasing. The most commonly used technique for 
evaluating the relative importance of existing observations is Observing System 
Experiments (OSEs), and Observing System Simulation Experiments (OSSEs). 
OSEs are useful for looking back, to evaluate the relative importance of existing 
of past observational components, while OSSEs are useful for looking forward, to 
evaluate the potential impact of future observational components. Other methods 
are useful for looking at the present, and are therefore most useful for adaptive 
sampling programs. These include analysis self-sensitivities, and a range of en-
semble-based and adjoint-based techniques, including breeding, adjoint sensitivi-
ty, and singular vectors. In this chapter, the concepts for observing system design 
and assessment are introduced. A variety of different methods are then described, 
including examples of oceanographic applications of each method. 

Introduction 

The use of models and data assimilation tools to aid the design of observing 

systems has a long history in numerical weather prediction (NWP; e.g., Kuo et al., 

1998; Bishop et al. 2001; 2003) and is gaining momentum in the ocean modelling 

community (e.g., Oke et al. 2009). Methods for observing system design and as-

sessment range from basic analysis of models to assess de-correlation length- and 

time-scales, signal-to-noise ratios, and covariance of different variables and dif-

ferent regions. Classical model-based approaches to observing system design and 
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assessment involve observing system simulation experiments (OSSEs) and ob-

serving system experiments (OSEs). More sophisticated methods have emerged as 

a result of advances in data assimilation methodology, and there are now a suite of 

ensemble-based and adjoint-based techniques for designing observing systems and 

evaluating the impact of observations on assimilating models. 

Observing system design and assessment has a long history in NWP. Most 

NWP applications relate to adaptive sampling. Adaptive sampling is the problem 

of identifying where additional observations should be made to better initialise a 

forecast. Typical examples of adaptive sampling programs in NWP relate to the 

prediction of extreme weather, like hurricanes (e.g., Gelaro et al. 1999). The idea 

is that if additional observations are made where an instability is developing, or is 

likely to develop, then those observations can be used to better initialise an NWP 

forecast and therefore improve the skill of that forecast. Adaptive sampling in 

NWP arguably began in 1947, when the hurricane reconnaissance program was 

established to observe of the location and intensity of hurricanes. In 1982, 

NOAA's Hurricane Research Division began research flights around hurricanes to 

improve the initialisation of NWP forecasts. They found that the error in the fore-

cast tracks of hurricanes reduced by 25% as a direct result of their adaptive sam-

pling program. In 2003, the World Meteorological Orginisation (WMO) initiated a 

program called THe Observing system Research and Predictability EXperiment 

(THORPEX). THORPEX was established with the intent to improve the accuracy 

of NWP forecasts of high-impact weather. Within THORPEX, the data assimila-

tion and observation strategy working group was established to assess the impact 
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of observations and various targeting methods to provide guidance for observation 

campaigns and for the configuration of the global observing system. For an excel-

lent summary of THORPEX activities and results, the reader is referred to Rabier 

et al. (2008). 

Ocean data assimilation capabilities have progressed rapidly since the begin-

ning of the Global Ocean Data Assimilation Experiment (GODAE; 

www.godae.org/). A suite of analysis and forecast systems are now used routinely 

for operational and research applications. All GODAE forecast and analysis sys-

tems are underpinned by the Global Ocean Observing System (GOOS; www.ioc-

goos.org) that is comprised of satellite altimetry, satellite sea surface temperature 

(SST) programs, delivered through the GODAE High Resolution SST effort 

(GHRSST; www.ghrsst-pp.org), and in situ measurements from the Argo program 

(Argo Science Team 1998), the tropical moored buoy (McPhaden et al. 1998), sur-

face drifting buoys (www.aoml.noaa.gov/phod/dac), expendable bathythermo-

graph (XBT; www.jcommops.org/soopip/; www.hrx.ucsd.edu) and tide gauge 

networks. Each of these observation programs are expensive and require a signifi-

cant international effort to implement, maintain, process, and disseminate. Careful 

design and assessment of the GOOS is therefore warranted. 

Observing system design and assessment activities in the oceanographic com-

munity are becoming more common. One of the key challenges for the oceano-

graphic community is to adequately combine the efforts of researchers operating 

the climate domain, under CLIVAR (www.clivar.com; Heimbach et al. 2010), and 
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those operating in the short-term forecasting domain, under GODAE 

(www.godae.org/ OSSE-OSE-home.html; Oke et al. 2009; 2010). CLIVAR activi-

ties tend to focus on climate monitoring and ocean state estimation, while 

GODAE activities tend to focus on mesoscale variability and short-range forecast-

ing. Observational requirements for these different applications are likely to be 

quite different.  

In this chapter, the concepts of observing system design and assessment are in-

troduced, followed by a description of commonly used methods. The description 

of each method is intended to be practical, with less focus on theory and more fo-

cus on how things are actually done. For each method that is discussed, an ocea-

nographic example is included, where possible. The chapter concludes with a 

short summary.  

Concepts for observing system design and assessment 

Before undertaking any activity that relates to observing system design and as-

sessment, there are several key questions that need to be addressed. These ques-

tions relate to the motivation for establishing an observing system, practical limi-

tations, and how the observations will be used. 

The motivation for establishing an observing system is obviously important. 

What is it that the observing system is intended to monitor? This might be, for ex-

ample, the heat content in a specific region, the volume transport of a current sys-
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tem, the variability of the thermocline depth, and so on. An observing system that 

is optimised to monitor a specific aspect of the ocean circulation is unlikely to be 

optimal for monitoring all other aspects of the circulation. For example, an observ-

ing system that is optimised for initialising a seasonal forecast system that seeks to 

predict the onset of El Nino will resolve dynamical features that vary on time-

scales of El Nino like tropical instability waves, and is likely to be quite different 

to an observing system that is optimised to constrain an eddy-resolving ocean 

model that will resolve dynamical features that vary on shorter time-scales. So, the 

motivation for the observing system should be clear, and where the intended use 

of the observing system is broad, the optimisation strategy should attempt to re-

flect this as much as possible. 

An understanding of what observations are feasible is important. This is likely 

to be dictated by budget, technology, and convenience. Deployment and mainte-

nance of observations is usually expensive, so a well-design array that is easily 

deployed and maintained (e.g., with moorings along shipping lanes) may be essen-

tial. The budget may provide guidance on the number and types of instruments 

that can be considered (e.g., number and type of moorings, gliders, Argo floats, 

drifting buoys, etc). Many studies begin with a specification that, for example, the 

observation array may consist of up to 10 moorings that each measure temperature 

and velocity between the surface and 300 m depth; and ask the question, where 

should those moorings be deployed? 
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The question of how the observations will be used is difficult because in most 

cases there are likely to be multiple users, each processing the observations using 

different methods. For example, observations might be assimilated into a number 

of models using different assimilation methods; or observations might be gridded 

using a variety of techniques. It is typical, to assume that a specific analysis or as-

similation system will be used to objectively map the observations. In this case, it 

is important to be clear about the characteristics and limitations of the particular 

analysis tool of choice. A better approach is to use a multi-system (e.g., multi-

model) approach, where several systems are used to evaluate different observation 

arrays. This is the aspiration of many of the activities under GODAE OceanView 

(see www.godae.org/ OSSE-OSE-home.html). 

