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Abstract

The use of models and data assimilation toolsddte design and assessment
of ocean observing systems is increasing. The nasmonly used technique for
evaluating the relative importance of existing glatons is Observing System
Experiments (OSEs), and Observing System SimulaEgperiments (OSSES).
OSEs are useful for looking back, to evaluate tative importance of existing
of past observational components, while OSSEs se&ulfor looking forward, to
evaluate the potential impact of future observati@omponents. Other methods
are useful for looking at the present, and areefloee most useful for adaptive
sampling programs. These include analysis selfih@tiss, and a range of en-
semble-based and adjoint-based techniques, inguslieeding, adjoint sensitivi-
ty, and singular vectors. In this chapter, the epts for observing system design
and assessment are introduced. A variety of diftem@ethods are then described,
including examples of oceanographic applicationsamh method.

Introduction

The use of models and data assimilation tools dotla¢ design of observing
systems has a long history in numerical weathediptien (NWP; e.g., Kuo et al.,
1998; Bishop et al. 2001; 2003) and is gaining muton@ in the ocean modelling
community (e.g., Oke et al. 2009). Methods for obisg system design and as-
sessment range from basic analysis of models #sagte-correlation length- and
time-scales, signal-to-noise ratios, and covariasfcdifferent variables and dif-

ferent regions. Classical model-based approachebderving system design and



assessment involve observing system simulation rarpats (OSSEs) and ob-
serving system experiments (OSEs). More sophisticatethods have emerged as
a result of advances in data assimilation methagoland there are now a suite of
ensemble-based and adjoint-based techniques faynileg observing systems and

evaluating the impact of observations on assimitathodels.

Observing system design and assessment has a istogyhin NWP. Most
NWP applications relate to adaptive sampling. Ad@psampling is the problem
of identifying where additional observations shobkl made to better initialise a
forecast. Typical examples of adaptive samplinggmams in NWP relate to the
prediction of extreme weather, like hurricanes.(e3glaro et al. 1999). The idea
is that if additional observations are made wheréatability is developing, or is
likely to develop, then those observations can smduo better initialise an NWP
forecast and therefore improve the skill of thatef@mst. Adaptive sampling in
NWP arguably began in 1947, when the hurricanemesigsance program was
established to observe of the location and intgneit hurricanes. In 1982,
NOAA's Hurricane Research Division began resedights around hurricanes to
improve the initialisation of NWP forecasts. Thewid that the error in the fore-
cast tracks of hurricanes reduced by 25% as atdiesalt of their adaptive sam-
pling program. In 2003, the World Meteorologicalgiisation (WMO) initiated a
program called THe Observing system Research aadid®ability EXperiment
(THORPEX). THORPEX was established with the int@nimprove the accuracy
of NWP forecasts of high-impact weather. Within TRIPEX, the data assimila-

tion and observation strategy working group waaldished to assess the impact



of observations and various targeting methods ¢eige guidance for observation
campaigns and for the configuration of the globd@erving system. For an excel-
lent summary of THORPEX activities and results, isader is referred to Rabier

et al. (2008).

Ocean data assimilation capabilities have progdesapidly since the begin-
ning of the Global Ocean Data Assimilation Expemte(GODAE;
www.godae.org/ A suite of analysis and forecast systems are mssd routinely
for operational and research applications. All G@Dfarecast and analysis sys-
tems are underpinned by the Global Ocean ObseSystem (GOOSwww.ioc-
goos.or{ that is comprised of satellite altimetry, satellsea surface temperature
(SST) programs, delivered through the GODAE HighsdRation SST effort

(GHRSST;www.ghrsst-pp.orj and in situ measurements from the Argo program

(Argo Science Team 1998), the tropical moored KvbgPhaden et al. 1998), sur-

face drifting buoys Www.aoml.noaa.gov/phod/dpcexpendable bathythermo-

graph (XBT; www.jcommops.org/soopip/www.hrx.ucsd.edu and tide gauge

networks. Each of these observation programs greresive and require a signifi-
cant international effort to implement, maintainpgess, and disseminate. Careful

design and assessment of the GOOS is thereforantad.

Observing system design and assessment activitidg®eioceanographic com-
munity are becoming more common. One of the keylaeges for the oceano-
graphic community is to adequately combine thereffof researchers operating

the climate domain, under CLIVARv{(vw.clivar.com Heimbach et al. 2010), and



those operating in the short-term forecasting damaunder GODAE

(www.godae.org/ OSSE-OSE-home.hti@ke et al. 2009; 2010). CLIVAR activi-

ties tend to focus on climate monitoring and ocesate estimation, while
GODAE activities tend to focus on mesoscale valiigland short-range forecast-
ing. Observational requirements for these differgmplications are likely to be

quite different.

In this chapter, the concepts of observing systemigth and assessment are in-
troduced, followed by a description of commonly diggethods. The description
of each method is intended to be practical, wils focus on theory and more fo-
cus on how things are actually done. For each ndethat is discussed, an ocea-
nographic example is included, where possible. Thapter concludes with a

short summary.

Concepts for observing system design and assessment

Before undertaking any activity that relates toestimg system design and as-
sessment, there are several key questions thattadesl addressed. These ques-
tions relate to the motivation for establishingadiserving system, practical limi-

tations, and how the observations will be used.

The motivation for establishing an observing sysisnobviously important.
What is it that the observing system is intendethtmitor? This might be, for ex-

ample, the heat content in a specific region, thleme transport of a current sys-



tem, the variability of the thermocline depth, awdon. An observing system that
is optimised to monitor a specific aspect of theastcirculation is unlikely to be
optimal for monitoring all other aspects of thecalation. For example, an observ-
ing system that is optimised for initialising a seaal forecast system that seeks to
predict the onset of El Nino will resolve dynamidahtures that vary on time-
scales of El Nino like tropical instability waveand is likely to be quite different
to an observing system that is optimised to comstea eddy-resolving ocean
model that will resolve dynamical features thatyvan shorter time-scales. So, the
motivation for the observing system should be ¢laad where the intended use
of the observing system is broad, the optimisastrategy should attempt to re-

flect this as much as possible.