The density of observations required to monitor a given process is largely dic-

tated by the de-correlation length-scales of the fields that are to be observed. This 

characteristic determines how far apart observations can be made before important 

features are missed. Similarly, de-correlation time-scales determine how fre-

quency observations should be made. The use of models to determine length- and 

time-scales is often fraught with difficulty, because of sub-grid-scale parameteri-

sations within models largely determine these scales, and those parameterisations 

are generally inaccurate and are sensitive to many subjective choices made by the 

model developers (e.g., O’Kane and Frederiksen 2008a; Frederiksen and O’Kane 

2008). 
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Some more subtle characteristics also become important for the design of ob-

serving systems. The co-variability of the ocean is critical. Are there locations or 

quantities that are particularly indicative of the entire system that is to be ob-

served? That is, is there a specific location that is the pulse of the region of inter-

est? The Southern Oscillation Index (SOI) is a good example of this. The SOI is 

calculated from variations in the air pressure difference between Tahiti and Dar-

win. Periods of sustained negative SOI usually correspond to El Nino events that 

are characterised by warming in the central tropical Pacific Ocean, a decrease in 

the trade winds, and reduced rainfall over much of Australia.  

 

Figure 1: Examples of the ensemble-based correlation between sea-level at a 
reference location, denoted by the star, and sea-level in the surrounding region. 
Adapted from Sakov and Oke (2008). 

 



8  

An example of how a model can be used to identify the pulse of the ocean is 

presented in Figure 1, showing two examples of correlation fields from an ensem-

ble-based data assimilation system (Sakov and Oke 2008). Ensemble-based as-

similation systems use an ensemble of anomalies (also called perturbations or 

modes) to implicitly represent the system’s background error covariance. The 

background error covariance determines how an observation-model difference is 

projected onto the model state during the assimilation step. So the ensemble-based 

correlation (or covariance) between an observable variable at reference location 

and the rest of the model state represents the effective foot-print of an observation 

at that reference location. The examples presented in Figure 1shows the ensemble-

based correlation between sea-level at different reference locations and sea-level 

in the surrounding region. The regions where the amplitudes of these correlations 

are large correspond to regions where an observation from that reference location 

will have a significant impact.  

The first example, shown in Figure 1a, indicates that an observation in the east-

ern Indian Ocean, off Java, is well correlated with sea level along the coast and 

over a very broad region. The spatial structure of the correlation map shows a di-

pole structure. This structure is observed in several previous studies (Chambers et 

al. 1999; Feng et al. 2001; Wijffels and Meyers 2004; Rao and Behera 2005). 

Also, the footprint of the positively correlated region reflects Rossby–Kelvin wave 

patterns. This indicates that observations offshore of Indonesia are likely to be 

particularly useful for constraining a data assimilating model that uses an ensem-

ble like that described by Sakov and Oke (2008).    
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The second example, shown in Figure 1b, indicates that sea level off Somalia is 

relatively uncorrelated with sea level across the tropical Indian Ocean. The region 

off Somalia is dominated by mesoscale variability that spawns from the energetic 

and highly variable boundary currents in this region. While the mesoscale variabil-

ity in this region is well organized (Schott and McCreary 2001), its variability is 

apparently somewhat chaotic and is characterized by short de-correlation length 

scales. This suggests that, while many observations may be required in the north-

west tropical Indian Ocean to adequately represent the variability there, an obser-

vation in this region will not impose a significant constraint on a data assimilating 

model that uses the ensemble described by Sakov and Oke (2008).    

Like any optimisation problem, observing system design and assessment ulti-

mately involves the quantification of how good an observing system is. Conse-

quently, the most important question for any observing system design or assess-

ment activity is: what is it we seek to minimise? This is quantified by a cost 

function, metric, or diagnostic. The possible metrics that could be minimised by 

are virtually unlimited. We might seek to minimise the analysis error variance of 

some quantity (e.g., temperature, salinity, velocity, thermocline depth) for some 

region (e.g., tropical Pacific Ocean, North Atlantic, etc.). We might seek to mini-

mise the forecast error of some quantity in a given region. Or perhaps we seek to 

minimise uncertainty of an integrated quantity, such as the transport through a 

strait. We may even wish to minimise several quantities (e.g., temperature and ve-

locity error), which may require some sort of normalization, or weighting, that re-

flects the variance of different variables or relative importance for a given applica-
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tion. In every case, we must define a cost function, or metric, that we seek to mi-

nimise. The results will often depend heavily on this cost function (e.g., Sakov and 

Oke 2008).  

Methods and Examples 

Commonly used techniques for evaluating the benefits of different observation 

types and arrays include Observing System Experiments (OSEs), Observing Sys-

tem Simulation Experiments (OSSEs), analysis self-sensitivities, ensemble-based 

methods, and adjoint-based methods. All of these methods require some form of 

data assimilation. Of these methods, OSEs, OSSEs and analysis self-sensitivities 

can all be applied regardless of the assimilation technique used. By contrast en-

semble-based and adjoint-based methods require specific tools for their applica-

tion. Details of all of these methods, including examples, follow. Other methods, 

not described in detail here, that have also been applied to observing system de-

sign and assessment include genetic algorithms (Gallagher et al. 1991). Applica-

tions of genetic algorithms to oceanic applications include the optimisation of sur-

face drifter deployments (Hernandez et al. 1995), and acoustic tomography arrays 

(Barth 1992).  
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Observing system Experiments - OSEs 

The most commonly used method for employing assimilating models to assess 

observing systems is OSEs. OSEs generally involve the systematic denial, or with-

holding, of different observation types from a data assimilating model in order to 

assess the degradation in quality of a forecast or analysis when that observation 

type is not used. Importantly, the impact of each observation type may strongly 

depend on the details of the model into which they are assimilated, the method of 

assimilation, and the errors assumed at the assimilation step. It is therefore instruc-

tive to consider results from a range of different models and applications in an at-

tempt to identify the robust results that are common to a number of different sys-

tems.  

Results from OSEs can sometimes be difficult to interpret. Suppose four differ-

ent observation types, from different platforms (e.g., Argo floats, satellite SST, al-

timetry, moorings) are typically assimilated. We might expect that there is some 

redundancy between these data types. For example, some of the information con-

tained in an Argo profile is represented by altimetry (e.g., Guinhut et al. 2004). 

Similarly, some data in SST fields is also measured by Argo floats. If we with-

hold Argo data from an OSE, we might expect altimetry and SST to become more 

important, so the true value of an observation, or observation type, is difficult to 

really assess with OSEs.  

In some cases, subtle details of the model/assimilation system can complicate 

the interpretation of OSEs. For example, Vidard et al. (2007) report a case when 
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they with-held observations in the tropics. They found that with-holding this data 

degraded the circulation at high latitudes. This was puzzling. They traced this link 

back to the quality control system of their assimilation. An important step for any 

quality control system is a comparison with the model’s background field. If ob-

servations differ significantly from the background field, they may be flagged as 

bad, and automatically with-held from assimilation. Vidard et al. (2007) found 

that when observations in the tropics were with-held, the system’s background 

field changed enough to influence the quality control system’s decisions. This led 

to data at higher latitudes being flagged as bad, ultimately degrading the model 

fields at higher latitudes. Several other instances of quality control decisions in-

fluencing OSE results in similar ways have been reported in the literature (e.g., 

Bouttier and Kelly 2006; Tremolet 2008). Subtleties like these can, in some cases, 

make OSEs difficult to interpret.  

OSEs are usually conducted for a past period of time – for example, the last 3 

years, or the time period when four satellite altimeters were operating. While this 

is very instructive, the GOOS is constantly changing (e.g., Figure 2). The number 

and distribution of Argo floats changes as new floats are deployed and old floats 

expire. New altimeter missions are launched and old missions end – and the sam-

pling strategies of different altimeter missions are often different. This means that 

OSEs can become outdated. For example, using a seasonal forecast system, Vi-

dard et al. (2007) and Balmaseda et al. (2007) perform a series of OSEs to eva-

luate the impact of Argo, XBT, and tropical moorings on forecast skill. Vidard et 

al. (2007) perform OSEs for the period 1993-2003 and Balmaseda perform OSEs 
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for the period 2001-2006. So, for most of Vidard et al.’s OSEs, Argo coverage is 

sparse, while for most of Balmaseda et al.’s OSEs, Argo is substantial. As a result, 

Vidard et al. report only faint praise for the benefit of Argo, but note that it was 

probably too early to be sure. By contrast, Balmaseda et al. conclude that Argo is 

instrumental in iniatialising their forecast system – particularly for salinity. 

 

Figure 2:  Observations during January of 2001, 2004, 2007, and 2010; green, 
blue, and yellow dots denote Argo floats, XBT/CTD profiles, and buoys 
respectively. Images sourced from www.coriolis.eu.org in February 2010.  
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Another limitation of OSEs is the significant computational and human re-

sources required to undertake, analyse, and interpret them. Consider the study of 

Oke and Schiller (2007), for example. They conducted a series of 6-month model 

runs including an experiment with no assimilation, an experiment with all data as-

similated, plus experiments with each observation type (Argo, SST, and altimeter) 

with-held. Additional experiments could include those with 1 altimeter, 2 altime-

ters, 3 altimeters, or 4 altimeters; experiments with different SST products assimi-

lated; experiments with only a sub-set of Argo profiles, for example every other 

Argo profile. Such a series of OSEs equates to a significant amount of computa-

tion, and a large amount of data that requires processing, analysis, and interpreta-

tion. This is not always achievable, especially when a high resolution model is 

used. 

Evaluation of OSEs is always a challenge. For any series of OSEs, the best ex-

periment, by which all others are typically compared, is always the run that assi-

milates all observations. Evaluation of this run is therefore problematic, as there is 

usually no independent set of observations that can be used to evaluate this run. 

An example of a series of OSEs, designed to evaluate the relative importance 

of altimetry, Argo, and SST for constraining an eddy-resolving ocean model, is 

described by Oke and Schiller (2007). Using a 1/10o resolution ocean general cir-

culation model and an ensemble optimal interpolation data assimilation system 
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(Oke et al. 2008), they systematically with-hold altimetry (denoted ALTIM), Ar-

go, and SST from a reanalysis system for the period December 2005 to May 2006. 

The impact of with-holding each data type is illustrated in Figure 3, showing the 

residuals between reanalysed SLA and along-track SLA. The residual maps quan-

tify the difference between observed and reanalysed SLA for each OSE. Reana-

lysed SLA is compared to along-track SLA from all available altimeters (Jason, 

Envisat, and GFO).  

 

Figure 3: Root-mean-squared residual between modelled and observed sea-level 
anomaly for different OSEs. Adapted from Oke and Schiller (2007). 

 

It results in Figure 3 indicate that when only Argo and SST are assimilated the 

SLA residuals are much smaller than the OSE that assimilated no observations, 

denoted NONE in Figure 3. This indicates that some of the information in altim-
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etry is also represented by the SST and in situ T and S observations. This is ex-

pected, based on the well understood dynamical relationship between SLA and 

sub-surface T and S, but it also demonstrates the power of the multivariate EnOI 

scheme that is used by Oke and Schiller (2007). The SLA residuals are noticeably 

smaller when altimetry is assimilated, particularly in the regions of energetic 

mesoscale variability like the Tasman Sea, along the path of the Antarctic Cir-

cumpolar Current and off Western Australia, where the Leeuwin Current fre-

quently sheds eddies (Figure 3). This suggests that while SST and Argo represent 

the broad-scale SLA features, they do not adequately resolve the details of the 

mesoscale. 

Observing System Simulation Experiments - OSSEs 

Another commonly used technique for evaluating the potential benefit of dif-

ferent observing systems is OSSEs. OSSEs often involve some sort of twin expe-

riment, where synthetic observations, usually extracted from a model, are assimi-

lated into an alternative model or gridded using an observation-based analysis 

system. OSSEs are commonly used to assess the impact of some hypothetical ar-

ray of observations that may not exist yet. This means that these methods can be 

used to contribute to the design of future observing systems, quantifying their 

possible impacts and limitations. 

OSSEs have been employed to support the design of oceanic observing systems 

since before the altimeter era. For example, the Berry and Marshall (1989), Hol-
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land and Malanotte-Rizzoli (1989), performed OSSEs to support the assessment of 

designs for the early altimeter missions. Similarly, OSSEs were conducted to sup-

port the design and assessment of the TAO array in the tropical Pacific Ocean 

(e.g., Miller 1990) and the PIRATA array in the tropical Atlantic Ocean (e.g., 

Hackert et al. 1998). 