An understanding of what observations are feasthimportant. This is likely
to be dictated by budget, technology, and conveieBDeployment and mainte-
nance of observations is usually expensive, so ladesign array that is easily
deployed and maintained (e.g., with moorings alsinigping lanes) may be essen-
tial. The budget may provide guidance on the nunavet types of instruments
that can be considered (e.g., number and type afrings, gliders, Argo floats,
drifting buoys, etc). Many studies begin with ad@fieation that, for example, the
observation array may consist of up to 10 moorthgs each measure temperature
and velocity between the surface and 300 m depith; 2k the question, where

should those moorings be deployed?



The question of how the observations will be usedifficult because in most
cases there are likely to be multiple users, eaohgssing the observations using
different methods. For example, observations miightissimilated into a number
of models using different assimilation methodspbservations might be gridded
using a variety of techniques. It is typical, te@se that a specific analysis or as-
similation system will be used to objectively map bbservations. In this case, it
is important to be clear about the characteristitg limitations of the particular
analysis tool of choice. A better approach is te asmulti-system (e.g., multi-
model) approach, where several systems are usedhtoate different observation
arrays. This is the aspiration of many of the ati¢is under GODAE OceanView

(seewww.godae.org/ OSSE-OSE-home.html

The density of observations required to monitoivemy process is largely dic-
tated by the de-correlation length-scales of th&l§ that are to be observed. This
characteristic determines how far apart observateam be made before important
features are missed. Similarly, de-correlation tsoeles determine how fre-
guency observations should be made. The use ofImtmldetermine length- and
time-scales is often fraught with difficulty, besguof sub-grid-scale parameteri-
sations within models largely determine these scalad those parameterisations
are generally inaccurate and are sensitive to nsahjective choices made by the
model developers (e.g., O’Kane and Frederiksen 20BBderiksen and O’Kane

2008).



Some more subtle characteristics also become iaofor the design of ob-
serving systems. The co-variability of the oceanriscal. Are there locations or
quantities that are particularly indicative of thetire system that is to be ob-
served? That is, is there a specific location thalhe pulse of the region of inter-
est? The Southern Oscillation Index (SOI) is a gegdmple of this. The SOI is
calculated from variations in the air pressureedéhce between Tahiti and Dar-
win. Periods of sustained negative SOI usuallyaspond to El Nino events that
are characterised by warming in the central trdgiaific Ocean, a decrease in

the trade winds, and reduced rainfall over mucAwsdtralia.
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Figure 1. Examples of the ensemble-based correldt@ween sea-level at a
reference location, denoted by the star, and sed-la the surrounding region.
Adapted from Sakov and Oke (2008).



An example of how a model can be used to idenkifpulse of the ocean is
presented in Figure 1, showing two examples ofetation fields from an ensem-
ble-based data assimilation system (Sakov and @K&)2 Ensemble-based as-
similation systems use an ensemble of anomalie® (edlled perturbations or
modes) to implicitly represent the system’s backgrb error covariance. The
background error covariance determines how an whsen-model difference is
projected onto the model state during the assiioilagtep. So the ensemble-based
correlation (or covariance) between an observabléable at reference location
and the rest of the model state represents thetedoot-print of an observation
at that reference location. The examples presantEdjure 1shows the ensemble-
based correlation between sea-level at differefereace locations and sea-level
in the surrounding region. The regions where thelandes of these correlations
are large correspond to regions where an obsernvétion that reference location

will have a significant impact.

The first example, shown in Figure 1a, indicates #n observation in the east-
ern Indian Ocean, off Java, is well correlated ve#a level along the coast and
over a very broad region. The spatial structuréhefcorrelation map shows a di-
pole structure. This structure is observed in sEv@evious studies (Chambers et
al. 1999; Feng et al. 2001; Wijffels and Meyers £0Rao and Behera 2005).
Also, the footprint of the positively correlatedyien reflects Rossby—Kelvin wave
patterns. This indicates that observations offshafréndonesia are likely to be
particularly useful for constraining a data assatiig model that uses an ensem-

ble like that described by Sakov and Oke (2008).



The second example, shown in Figure 1b, indicdigissea level off Somalia is
relatively uncorrelated with sea level across theital Indian Ocean. The region
off Somalia is dominated by mesoscale variabilitgttspawns from the energetic
and highly variable boundary currents in this regi/hile the mesoscale variabil-
ity in this region is well organized (Schott and Gfeary 2001), its variability is
apparently somewhat chaotic and is characterizedhioyt de-correlation length
scales. This suggests that, while many observatitmsbe required in the north-
west tropical Indian Ocean to adequately repretentvariability there, an obser-
vation in this region will not impose a significasdnstraint on a data assimilating

model that uses the ensemble described by Sako@kad2008).

Like any optimisation problem, observing systemiglesnd assessment ulti-
mately involves the quantification of how good dmserving system is. Conse-
quently, the most important question for any obisgrsystem design or assess-
ment activity is: what is it we seek to minimiseRisTis quantified by a cost
function, metric, or diagnostic. The possible nustrihat could be minimised by
are virtually unlimited. We might seek to minimigee analysis error variance of
some quantity (e.g., temperature, salinity, velgdihermocline depth) for some
region (e.g., tropical Pacific Ocean, North Atlapgtc.). We might seek to mini-
mise the forecast error of some quantity in a giregion. Or perhaps we seek to
minimise uncertainty of an integrated quantity, lsas the transport through a
strait. We may even wish to minimise several quisti(e.g., temperature and ve-
locity error), which may require some sort of nolization, or weighting, that re-

flects the variance of different variables or retimportance for a given applica-
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tion. In every case, we must define a cost fungtimmmetric, that we seek to mi-
nimise. The results will often depend heavily ois ttost function (e.g., Sakov and

Oke 2008).