Several good examples of OSSEs were conducted during the planning of the 

tropical Indian Ocean mooring array (CLIVAR-GOOS Indian Ocean Panel and 

Co-authors 2006). These OSSEs were conducted by several different groups, us-

ing different models and different techniques. The results from these studies con-

tributed to discussions during the planning of this mooring array. Vecchi and Har-

rison (2007) presented results from a series of OSSEs using a high resolution 

ocean model and an adjoint-based assimilation system to evaluate the ability of an 

integrated observing system, including Argo observations, XBT lines, and the 

proposed mooring array to monitor intraseasonal and interannual variability. Bal-

labrera-Poy et al. (2007) used a reduced-order Kalman filter to objectively deter-

mine an array for mapping sea surface height and SST. Oke and Schiller (2007) 

use an approach based on empirical orthogonal functions (EOFs) to assess the 

proposed mooring array’s ability to monitor intraseasonal and interannual variabil-

ity. Vecchi and Harrison (2007) concluded that in conjunction with the integrated 

observing system, the proposed mooring array should be capable of resolving in-

traseasonal and interannual variability. Both Ballabrera-Poy et al. (2007) and Oke 

and Schiller (2007) argued that the proposed array may oversample the region 

within a few degrees of the equator. These studies also suggested that key regions 
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for monitoring seasonal- to-interannual variability are south of 8°S, at about 4°-5° 

from the equator and along the coast of Indonesia. These regions correspond to the 

locations of the maximum amplitude of seasonal Rossby waves (Masumoto and 

Meyers 1998; Schouten et al. 2002), equatorial Rossby waves, and strong Indian 

Ocean dipole events (Murtugudde et al. 2000), respectively.  

An example of the above-mentioned OSSEs is presented in Figure 4, showing 

the standard deviation of the depth of the 20oC isotherm (D20) from a model, 

along with the root-mean-squared error of D20 in two OSSEs. Each OSSE uses 

output from 18-years of a model run. The first 9-years are used to train the EOF-

based analysis system that is described by Oke and Schiller (2007), and the last 9-

years is used for cross-validation, and to evaluate how well different mooring ar-

rays resolve variability of D20. For each OSSE, the last 9-years of the model run 

are sampled at mooring locations; those observations are perturbed with white 

noise according to their assumed errors; the observations are analysed, and the er-

rors of the analysed D20 fields assessed. Figure 4 indicates that the proposed array 

resolves the variability of D20 very well near the equator, where the root-mean-

squared errors are small, but poorly south of 10oS, where the errors are relatively 

large. An alternative mooring array is also tested by Oke and Schiller (2007). The 

alternative array is generated objectively, by maximising the projection of obser-

vations onto an ensemble that is used for assimilation. For a detailed description of 

the method, the reader is referred to Oke and Schiller (2007). The alternative ar-

ray, presented in Figure 4c, has fewer moorings close to the equator and in the 

northern Indian Ocean, and more moorings between 10-15oS. Variability of D20 is 
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still well resolved by the alternative array near the equator, but owing to the addi-

tional moorings to the south, the variability of D20 is better resolved there. The 

latitudes of high D20 variability to the south (10-15oS) correspond to the maxi-

mum amplitude of seasonal Rossby waves (Masumoto and Meyers 1998; 

Schouten et al. 2002). The study by Oke and Schiller (2007) concluded by sug-

gesting that additional moorings in those latitudes are worth considering. 

 

Figure 4: (a) Standard deviation of the depth of the 20oC isotherm and the root-
mean-squared error for (b) the proposed Indian Ocean Mooring array and (c) an 
optimized mooring array for a series of OSSEs; contour intervals are 2.5 m. 
Adapted from Oke and Schiller (2007). 
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OSSEs can be very instructive for assessing the potential impact of different 

observing systems. However, they have several limitations. It could be fair to say 

that OSSEs, in the form of twin experiments are doomed to succeed - particularly 

if the same model is used to produce the synthetic observations, as the model used 

for assimilation. In this case, the dynamics of the model and observations are per-

fectly compatible. As a result, some OSSEs using twin experiments report very 

low errors in assimilating model runs. In some cases, the errors are so low, and the 

results so optimistic, that the conclusions of such studies must be regarded with 

suspicion. 

The relevance of any series of OSSEs ultimately depends on the assumptions 

made in configuring the OSSEs. In all cases, assumptions are made about the dy-

namics and the data assimilation methodology. It is implicitly assumed that the 

models capture the dynamics correctly and the observations are assimilated appro-

priately. Assumptions are made about the observation errors, and about model er-

rors. In most cases, synthetic observations are corrupted by noise – and the noise 

is almost always assumed to be white in time and unbiased. It is also common to 

assume that there will be no data outages, and that data are all available at the time 

of assimilation. In the operational environment, this final assumption is rarely true. 

Many OSSE studies employ methods that do not involve twin experiments. For 

example, Brassington and Divakaran (2009) analyse the theoretical impact of sea-

surface salinity observations on an ensemble-based data assimilation system by 

examining various characteristics of the ensemble. Schiller et al. (2004) examine 
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modelled fields to quantify the likely signal-to-noise ratios of different sampling 

strategies for the Argo program.  

OSSEs can be a very instructive tool for evaluating the potential value of future 

observing systems. However, the assumptions made by OSSEs are often optimis-

tic, and the results from OSSEs are therefore often optimistic – and should be re-

garded as indicative only, and perhaps qualitative in most cases. 

Analysis Self-Sensitivity 

In general, regardless of the method, a data assimilation system combines a 

background field (of either 2-, 3- or 4-dimensions) with a set of observations, 

yielding an analysis. Different assimilation methods do this in different ways. But 

for all methods, there exists a so-called analysis self-sensitivity. The analysis self-

sensitivity quantifies the importance of each individual observation for a given 

analysis. Consider a couple of cases. Suppose we can change a given observation 

and the analysis does not change. In this case, we can say that the analysis is not 

sensitive to that observation, and conclude that it is unimportant. This may occur 

if the observation has a large error, or is in a region of dense observations – so it is 

redundant. Conversely, consider a case where a change to a given observation re-

sults in a significant change to the analysis. In this case, we can say that the analy-

sis is sensitive to that observation, and conclude that it is important. This may oc-

cur if the observation is very accurate, or is in a data-sparse region. The sensitivity 

referred to above is called the analysis self-sensitivity. 
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In practice, self-sensitivities are diagnosed by the so-called influence matrix 

(Cardinali et al. 2004). The influence matrix is simply a subset of the Kalman 

gain, K . The Kalman gain is like a regression matrix, mapping each element of the 

background innovation (difference between a background field and observations) 

onto the full model state. The influence matrix is simply HK , where H, is an oper-

ator that interpolates from model-space to observation-space (often just linear in-

terpolation). The matrix HK  is square, with dimension p by p, where p is the 

number of observations assimilated. The diagonal elements of HK  are the analysis 

self-sensitivities – they map the background innovation from the observation loca-

tion to itself. Cardinali et al. (2004) and Chapnik et al. (2006) provide a practical 

recipe for diagnosing analysis self-sensitivities from any assimilation system – re-

gardless of the assimilation method. Briefly, 

1. Perform a standard analysis by assimilating observations d; 

2. Perturb the assimilated observations (d � d*) according to their expected 

error (from the diagonal elements of R, the observation error covariance 

matrix); 

3. Perform another analysis by assimilating the perturbed observations; and 

4. Compute the self-sensitivities HK ii: 

HK ii = (di
* - di) (Hai

* - Hai) / Rii, 

where a and a* are analyses produced using unperturbed and perturbed observa-

tions respectively. The minimum calculation to estimate the self-sensitivities is a 

second analysis. However, this calculation is subject to sampling error, due to the 

random nature of perturbing the observations, so multiple perturbed analyses 
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should be calculated in practice, to obtain robust estimates of the true self-

sensitivities. The diagonals of the influence matrix can be analysed, or the partial 

trace of HK  can be averaged for different regions, different variables, and so on.  

With an estimate of the self-sensitivities at hand, it is common to diagnose the 

so-called degrees of freedom of signal (DFS) and the information content (IC) for 

different sub-sets of observations. The DFS provide an indication of how many 

truly independent observations are present in a given sub-set of observations. At 

most, the DFS is the same as the number of observations. In this case, the IC is 

100% and there are no redundant observations. Conversely, if the DFS is much 

less than the number of observations, the IC of that set of observations is low. In 

this case, the IC may be small and there is significant redundancy in the observa-

tions. 

An example of the IC and DFS for different observation types using the Blu-

elink reanalysis system (Oke et al. 2008) is given in Figure 5. Based on these re-

sults, it appears that both altimetry and SST observations are well used by the 

Bluelink system. However, information from the Argo data is either not extracted 

by the Bluelink system in an optimal way, or is somewhat redundant – possibly 

well represented by the other assimilated observations. At this stage of develop-

ment, the former explanation seems most likely. By producing these, and other, 

diagnostics from a number of GODAE systems, it is anticipated that the true value 

of all observations for GODAE systems can be routinely monitored and quanti-
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fied. In turn, these evaluations could be fed back to the broader community for 

consideration. 

 

Figure 5: The Preliminary estimates of the Information Content (IC; %), degrees 
of freedom of signal (DFS) and the number of assimilated super-observations (# 
Obs) for the Bluelink reanalysis system in the region 90-180oE, 60oS-equator, 
computed for 1 January 2006. The scale for the IC is to the left and the scale for 
the DFS and # Obs is to the right. 

 

In addition to providing a quantitative indication of the importance of each ob-

servation, and each observation type, for a given analysis, analysis self-

sensitivities can be instructive for tuning assimilation and forecast systems. The 

goal of every assimilation system is to extract as much relevant information from 

every observation as possible. That is, to maximise the IC from the above-

mentioned analysis. The type of diagnostic described here can contribute to this 

process. 

Analysis self-sensitivity is a relatively inexpensive to perform and may be feas-

ible for routine application to operational forecast systems. The latter point means 

that calculations could be performed on the modern-day GOOS. Limitations of 
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analysis self-sensitivities however, include the fact that they are relevant only to 

analysis fields – not the forecast fields. Finally, self-sensitivities also depend on 

error estimates used by the assimilation or analysis system. 

Ensemble-based methods 

A variety of ensemble-based methods can be readily used for observing system 

design and assessment. These include the diagnosis of ensemble-based covariance 

fields, of which Figure 1 is an example, the objective ranking of the importance of 

observations with regard to their potential impact to minimise a system’s analysis 

error variance, and diagnosis of bred vectors. A description and examples of these 

follow. Some good references for ensemble-based observing system design and 

assessment activities include Tracton and Kalnay (1993), Houtekamer and De-

rome (1995), Toth and Kalnay (1997), Bishop et al. (2001; 2003), and Wang and 

Bishop (2003). 

An example of a series of ensemble-based correlation fields between sea-level 

at time t=0 days, and sea-level in the surrounding region 4-days earlier (t=-4 days) 

and 4-days later (t=+4 days) in the open ocean, south-west of New Caledonia is 

shown in Figure 6. The correlation fields provide insight into the underlying dy-

namics, the spatial length-scales, and the temporal length-scales of sea-level. For 

this example, a modified version of the 120-member stationary ensemble that is 

used by the Bluelink forecast and reanalysis system (Brassington et al. 2007; Oke 

et al. 2005; 2008) is used. It is evident that in this region a dominant dynamical 
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process is the westward propagation of sea-level anomalies, probably characteris-

tic of Rossby waves. The ensemble-based correlations indicate that the length-

scales in this region are fairly short, with the influence of sea-level limited to with-

in a few hundred kilometers of an observation. However, the time-scale seems to 

be quite long – the lagged correlations, for t=-4 and 4 days, are not very much less 

than the zero-lag correlations, for t=0 days (Figure 6). We therefore expect that an 

observation at some point in time is likely to be representative of the circulation 

for some time into the future and into the past. These factors may influence dis-

cussions on the appropriate spatial density and temporal sampling of observing 

systems in this region. Although the example presented in Figure 6 uses a statio-

nary ensemble, and is therefore appropriate for the design and assessment of long-

term monitoring programs, a time-evolving ensemble from an ensemble Kalman 

Filter system (e.g., Evensen 2003) that reflects the time- and state-dependent 

background field errors (so-called errors of the day; Corazza et al. 2003) could 

equally be used for adaptive sampling programs – where we might seek to identify 

good locations for imminent deployments of instruments, like gliders or profiling 

floats. 
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Figure 6: An example of four-dimensional ensemble-based correlation fields 
showing the spatio-temporal influence of a sea-level observation in the open 
ocean, south-west of New Caledonia. Each panel shows the ensemble-based corre-
lations between sea-level at t = 0 days and sea-level in the surrounding region for 
time-lags of (a) -4 days, (b) 0 days, and (c) +4 days. 

 

Ensemble-based methods for optimal array design are increasingly being used 

for NWP systems (e.g., Bishop et al. 2001). These methods are based on ensemble 

square root filter theory (e.g., Tippett et al. 2003; O’Kane and Frederiksen 2008b) 

and allow one to handle large systems in cases when explicit manipulation of the 

background error covariance matrix is not feasible. Most of the studies on the en-

semble-based optimal array design consider the problem of adaptive sampling and 

targeted observation, aimed at improving the model’s forecast at a given time 

(e.g., Bishop et al. 2001; Langland 2005; Khare and Anderson 2006).  