Methods and Examples

Commonly used techniques for evaluating the benefitdifferent observation
types and arrays include Observing System Expetsn@gSEs), Observing Sys-
tem Simulation Experiments (OSSESs), analysis saif#ivities, ensemble-based
methods, and adjoint-based methods. All of thesthas require some form of
data assimilation. Of these methods, OSEs, OSS&smaalysis self-sensitivities
can all be applied regardless of the assimilatemhnique used. By contrast en-
semble-based and adjoint-based methods requirdfisgeols for their applica-
tion. Details of all of these methods, includingeples, follow. Other methods,
not described in detail here, that have also begptiedl to observing system de-
sign and assessment include genetic algorithmda@wedr et al. 1991). Applica-
tions of genetic algorithms to oceanic applicationdude the optimisation of sur-
face drifter deployments (Hernandez et al. 19989, acoustic tomography arrays

(Barth 1992).
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Observing system Experiments - OSEs

The most commonly used method for employing asaiing models to assess
observing systems is OSEs. OSEs generally invbleesystematic denial, or with-
holding, of different observation types from a dassimilating model in order to
assess the degradation in quality of a forecastnatysis when that observation
type is not used. Importantly, the impact of eablsewvation type may strongly
depend on the details of the model into which they assimilated, the method of
assimilation, and the errors assumed at the asgiarilstep. It is therefore instruc-
tive to consider results from a range of differamdels and applications in an at-
tempt to identify the robust results that are comnma number of different sys-

tems.

Results from OSEs can sometimes be difficult terimtet. Suppose four differ-
ent observation types, from different platformg(eArgo floats, satellite SST, al-
timetry, moorings) are typically assimilated. Weghti expect that there is some
redundancy between these data types. For exangues ef the information con-
tained in an Argo profile is represented by altimee.g., Guinhut et al. 2004).
Similarly, some data in SST fields is also measurngdirgo floats. If we with-
hold Argo data from an OSE, we might expect altijmand SST to become more
important, so the true value of an observationplzservation type, is difficult to

really assess with OSEs.

In some cases, subtle details of the model/asgionlaystem can complicate

the interpretation of OSEs. For example, Vidar@le{2007) report a case when
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they with-held observations in the tropics. Theyrfd that with-holding this data
degraded the circulation at high latitudes. This wazzling. They traced this link
back to the quality control system of their assatidn. An important step for any
quality control system is a comparison with the elzdbackground field. If ob-
servations differ significantly from the backgroufield, they may be flagged as
bad, and automatically with-held from assimilation.ddid et al. (2007) found
that when observations in the tropics were witldhé¢he system’s background
field changed enough to influence the quality aoinglystem’s decisions. This led
to data at higher latitudes being flagged as b#unately degrading the model
fields at higher latitudes. Several other instammfequality control decisions in-
fluencing OSE results in similar ways have beerorg in the literature (e.g.,
Bouttier and Kelly 2006; Tremolet 2008). Subtletié&e these can, in some cases,

make OSEs difficult to interpret.

OSEs are usually conducted for a past period of tinfor example, the last 3
years, or the time period when four satellite adtiens were operating. While this
is very instructive, the GOOS is constantly chagdie.g., Figure 2). The number
and distribution of Argo floats changes as newtfice deployed and old floats
expire. New altimeter missions are launched andhi&sions end — and the sam-
pling strategies of different altimeter missions aften different. This means that
OSEs can become outdated. For example, using areddsrecast system, Vi-
dard et al. (2007) and Balmaseda et al. (2007)oparfa series of OSEs to eva-
luate the impact of Argo, XBT, and tropical moorngn forecast skill. Vidard et

al. (2007) perform OSEs for the period 1993-2008 Balmaseda perform OSEs
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for the period 2001-2006. So, for most of Vidardaks OSEs, Argo coverage is
sparse, while for most of Balmaseda et al.’s O®¥go is substantial. As a result,
Vidard et al. report only faint praise for the bfnef Argo, but note that it was
probably too early to be sure. By contrast, Balrdaset al. conclude that Argo is

instrumental in iniatialising their forecast systerparticularly for salinity.
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Figure 2: Observations during January of 2001,42@D07, and 2010; green,
blue, and yellow dots denote Argo floats, XBT/CTDofiles, and buoys
respectively. Images sourced fremvw.coriolis.eu.orgn February 2010.
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Another limitation of OSEs is the significant comgtional and human re-
sources required to undertake, analyse, and imtiethem. Consider the study of
Oke and Schiller (2007), for example. They condii@eseries of 6-month model
runs including an experiment with no assimilatian,experiment with all data as-
similated, plus experiments with each observatype {Argo, SST, and altimeter)
with-held. Additional experiments could include sieowith 1 altimeter, 2 altime-
ters, 3 altimeters, or 4 altimeters; experimenth wifferent SST products assimi-
lated; experiments with only a sub-set of Argo pesf for example every other
Argo profile. Such a series of OSEs equates tguifgiant amount of computa-
tion, and a large amount of data that requiresgssiag, analysis, and interpreta-
tion. This is not always achievable, especially wlehigh resolution model is

used.

Evaluation of OSEs is always a challenge. For amies of OSEs, thbest ex-
periment, by which all others are typically comghris always the run that assi-
milates all observations. Evaluation of this ruthisrefore problematic, as there is

usually no independent set of observations thabeamsed to evaluate this run.

An example of a series of OSEs, designed to ealilet relative importance
of altimetry, Argo, and SST for constraining an wydésolving ocean model, is
described by Oke and Schiller (2007). Using a 4f&8olution ocean general cir-

culation model and an ensemble optimal interpatatiata assimilation system
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(Oke et al. 2008), they systematically with-holtinaétry (denoted ALTIM), Ar-

go, and SST from a reanalysis system for the pddecember 2005 to May 2006.
The impact of with-holding each data type is illagtd in Figure 3, showing the
residuals between reanalysed SLA and along-tragk $he residual maps quan-
tify the difference between observed and reanaly&efl for each OSE. Reana-

lysed SLA is compared to along-track SLA from alb#able altimeters (Jason,

Envisat, and GFO).
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Figure 3: Root-mean-squared residual between nedtlelhd observed sea-level
anomaly for different OSEs. Adapted from Oke andil®r (2007).