The main steps in the ensemble-based objective design of an observation array 

are represented schematically in Figure 7. The first step is the construction of an 

initial ensemble that represents the system’s background error covariance before 
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any observations are assimilated. Such an ensemble might be associated with 

some variant of the ensemble Kalman Filter (Evensen 2003). Given an ensemble 

that implicitly represents the system’s background error covariance, and an array 

of observations of known error variance, ensemble square root theory provides an 

efficient framework for updating, or transforming, the ensemble so that its updated 

error variance matches the theoretical analysis error variance after those observa-

tions are assimilated (Bishop et al. 2001). There are several ways of implementing 

this transformation (see Tippett et al. 2003), all of which are equivalent, but the 

most computationally efficient transformation is that of the ensemble transform 

Kalman filter (ETKF; Bishop et al. 2001) and specifically the serial implementa-

tion of the ETKF. So, the second step is to update the ensemble to represent the 

system’s error covariance after assimilation of all available observations (Figure 

7). The third step is to identify the next best targeted observation. That is, the ob-

servation that transforms the ensemble to yield the ensemble with the smallest 

analysis error variance. This targeted observation is identified by explicitly trans-

forming the ensemble for all possible observations and identifying the observation 

that minimises the ensemble’s analysis error variance. This is a brute force calcu-

lation – however, the update from a single observation is inexpensive, so this ap-

proach is generally feasible, even for systems with a large state dimension. Once 

the latest targeted observation has been identified, the ensemble is updated and the 

process of identifying the next best targeted observation is repeated, until the 

number of targeted observations has been reached. 
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Figure 7: Schematic diagram depicting the serial calculation of an optimal obser-
vation array. The dashed arrows represent the serial identification of targeted ob-
servations and the ensemble updates that reduce the ensemble’s variance given 
those targeted observation. Adapted from Sakov and Oke 2008. 

 

The most important step in the ensemble-based approach described above is the 

determination of what the targeted observations are intended to minimise. In prac-

tice, the ensemble includes several different variables (e.g., temperature, salinity, 

velocity etc.). The identification of the next best targetted observation can be per-

formed so that it minimises a specific aspect of the analysis error. For example, it 

might minimise the analysis errors of temperature in a specific target region, or the 

analysis errors of mixed layer depth, or the volume transport through a strait of 
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passage. This criterion may have a significant impact on the objectively designed 

observation array (e.g., Sakov and Oke 2008). Careful determination of what is to 

be minimised is important. For this to be achieved, it is important to be very clear 

about the purpose, or motivation, of the observation array. 

An example of an ensemble-based objective observing system design, from Sa-

kov and Oke (2008), is presented in Figure 8. This example addresses the design 

of the tropical Indian Ocean mooring array. It is assumed that the purpose of this 

array is to minimise the analysis error variance of Intraseasonal Mixed Layer 

Depth (IMLD). Figure 8 shows the error variance of IMLD before and after as-

similation, for two different models and for three different mooring arrays, and as-

sumes that no other observations are available (i.e., no Argo, XBT, altimeter data 

etc.). It is assumed that observations from the mooring array are to be assimilated 

into a model using an ensemble-based data assimilation system using a stationary 

ensemble. Two different ensembles are considered, each generated by different 

model configurations (ACOM2 and ACOM3), with different forcing, and inte-

grated for different periods. Three different options for the mooring array are con-

sidered: the proposed mooring array (denoted CG-IOP array), and an optimised ar-

ray for each model, denoted ACOM2-array and ACOM3-array. In this case, the 

initial ensemble variance for IMLD is shown, along with the final ensemble vari-

ance for IMLD given the different mooring arrays (Figure 8). Sakov and Oke 

(2008) use different models here in pursuit of more robust results. 
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Figure 8: The variance of the IMLD (top row) in ACOM2 (left) and ACOM3 
(right), and the theoretical analysis error variance for each model using the CG-
IOP-array (2nd row), and the arrays derived using ensembles from ACOM2 (3rd 
row) and ACOM3 (4th row), as labelled to the left of each row. The numbers in 
each panel denote the mooring locations and the ranking of each location (i.e., the 
locations marked “1” are the best location). Adapted from Sakov and Oke (2008). 
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The numbers overlying the error variance maps in Figure 8 refer to an objective 

ranking of each observation location – the order in which they were identified by 

the method depicted in Figure 7. In each case, the mooring array is constrained to 

a limited number of mooring lines at distinct longitudes – to simplify routine 

maintenance of the array. Using the ETKF framework, the best mooring line is 

identified, and then the best observation for that mooring line is derived. So the 

mooring line with numbers 1-6 is the best mooring line. For each array considered 

and for both models, the best mooring line is located in the eastern Indian Ocean, 

between 90-95oE, and the mooring line south of India is also very important, 

ranked 7-12 (or 7-14) for each scenario considered. These results appear to be ro-

bust, and can aid the decision-makers when mooring design and priorities are be-

ing made – for example, which mooring line should be deployed first?  

Breeding is an ensemble technique that seeks to quantify the structures of the 

fastest-growing dynamical modes of a model. Bred vectors are perturbations to the 

model state that grow rapidly in time. Bred vectors are particularly useful for 

adaptive sampling, where the errors of the day are used to identify where an insta-

bility is most likely to originate. More observations in a region of instability might 

better constrain a deterministic forecast, resulting in better forecast skill. 

Breeding was first explored by Toth and Kalnay (1997) for an NWP ensemble 

prediction system. In practice, bred vectors are generated by first initialising a 

model with an ensemble of perturbations. Initially, the perturbations are typically 

simply small-amplitude white noise. The ensemble is integrated for a fixed period 
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of time. The perturbations are periodically rescaled using a global (or regional) 

scale factor so that they approximate fast-growing errors within an assimilation 

scheme. The choice of scale factor is important. One of the purposes of breeding is 

to identify fast-growing instabilities (O’Kane and Frederiksen 2008c). In some re-

gions, these instabilities will be best represented by sea-level anomalies; in other 

regions in might be sub-surface temperature, or density. This should be tuned for 

different regions. However, some atmospheric applications have demonstrated that 

the choice of rescaling doesn’t significantly influence the bred vectors (e.g., Co-

razza et al. 2003). This is in contrast to singular vectors (see below), which are 

very sensitive to the choice of norm (e.g., Palmer et al. 1998; Snyder et al. 1998).  

In practice, the ensemble perturbations (bred vectors) usually become well-

organised, coherent structures that can be interpreted and understood (e.g., insta-

bilities associated with an eddy). This approach readily allows ensembles to be in-

itialised about the analysis from data assimilation that contain, by construction, in-

formation about the errors of the day. Thus the bred vectors tend to project 

strongly onto regions where forecast errors are large. The process of breeding is 

represented schematically in Figure 9. 
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Figure 9: Schematic diagram depicting the generation of bred vectors. An ensem-
ble is initially perturbed with uncorrelated noise. The rescaling parameter must be 
chosen carefully (e.g., temperature at 250 m depth in key region). After each res-
caling interval the ensemble perturbations are rescaled to the same magnitude as 
the initial perturbations – but bred vectors develop spatially coherent, well-
organised structures. Each bred vector is the difference between a perturbed fore-
cast and the unperturbed forecast. 

 

For an atmospheric example, Houtekamer and Derome (1995) showed that bred 

vectors produce similar results to singular vectors (described below), but they are 

much easier to implement (Wei and Frederiksen 2004). Because of its simplicity, 

breeding is a very versatile approach. Bred vectors have recently been explored by 

many operational global weather predictions systems (e.g., O’Kane et al. 2008) 

using an implementation that is based on the ETKF (e.g., Wang and Bishop 2003; 

Wei et al., 2006). The ETKF is a generalisation of breeding, but it is more com-

plex and more computationally expensive. The main difference is that the ETKF 

orthogonalises the bred vectors and seeks to maximise the ensemble spread. 
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An example of breeding applied to a regional ocean model of the Tasman Sea 

is presented in Figure 10. For this example, a 4-member ensemble is used, and 

bred vectors are optimized (rescaled to) amplify temperature anomalies at 250 m 

depth. The forecast errors for sea-level, computed by comparing with a verifying 

analysis, are shown in Figure 10a-d along with the 4-member ensemble averaged 

bred vector overlaid. The individual bred vectors are also contoured in Figure 10e-

h. For the period shown here, the forecast error for sea-level is quite large at sev-

eral locations. The bred vectors are independent of the forecast error; however 

they project strongly onto the regions where the forecast error is large and spatial-

ly coherent. This indicates that the bred vectors are reliably identifying regions of 

growing instabilities. For the case displayed in Figure 10, the forecast does not 

pick up the developing instabilities (see 11 March) that, in this case, correspond to 

a developing cold-core eddy. With regard to adaptive sampling, if this 4-member 

breeding system is run in parallel with the operational forecast system, the regions 

of strong growth in the bred vectors might be good candidates for the deployment 

of additional observations – perhaps in the form of gliders or profiling floats. In 

this case, the improved initialisation of the forecast in those regions might have 

better constrained the forecast and improved the forecast skill for this event.  
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Figure 10: Examples of (a-d) forecast error for sea-level (colour) and the ensemble 
averaged bred vector (contours) in the Tasman Sea; and (e-h) four bred vectors 
overlaid. Each bred vector is a different colour. 

Adjoint-based methods 

A variety of adjoint-based methods can be readily used for observing system 

design and assessment. These include diagnosis of representers, adjoint sensitivi-

ties, and singular vectors. A description and examples of these follow. Some good 

references for adjoint-based observing system design and assessment activities in-

clude Moore and Farrell (1993), Rabier et al. (1996), Gelaro et al. (1998), Palmer 

et al. (1998), Baker and Daley (2000), Langland and Baker (2004), and Moore et 

al. (2009). 

Representers are analogous to the ensemble-based covariance fields displayed 

in Figure 1 and Figure 6. Representers quantify the temporal and spatial footprints 
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of influence of an observation. Using the system’s tangent linear model to trace the 

influence of an observation into the future, and its adjoint to trace its influence in-

to the past, an adjoint-based data assimilation system readily approximates the co-

variance between a given observation location and type (e.g., sea-level at a fixed 

location) and all other variables at all model grid locations for all time. Represen-

ters can help build intuition about how different observation types and locations 

influence a data assimilating model. An example of the components of a represen-

ter, derived from the Advanced Variational Regional Ocean Representer Analyzer 

(AVRORA) system (Kurapov et al. 2009), for the coastal ocean is presented in 

Figure 11. The background field for these calculations corresponds to an idealised 

two-dimensional wind-driven upwelling scenario (Figure 11a) with characteristics 

of the upwelling circulation off Oregon, USA. Details of the model configuration 

and assimilation system are described by Kurapov et al. (2009). They investigate 

the structure of representers to better understand the potential impact of assimilat-

ing observed sea-level anomalies from altimeters into a coastal ocean model.  

The representer components shown in Figure 11 quantify the covariance be-

tween a hypothetical sea-level observation that is 50 km offshore, and the rest of 

the model state. The components shown in Figure 11 are for the time of the obser-

vation. The full representer includes time, where the influence of the observation 

extends over both time and space.  
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Figure 11: The components of a representer in a cross-shore section for an idea-
lised two-dimensional wind-driven upwelling scenario (panel (a) shows the back-
ground field), showing the covariance at the time of the observation (zero time-
lag) between sea-level 20 km from shore and (b) along-shore wind-stress, (c) sea-
level, (d) across-shore velocity, (e) temperature, (f) along-shore velocity, and (g) 
salinity. Contour intervals are provided in the titles for each plot. The contour in-
tervals (C.I.) for panels (a, d-g) are marked. Adapted from Kurapov et al. 2009. 

 



39 

The fields in Figure 11 show how the assimilation system updates the model 

state when the observed offshore sea-level is lower than the modelled background 

estimate. The changes introduced by the assimilation are consistent with a streng-

thening wind-driven upwelling, with stronger upwelling favourable along-shore 

wind stress, lower sea-level over the shelf, offshore flow near the surface and on-

shore flow through a bottom boundary layer, an accelerated baroclinic coastal jet, 

and a temperature (salinity) decrease (increase). The representer fields presented 

in Figure 11 indicates that offshore sea-level observations from altimetry are suit-

able for assimilation into coastal ocean models, and are likely to impose a signifi-

cant constraint on the circulation over the continental shelf. 

Adjoint, or observation, sensitivities seek to quantify the sensitivity of a fore-

cast to assimilated observations (Langland and Baker 2004). Specifically, adjoint 

sensitivity determines the sensitivity of the cost function J, with respect to each 

observation y: that is, dJ/dy. In practice, Langland and Baker (2004) provide a 

practical recipe for computing adjoint sensitivities as follows: 

1. Define the error norm of interest (e.g., position of an eddy, or the va-

riability of a given variable in a region of interest); 

2. Perform a forecast from say, t=0 to t=7, where t denotes time; 

3. Compute a verifying analysis for t=7 (not in real-time); 

4. Compute the difference between a forecast (valid at t=7) and a verify-

ing analysis (also valid at t=7). This difference is an estimate of the 

forecast error. 
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5. Initialise the adjoint model with the forecast error and integrate back-

wards (from T=7 to t=0), yielding a new initial condition (valid at 

t=0); and 

6. Calculate the sensitivity of the forecast to each observation, or a subset 

thereof. 

Like all variational data assimilation tools, a model's tangent linear version and 

the adjoint of its tangent linear model are required to perform adjoint sensitivities. 

However, the adjoint technique requires a linear assumption that is probably most 

appropriate for short-term (days) forecast problems, but may not be valid for long-

er term (months) forecast problems, such as seasonal prediction using a coupled 

ocean-atmosphere model. Like analysis self-sensitivities, described above, adjoint 

sensitivities can help identify low-influence and high-influence observations; and 

can be partitioned for any data subset: instrument type, observed variable, geo-

graphic region, vertical level, or individual reporting platform; thereby making the 

diagnostic directly relevant to GOOS data providers. Importantly, both analysis 

and adjoint sensitivities do not necessarily quantify the value of the observations – 

rather they quantify how much of the observations are used by an assimilation and 

forecast system given the assumed error estimates therein.   