It results in Figure 3 indicate that when only Argad SST are assimilated the
SLA residuals are much smaller than the OSE thsitrélsted no observations,

denoted NONE in Figure 3. This indicates that safthe information in altim-
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etry is also represented by the SST and in sitund % observations. This is ex-
pected, based on the well understood dynamicatioakhip between SLA and
sub-surface T and S, but it also demonstrates alneipof the multivariate EnOl
scheme that is used by Oke and Schiller (2007).SIt% residuals are noticeably
smaller when altimetry is assimilated, particulamy the regions of energetic
mesoscale variability like the Tasman Sea, alomgphth of the Antarctic Cir-
cumpolar Current and off Western Australia, where teeuwin Current fre-
quently sheds eddies (Figure 3). This suggestsvthdé SST and Argo represent
the broad-scale SLA features, they do not adequaéslolve the details of the

mesoscale.

Observing System Simulation Experiments - OSSEs

Another commonly used technique for evaluating gh&ential benefit of dif-
ferent observing systems is OSSEs. OSSEs oftervienamme sort of twin expe-
riment, wheresynthetic observations, usually extracted from a model, are assimi-
lated into an alternative model or gridded usingcdnservation-based analysis
system. OSSEs are commonly used to assess thetiofpsmme hypothetical ar-
ray of observations that may not exist yet. Thisangethat these methods can be
used to contribute to the design of future obsendgstems, quantifying their

possible impacts and limitations.

OSSEs have been employed to support the desigreahi observing systems

since before the altimeter era. For example, theyBand Marshall (1989), Hol-



17

land and Malanotte-Rizzoli (1989), performed OS8Esupport the assessment of
designs for the early altimeter missions. SimilaGSEs were conducted to sup-
port the design and assessment of the TAO arrahdntropical Pacific Ocean
(e.g., Miller 1990) and the PIRATA array in the gical Atlantic Ocean (e.g.,

Hackert et al. 1998).

Several good examples of OSSEs were conductedgdthién planning of the
tropical Indian Ocean mooring arragZl(IVAR-GOOS Indian Ocean Panel and
Co-authors 2006). These OSSEs were conducted leyadadifferent groupsiis-
ing different models and different techniques. Tésults from these studies con-
tributed to discussions during the planning of thisoring array. Vecchi and Har-
rison (2007) presented results from a series of E3S@sing a high resolution
ocean model and an adjoint-based assimilation sy&ieevaluate the ability of an
integrated observing system, including Argo obsgowa, XBT lines, and the
proposed mooring array to monitor intraseasonaliatetannual variability. Bal-
labrera-Poy et al. (2007) used a reduced-order Halfiter to objectively deter-
mine an array for mapping sea surface height and 8®8e and Schiller (2007)
use an approach based on empirical orthogonal imxctEOFS) to assess the
proposed mooring array’s ability to monitor intrasenal and interannual variabil-
ity. Vecchi and Harrison (2007) concluded that émjainction with the integrated
observing system, the proposed mooring array shioeldapable of resolving in-
traseasonal and interannual variability. Both Bakaa-Poy et al. (2007) and Oke
and Schiller (2007) argued that the proposed amay oversample the region

within a few degrees of the equator. These stugl®s suggested that key regions
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for monitoring seasonal- to-interannual variabibine south of 8°S, at about 4°-5°
from the equator and along the coast of Indonds$iase regions correspond to the
locations of the maximum amplitude of seasonal Bpssaves (Masumoto and
Meyers 1998; Schouten et al. 2002), equatorial Rosgves, and strong Indian

Ocean dipole events (Murtugudde et al. 2000), iEspy.

An example of the above-mentioned OSSEs is predent€igure 4, showing
the standard deviation of the depth of th€é@@sotherm (D20) from a model,
along with the root-mean-squared error of D20 i0 ®SSEs. Each OSSE uses
output from 18-years of a model run. The first @geare used twain the EOF-
based analysis system that is described by Oké&ahiller (2007), and the last 9-
years is used for cross-validation, and to evalhate well different mooring ar-
rays resolve variability of D20. For each OSSE, ldst 9-years of the model run
are sampled at mooring locations; thadwservations are perturbed with white
noise according to their assumed errors;dbeervations are analysed, and the er-
rors of the analysed D20 fields assessed. Figimdidates that the proposed array
resolves the variability of D20 very well near thguator, where the root-mean-
squared errors are small, but poorly south §51@vhere the errors are relatively
large. An alternative mooring array is also tedigdDke and Schiller (2007). The
alternative array is generated objectively, by mmaging the projection of obser-
vations onto an ensemble that is used for assiomilaFor a detailed description of
the method, the reader is referred to Oke and IBck{#007). The alternative ar-
ray, presented in Figure 4c, has fewer mooringsecto the equator and in the

northern Indian Ocean, and more moorings betweehbi®. Variability of D20 is
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still well resolved by the alternative array neae equator, but owing to the addi-
tional moorings to the south, the variability of B better resolved there. The
latitudes of high D20 variability to the south (18%S) correspond to the maxi-
mum amplitude of seasonal Rossby waves (Masumotb Meyers 1998;

Schouten et al. 2002). The study by Oke and ScKi#807) concluded by sug-

gesting that additional moorings in those latitudesworth considering.
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Figure 4: (a) Standard deviation of the depth ef 2F°C isotherm and the root-
mean-squared error for (b) the proposed Indian @d¢aoring array and (c) an
optimized mooring array for a series of OSSEs; @antintervals are 2.5 m.
Adapted from Oke and Schiller (2007).
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OSSEs can be very instructive for assessing thenpat impact of different
observing systems. However, they have severaldtioits. It could be fair to say
that OSSEs, in the form of twin experiments dowemed to succeed - particularly
if the same model is used to produce the syntiofiservations, as the model used
for assimilation. In this case, the dynamics of tedel andbbservations are per-
fectly compatible. As a result, some OSSEs using &xperiments report very
low errors in assimilating model runs. In some safiee errors are so low, and the
results so optimistic, that the conclusions of sattidies must be regarded with

suspicion.

The relevance of any series of OSSEs ultimatelyedds on the assumptions
made in configuring the OSSEs. In all cases, assampare made about the dy-
namics and the data assimilation methodology. Imiglicitly assumed that the
models capture the dynamics correctly and the ghtiens are assimilated appro-
priately. Assumptions are made about the obsermvaticors, and about model er-
rors. In most cases, synthetic observations aneligted by noise — and the noise
is almost always assumed to be white in time ardaged. It is also common to
assume that there will be no data outages, andi#ttatare all available at the time

of assimilation. In the operational environmenis final assumption is rarely true.

Many OSSE studies employ methods that do not irvolin experiments. For
example, Brassington and Divakaran (2009) analysdlteoretical impact of sea-
surface salinity observations on an ensemble-bdséal assimilation system by

examining various characteristics of the ensenfdddiller et al. (2004) examine



21

modelled fields to quantify the likely signal-toise ratios of different sampling

strategies for the Argo program.

OSSEs can be a very instructive tool for evaluatirgpotential value of future
observing systems. However, the assumptions mad@38Es are often optimis-
tic, and the results from OSSEs are therefore affgimistic — and should be re-

garded as indicative only, and perhaps qualitativaost cases.

Analysis Self-Sensitivity

In general, regardless of the method, a data dasioni system combines a
background field (of either 2-, 3- or 4-dimensiongih a set of observations,
yielding an analysis. Different assimilation methatb this in different ways. But
for all methods, there exists a so-called analysifsensitivity. The analysis self-
sensitivity quantifies the importance of each imdi)l observation for a given
analysis. Consider a couple of cases. Suppose wehzmge a given observation
and the analysis does not change. In this case€awesay that the analysis is not
sensitive to that observation, and conclude thet itnimportant. This may occur
if the observation has a large error, or is ingiae of dense observations — so it is
redundant. Conversely, consider a case where ggehana given observation re-
sults in a significant change to the analysishia tase, we can say that the analy-
sis is sensitive to that observation, and concthdeit is important. This may oc-
cur if the observation is very accurate, or is blata-sparse region. The sensitivity

referred to above is called the analysis self-$ieityi
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In practice, self-sensitivities are diagnosed bg $o-called influence matrix
(Cardinali et al. 2004). The influence matrix isnply a subset of the Kalman
gain,K. The Kalman gain is like a regression matrix, niaggach element of the
background innovation (difference between a baakgcfield and observations)
onto the full model state. The influence matrisimply HK , whereH, is an oper-
ator that interpolates from model-space to obsemeagpace (often just linear in-
terpolation). The matriHK is square, with dimensiop by p, wherep is the
number of observations assimilated. The diagomahehts oHK are the analysis
self-sensitivities — they map the background intiovafrom the observation loca-
tion to itself. Cardinali et al. (2004) and Chapeikal. (2006) provide a practical
recipe for diagnosing analysis self-sensitivitiemi any assimilation system — re-
gardless of the assimilation method. Briefly,

1. Perform a standard analysis by assimilating obsensd;

2. Perturb the assimilated observatiods¥ d) according to their expected
error (from the diagonal elements Rf the observation error covariance
matrix);

3. Perform another analysis by assimilating the pbedrobservations; and

4. Compute the self-sensitivitid4K ;;:

HK; = (di" - d) (Ha - Ha) / Ry,

wherea anda’ are analyses produced using unperturbed and pedubserva-
tions respectively. The minimum calculation to mstie the self-sensitivities is a
second analysis. However, this calculation is stiliig sampling error, due to the

random nature of perturbing the observations, sdtipfes perturbed analyses
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should be calculated in practice, to obtain robestimates of the true self-
sensitivities. The diagonals of the influence mxatan be analysed, or the partial

trace ofHK can be averaged for different regions, differeariables, and so on.

With an estimate of the self-sensitivities at hahds common to diagnose the
so-called degrees of freedom of signal (DFS) aedrformation content (IC) for
different sub-sets of observations. The DFS prowddendication of how many
truly independent observations are present in argsub-set of observations. At
most, the DFS is the same as the number of obsmmsatn this case, the IC is
100% and there are no redundant observations. Cxalyeif the DFS is much
less than the number of observations, the IC dfshtof observations is low. In
this case, the IC may be small and there is sicamti redundancy in the observa-

tions.

An example of the IC and DFS for different obseiomtypes using the Blu-
elink reanalysis system (Oke et al. 2008) is giwveRigure 5. Based on these re-
sults, it appears that both altimetry and SST ofagiems are well used by the
Bluelink system. However, information from the Ardata is either not extracted
by the Bluelink system in an optimal way, or is gwhat redundant — possibly
well represented by the other assimilated obsemsatiAt this stage of develop-
ment, the former explanation seems most likely.pBgducing these, and other,
diagnostics from a number of GODAE systems, iniscgpated that the true value

of all observations for GODAE systems can be ralyirmonitored and quanti-
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fied. In turn, these evaluations could be fed btackhe broader community for

consideration.
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Figure 5: The Preliminary estimates of the InfoioratContent (IC; %), degrees
of freedom of signal (DFS) and the number of adatedl super-observations (#
Obs) for the Bluelink reanalysis system in the oagb0-186E, 60°S-equator,
computed for 1 January 2006. The scale for thesI@ ithe left and the scale for
the DFS and # Obs is to the right.

In addition to providing a quantitative indicatiohthe importance of each ob-
servation, and each observation type, for a givealyais, analysis self-
sensitivities can be instructive for tuning assatidn and forecast systems. The
goal of every assimilation system is to extractragh relevant information from
every observation as possible. That is, to maxintise IC from the above-
mentioned analysis. The type of diagnostic desdribere can contribute to this

process.

Analysis self-sensitivity is a relatively inexpevssito perform and may be feas-
ible for routine application to operational forecagstems. The latter point means

that calculations could be performed on the modly-GOOS. Limitations of
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analysis self-sensitivities however, include thet fhat they are relevant only to
analysis fields — not the forecast fields. Finaliglf-sensitivities also depend on

error estimates used by the assimilation or araksstem.

Ensemble-based methods

A variety of ensemble-based methods can be readéy for observing system
design and assessment. These include the diagrfasisemble-based covariance
fields, of which Figure 1 is an example, the obijextanking of the importance of
observations with regard to their potential imp@acminimise a system’s analysis
error variance, and diagnosis of bred vectors. gcdption and examples of these
follow. Some good references for ensemble-basedruing system design and
assessment activities include Tracton and Kaln®®3), Houtekamer and De-
rome (1995), Toth and Kalhay (1997), Bishop ef(2001; 2003), and Wang and

Bishop (2003).