Like bred vectors, singular vectors are the fastest growing perturbations for a 

specific region at a specific time, and are most suited for adaptive sampling (e.g., 

Baker and Daley 2000). Unlike bred vectors, singular vectors are assumed to grow 

linearly in time. Singular vectors are perturbations with the greatest linear growth 
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over a specified time interval, for a given norm, and defined over a specified target 

area. Singular vectors are only valid for time intervals for which the growth of a 

perturbation is linear. For the atmosphere, this is likely to be limited to a few days, 

and for the ocean it is possibly a week or two, depending on the underlying dy-

namics. To determine the growth of a perturbation over time a tangent-linear ver-

sion of the full non-linear forecast model is required, along with the adjoint of the 

tangent linear model. 

Before one can compute the fastest growing perturbations an appropriate 

choice of norm must be made for each. Ideally the initial norm is related to the 

spatial distribution of expected errors in the analysis while the final-time norm 

should reflect the forecast errors of interest. In practice, in NWP the total energy is 

often used for both initial and final time norms (e.g., at ECMWF). In practice 

mixed evolved and initial singular vectors are used in ensemble prediction allow-

ing the growth rates of the perturbations to be tuned for a given application.  

The notion of a target area is important for the computation of singular vectors. 

Singular vectors are the initial perturbations that result in the fastest growing per-

turbations in a target region. For example, Fujii et al. (2008) seek to predict the 

development of the Kuroshio meander with a lead time of 60 days. The target area 

is the region in which the Kuroshio typically meanders. Singular vectors are the 

perturbations, either within or outside of the target area, that result in large pertur-

bations in the target area 60-days after initialisation. In NWP, the target area might 

be a major city and the time interval might be 10 days. The singular vectors are 
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the initial perturbations that lead to large changes over that major city 10 days in 

the future. 

Different choices of time interval, norm, or target area lead to different sets of 

singular vectors (e.g., Palmer et al. 1998; Snyder et al. 1998). This is in contrast to 

bred vectors that are relatively insensitive to the choice of rescaling (e.g., Corazza 

et al. 2003). 

An example of an adjoint-based method used to calculate forecast sensitivity is 

described by Fujii et al. (2008). They use the Multivariate Ocean Variational Es-

timation system to investigate the types of perturbations that influence the large 

meanders in the Kuroshio Current. Specifically, they show that the leading singu-

lar vector represents a growing perturbation that leads to further development of 

the large meander. Figure 4a shows the perturbation to vertical velocity and pres-

sure at 820-m depth at initial time. The anticyclonic anomaly positioned at 133°E, 

31°N causes cold advection across the Kuroshio Current and downwelling to the 

north. This results in the development of an anticyclonic circulation in the deep 

layers, and induces baroclinic instability. The corresponding anomalies to sea sur-

face height (SSH) that coincide with these developments are summarized in Fig-

ure 4b-d, showing the development of a large meander about two months after the 

initial perturbation. This analysis indicates that to properly predict the Kuroshio 

meander, a forecast model must be well constrained by data assimilation around 

133°E, 31°N and particularly at depths of 1000 to 1500 m. Thus, additional obser-
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vations in that region are likely to benefit the forecast of the variability of the Ku-

roshio Current. 

 

Figure 12: (a) Perturbation fields for pressure (contour; dotted lines are negative) 
and vertical velocity (shading; positive is downward) at 820-m depth. (b-d) SLA 
(scales are different for each panel) that result from the perturbations represented 
in panel (a) at Day 0. Thick lines show the Kuroshio Current axis in the back-
ground state. Adapted from Fujii et al. (2008a). 
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Summary 

The use of models and data assimilation tools to aid the design and assessment 

of ocean observing systems is increasing. The most commonly used technique for 

evaluating the relative importance of existing observations is OSEs and OSSEs. 

OSEs are particularly useful for evaluating the relative importance of existing ob-

servations. But they are expensive to perform and analyse, and are sometimes dif-

ficult to evaluate and interpret. Despite this, as probably the simplest method for 

evaluating observing systems, OSEs are commonly used. OSSEs are most useful 

for examining the potential benefits of future observational platforms, and for con-

trasting the relative merits of different observational strategies. Like OSEs, OSSEs 

are easily implemented. However, OSSEs tend to return overly optimistic results, 

owing to the implicit dynamical consistency between the model-generated obser-

vations that are assimilated, and the models into which those observations are as-

similated. Also, OSSEs are always limited by the realism of the models that are 

used. 

Like OSEs and OSSEs, analysis self-sensitivities can be computed from an as-

similation system regardless of the assimilation methods being used. Analysis 

self-sensitivities quantify the relative importance of every assimilated observation 

for a given implementation. Unlike OSEs, analysis self-sensitivities are relatively 

inexpensive to compute and analyse, and could feasibly be implemented routinely 

by operational centers. In this case, analysis sensitivities could provide an up-to-

date, routine evaluation of the current observing system. Such analyses could be 
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very beneficial to the observational community, by identifying existing and devel-

oping gaps in the global ocean observing system.  

A range of ensemble-based techniques are available for observing system de-

sign and assessment. These include objective, ensemble-based array design (e.g., 

Sakov and Oke 2008), breeding (e.g., Toth and Kalnay 1997), and variants of 

breeding, like the ETKF (Bishop et al. 2001). Ensemble-based methods generally 

require an ensemble-based data assimilation system, such as ensemble optimal in-

terpolation (e.g., Oke et al. 2008) or the ensemble Kalman Filter (Evensen 2003), 

for their application. Ensemble-based techniques are generally easily imple-

mented, but often require significant computational resources and are subject to 

sampling error. 

Various adjoint-based methods are also suitable for observing system design 

and assessment. These include analysis of representers (e.g., Kurapov et al. 2009), 

adjoint sensitivities (e.g., Langland and Baker 2004) and singular vectors (e.g., 

Fujii et al. 2008). The application of adjoint-based techniques generally requires a 

system’s tangent linear model and its adjoint to be available. 

Bred vectors and singular vectors are somewhat analogous. Both methods di-

agnose the system’s fastest growing modes, or instabilities. With respect to adap-

tive sampling, regions where these modes project strongly might be good places to 

deploy additional observations. Assimilation of those additional observations may 

improve the initialisation of a forecast, thereby improving its forecast of the de-

veloping instability. Although bred vectors and singular vectors are very similar, 
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in practice, breeding is much more easily implemented. Also the details of bred 

vectors are relatively insensitive to the details of the rescaling parameter, or norm, 

used in the breeding process, but bred vectors are sensitive to the rescaling inter-

val. By contrast, singular vectors do tend to be sensitive to the choice of norms 

used. 

The field of observing system design and assessment has seen many advances 

in techniques over the past decade. Together with the maturing nature of ocean fo-

recasting, this has seen an increase in the use of models and data assimilation tools 

to aid the design and assessment of observing systems. The relevance of most me-

thods depends on the realism of the models used. One way to combat this is to 

employ multiple methods and multiple models. Under the auspices of GODAE 

OceanView, it is hoped that this can be achieved through real international coop-

eration. 
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