An example of a series of ensemble-based corraldiidds between sea-level
at time t=0 days, and sea-level in the surroundggpn 4-days earlier (t=-4 days)
and 4-days later (t=+4 days) in the open ocearthseast of New Caledonia is
shown in Figure 6. The correlation fields providsight into the underlying dy-
namics, the spatial length-scales, and the tempength-scales of sea-level. For
this example, a modified version of the 120-mendiationary ensemble that is
used by the Bluelink forecast and reanalysis sygtmassington et al. 2007; Oke

et al. 2005; 2008) is used. It is evident thathis region a dominant dynamical
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process is the westward propagation of sea-levanaties, probably characteris-
tic of Rossby waves. The ensemble-based correfatiodicate that the length-
scales in this region are fairly short, with th#tiance of sea-level limited to with-
in a few hundred kilometers of an observation. Heavethe time-scale seems to
be quite long — the lagged correlations, for t=nd 4 days, are not very much less
than the zero-lag correlations, for t=0 days (Fég6l). We therefore expect that an
observation at some point in time is likely to lepnesentative of the circulation
for some time into the future and into the pasteséhfactors may influence dis-
cussions on the appropriate spatial density anghaesmh sampling of observing
systems in this region. Although the example preexbin Figure 6 uses a statio-
nary ensemble, and is therefore appropriate fod#éstgn and assessment of long-
term monitoring programs, a time-evolving ensenflden an ensemble Kalman
Filter system (e.g., Evensen 2003) that reflects time- and state-dependent
background field errors (so-called errors of thg;daorazza et al. 2003) could
equally be used for adaptive sampling programs erg/kve might seek to identify
good locations for imminent deployments of instraise like gliders or profiling

floats.
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Figure 6: An example of four-dimensional ensemldsdal correlation fields
showing the spatio-temporal influence of a seallelservation in the open
ocean, south-west of New Caledonia. Each panel stioevensemble-based corre-
lations between sea-level at t = 0 days and ses-le\the surrounding region for
time-lags of (a) -4 days, (b) 0 days, and (c) +#sda

Ensemble-based methods for optimal array desigrinareasingly being used
for NWP systems (e.g., Bishop et al. 2001). Thesthaus are based on ensemble
square root filter theory (e.g., Tippett et al. 200’Kane and Frederiksen 2008b)
and allow one to handle large systems in cases @hplicit manipulation of the
background error covariance matrix is not feasiblest of the studies on the en-
semble-based optimal array design consider thelgmobf adaptive sampling and
targeted observation, aimed at improving the mad#recast at a given time

(e.g., Bishop et al. 2001; Langland 2005; Khare Aanderson 2006).

The main steps in the ensemble-based objectivgrmesian observation array
are represented schematically in Figure 7. The diep is the construction of an

initial ensemble that represents the system’s brackgl error covariance before
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any observations are assimilated. Such an ensemigbt be associated with
some variant of the ensemble Kalman Filter (EverZ#8). Given an ensemble
that implicitly represents the system’s backgroenar covariance, and an array
of observations of known error variance, ensemgiese root theory provides an
efficient framework for updating, or transformiribe ensemble so that its updated
error variance matches the theoretical analysi eariance after those observa-
tions are assimilated (Bishop et al. 2001). Theeesaveral ways of implementing
this transformation (see Tippett et al. 2003),adllwhich are equivalent, but the
most computationally efficient transformation isattof the ensemble transform
Kalman filter (ETKF; Bishop et al. 2001) and spagifly the serial implementa-
tion of the ETKF. So, the second step is to updla@eensemble to represent the
system’s error covariance after assimilation ofaafhilable observations (Figure
7). The third step is to identify thext best targeted observation. That is, the ob-
servation that transforms the ensemble to yieldehsemble with the smallest
analysis error variance. This targeted observatiddentified by explicitly trans-
forming the ensemble for all possible observatiang identifying the observation
that minimises the ensemble’s analysis error vadaithis is érute force calcu-
lation — however, the update from a single obs@was inexpensive, so this ap-
proach is generally feasible, even for systems witarge state dimension. Once
the latest targeted observation has been identitiedensemble is updated and the
process of identifying the next best targeted olzem is repeated, until the

number of targeted observations has been reached.
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Initial ensemble -
representing the system’s
background error covariance
before assimilation

v
Updated ensemble —
representing the system’s
background error covariance
after assimilation of available
cobservalions

Identification of the next best
targetted observation

v
Ensemble update — to reflect
the impact of the latest
targetted observation

Figure 7: Schematic diagram depicting the seridutation of an optimal obser-
vation array. The dashed arrows represent thel séetification of targeted ob-
servations and the ensemble updates that reducenemble’s variance given
those targeted observation. Adapted from SakovCGkel2008.

The most important step in the ensemble-based apprdescribed above is the
determination of what the targeted observationsraemded to minimise. In prac-

tice, the ensemble includes several different Wéem (e.g., temperature, salinity,

velocity etc.). The identification of the next béstgetted observation can be per
formed so that it minimises a specific aspect efdhalysis error. For example, it
might minimise the analysis errors of temperatara specific target region, or the

analysis errors of mixed layer depth, or the volunamsport through a strait of



30

passage. This criterion may have a significant chpa the objectively designed
observation array (e.g., Sakov and Oke 2008). Ghdetermination of what is to
be minimised is important. For this to be achieved important to be very clear

about the purpose, or motivation, of the observatioay.

An example of an ensemble-based objective obsesyatgm design, from Sa-
kov and Oke (2008), is presented in Figure 8. Bmmple addresses the design
of the tropical Indian Ocean mooring array. It $s@amed that the purpose of this
array is to minimise the analysis error variancelrifaseasonal Mixed Layer
Depth (IMLD). Figure 8 shows the error varianceldlLD before and after as-
similation, for two different models and for thrééferent mooring arrays, and as-
sumes that no other observations are available iceArgo, XBT, altimeter data
etc.). It is assumed that observations from thermgaarray are to be assimilated
into a model using an ensemble-based data assomilsgstem using a stationary
ensemble. Two different ensembles are consideraeh generated by different
model configurations (ACOM2 and ACOM3), with diféet forcing, and inte-
grated for different periods. Three different opdor the mooring array are con-
sidered: the proposed mooring array (denoted CGdf@#y), and an optimised ar-
ray for each model, denoted ACOM2-array and ACOM2aa In this case, the
initial ensemble variance for IMLD is shown, alowgh the final ensemble vari-
ance for IMLD given the different mooring arraysigiire 8). Sakov and Oke

(2008) use different models here in pursuit of moteust results.
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Figure 8: The variance of the IMLD (top row) in AGR (left) and ACOM3

(right), and the theoretical analysis error varafer each model using the CG-
IOP-array (2nd row), and the arrays derived usingeenbles from ACOM2 (3rd
row) and ACOMS3 (4th row), as labelled to the leftemch row. The numbers in

each panel denote the mooring locations and thHémgrmf each location (i.e., the
locations marked “1” are the best location). Adddtem Sakov and Oke (2008).
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The numbers overlying the error variance maps gui€i 8 refer to an objective
ranking of each observation location — the ordewlich they were identified by
the method depicted in Figure 7. In each casembering array is constrained to
a limited number of mooring lines at distinct lolgies — to simplify routine
maintenance of the array. Using the ETKF framewdink,best mooring line is
identified, and then thbest observation for that mooring line is derived. &e t
mooring line with numbers 1-6 is tivest mooring line. For each array considered
and for both models, the best mooring line is ledah the eastern Indian Ocean,
between 90-9%, and the mooring line south of India is also venportant,
ranked 7-12 (or 7-14) for each scenario considerbdse results appear to be ro-
bust, and can aid the decision-makers when moal&sign and priorities are be-

ing made — for example, which mooring line showddeployed first?

Breeding is an ensemble technique that seeks tifjughe structures of the
fastest-growing dynamical modes of a model. Brextors are perturbations to the
model state that grow rapidly in time. Bred vectars particularly useful for
adaptive sampling, where the errors of the dayuaes to identify where an insta-
bility is most likely to originate. More observati®in a region of instability might

better constrain a deterministic forecast, resglimbetter forecast skill.

Breeding was first explored by Toth and Kalnay (2)9fr an NWP ensemble
prediction system. In practice, bred vectors ameged by first initialising a
model with an ensemble of perturbations. Initiathe perturbations are typically

simply small-amplitude white noise. The ensemblimtisgrated for a fixed period
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of time. The perturbations are periodically resdalsing a global (or regional)
scale factor so that they approximate fast-grovéngrs within an assimilation
scheme. The choice of scale factor is importane @ftthe purposes of breeding is
to identify fast-growing instabilities (O’Kane amdederiksen 2008c). In some re-
gions, these instabilities will be best represeitgdea-level anomalies; in other
regions in might be sub-surface temperature, ositenThis should be tuned for
different regions. However, some atmospheric appiios have demonstrated that
the choice of rescaling doesn't significantly irghce the bred vectors (e.g., Co-
razza et al. 2003). This is in contrast to singwectors (see below), which are

very sensitive to the choice of norm (e.g., Paletaal. 1998; Snyder et al. 1998).

In practice, the ensemble perturbations (bred vertosually become well-
organised, coherent structures that can be intghr@nd understood (e.g., insta-
bilities associated with an eddy). This approacttilg allows ensembles to be in-
itialised about the analysis from data assimilattwat contain, by construction, in-
formation about the errors of the day. Thus thedbvectors tend to project
strongly onto regions where forecast errors argelafhe process of breeding is

represented schematically in Figure 9.



34

Perturbed
forecasts

Initial mndom Bred vectors are
perturbations rescaled and
added to the
unperturbed
forecast
>

e time

Unperturbed | Rescaling interval
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Figure 9: Schematic diagram depicting the genearatiobred vectors. An ensem-
ble is initially perturbed with uncorrelated noiSde rescaling parameter must be
chosen carefully (e.g., temperature at 250 m diepkey region). After each res-
caling interval the ensemble perturbations arealescto the same magnitude as
the initial perturbations — but bred vectors depekpatially coherent, well-
organised structures. Each bred vector is therdiffee between a perturbed fore-
cast and the unperturbed forecast.

For an atmospheric example, Houtekamer and Der@8®5) showed that bred
vectors produce similar results to singular vectdescribed below), but they are
much easier to implement (Wei and Frederiksen 20Bdgause of its simplicity,
breeding is a very versatile approach. Bred vedtar® recently been explored by
many operational global weather predictions systémg., O'Kane et al. 2008)
using an implementation that is based on the ETK§.(Wang and Bishop 2003;
Wei et al., 2006). The ETKF is a generalisatiorbideding, but it is more com-
plex and more computationally expensive. The méiierénce is that the ETKF

orthogonalises the bred vectors and seeks to msgithe ensemble spread.
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An example of breeding applied to a regional oamaxdel of the Tasman Sea
is presented in Figure 10. For this example, a sber ensemble is used, and
bred vectors are optimized (rescaled to) amplifgderature anomalies at 250 m
depth. The forecast errors for sea-level, compbiedomparing with a verifying
analysis, are shown in Figure 10a-d along with4heember ensemble averaged
bred vector overlaid. The individual bred vectams also contoured in Figure 10e-
h. For the period shown here, the forecast ernoséa-level is quite large at sev-
eral locations. The bred vectors are independerth®fforecast error; however
they project strongly onto the regions where thedast error is large and spatial-
ly coherent. This indicates that the bred vectoesraliably identifying regions of
growing instabilities. For the case displayed igufe 10, the forecast does not
pick up the developing instabilities (see 11 Martttat, in this case, correspond to
a developing cold-core eddy. With regard to ada&psampling, if this 4-member
breeding system is run in parallel with the opersl forecast system, the regions
of strong growth in the bred vectors might be goaddidates for the deployment
of additional observations — perhaps in the fornglaers or profiling floats. In
this case, the improved initialisation of the fastcin those regions might have

better constrained the forecast and improved thecést skill for this event.
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Figure 10: Examples of (a-d) forecast error forlesal (colour) and the ensemble

averaged bred vector (contours) in the Tasman &wé;(e-h) four bred vectors
overlaid. Each bred vector is a different colour.

Adjoint-based methods

A variety of adjoint-based methods can be readdgdufor observing system
design and assessment. These include diagnosepisenters, adjoint sensitivi-
ties, and singular vectors. A description and eXampf these follow. Some good
references for adjoint-based observing system desigl assessment activities in-
clude Moore and Farrell (1993), Rabier et al. ()9@&laro et al. (1998), Palmer
et al. (1998), Baker and Daley (2000), Langland Ba#ler (2004), and Moore et

al. (2009).

Representers are analogous to the ensemble-bagadacee fields displayed

in Figure 1 and Figure 6. Representers quantifytehgoral and spati&botprints
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of influence of an observation. Using the system’s tangenalimeodel to trace the
influence of an observation into the future, arsdaitljoint to trace its influence in-
to the past, an adjoint-based data assimilatiotesyseadily approximates the co-
variance between a given observation location gpd (e.g., sea-level at a fixed
location) and all other variables at all model dddations for all time. Represen-
ters can help build intuition about how differerfiservation types and locations
influence a data assimilating model. An exampléhefcomponents of a represen-
ter, derived from the Advanced Variational Regio@akan Representer Analyzer
(AVRORA) system (Kurapov et al. 2009), for the dehd®cean is presented in
Figure 11. The background field for these calcaladicorresponds to an idealised
two-dimensional wind-driven upwelling scenario (liig 11a) with characteristics
of the upwelling circulation off Oregon, USA. Ddtabf the model configuration
and assimilation system are described by Kurapal.€2009). They investigate
the structure of representers to better underdtamngotential impact of assimilat-

ing observed sea-level anomalies from altimetettsancoastal ocean model.

The representer components shown in Figure 11 tyahe covariance be-
tween a hypothetical sea-level observation th&0i&km offshore, and the rest of
the model state. The components shown in Figuraré Tor the time of the obser-
vation. The full representer includes time, whére influence of the observation

extends over both time and space.
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Figure 11: The components of a representer in sseshore section for an idea-
lised two-dimensional wind-driven upwelling scenafpanel (a) shows the back-
ground field), showing the covariance at the tirhthe observation (zero time-
lag) between sea-level 20 km from shore and (l)ggkhore wind-stress, (c) sea-
level, (d) across-shore velocity, (e) temperat(fyealong-shore velocity, and (g)
salinity. Contour intervals are provided in théestfor each plot. The contour in-
tervals (C.1.) for panels (a, d-g) are marked. Addgrom Kurapov et al. 2009.
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The fields in Figure 11 show how the assimilatigstem updates the model
state when the observed offshore sea-level is |thaar the modelled background
estimate. The changes introduced by the assimilafe consistent with a streng-
thening wind-driven upwelling, with stronger upviet] favourable along-shore
wind stress, lower sea-level over the shelf, offelftow near the surface and on-
shore flow through a bottom boundary layer, an kecated baroclinic coastal jet,
and a temperature (salinity) decrease (incread®).répresenter fields presented
in Figure 11 indicates that offshore sea-level olat@ns from altimetry are suit-
able for assimilation into coastal ocean modeld, @ne likely to impose a signifi-

cant constraint on the circulation over the comtagshelf.

Adjoint, or observation, sensitivities seek to difsirthe sensitivity of a fore-
cast to assimilated observations (Langland and B2884). Specifically, adjoint
sensitivity determines the sensitivity of the chsiction J, with respect to each
observationy: that is,dJ/dy. In practice, Langland and Baker (2004) provide a
practical recipe for computing adjoint sensiti\gtigs follows:

1. Define the error norm of interest (e.g., positidran eddy, or the va-
riability of a given variable in a region of intstg

2. Perform a forecast from say0 tot=7, wheret denotes time;

3. Compute a verifying analysis ftx 7 (not in real-time);

4. Compute the difference between a forecast (valid'gtand a verify-
ing analysis (also valid at7). This difference is an estimate of the

forecast error.
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5. Initialise the adjoint model with the forecast eremd integrate back-
wards (fromT=7 to t=0), yielding a new initial condition (valid at
t=0); and

6. Calculate the sensitivity of the forecast to ealsbenvation, or a subset

thereof.

Like all variational data assimilation tools, a retsl tangent linear version and
the adjoint of its tangent linear model are reqiiit@ perform adjoint sensitivities.
However, the adjoint technique requires a lineauamption that is probably most
appropriate for short-term (days) forecast probldms$ may not be valid for long-
er term (months) forecast problems, such as sehpoggiction using a coupled
ocean-atmosphere model. Like analysis self-seitg@y described above, adjoint
sensitivities can help identify low-influence anghrinfluence observations; and
can be partitioned for any data subset: instrunigmt, observed variable, geo-
graphic region, vertical level, or individual reing platform; thereby making the
diagnostic directly relevant to GOOS data providéngportantly, both analysis
and adjoint sensitivities do not necessarily qugiitie value of the observations —
rather they quantify how much of the observatiorsused by an assimilation and

forecast system given the assumed error estintatesin.

Like bred vectors, singular vectors are the fagieswing perturbations for a
specific region at a specific time, and are mogedufor adaptive sampling (e.g.,
Baker and Daley 2000). Unlike bred vectors, singuéxtors are assumed to grow

linearly in time. Singular vectors are perturbasiavith the greatest linear growth
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over a specified time interval, for a given normgl alefined over a specified target
area. Singular vectors are only valid for time iméds for which the growth of a
perturbation is linear. For the atmosphere, thiké&y to be limited to a few days,
and for the ocean it is possibly a week or two,etheling on the underlying dy-
namics. To determine the growth of a perturbatieerdime a tangent-linear ver-
sion of the full non-linear forecast model is reqdi along with the adjoint of the

tangent linear model.

Before one can compute the fastest growing pertiamsm an appropriate
choice of norm must be made for each. Ideally tfigal norm is related to the
spatial distribution of expected errors in the gsigl while the final-time norm
should reflect the forecast errors of interespactice, in NWP the total energy is
often used for both initial and final time normsge at ECMWF). In practice
mixed evolved and initial singular vectors are usednsemble prediction allow-

ing the growth rates of the perturbations to betufor a given application.

The notion of a target area is important for thepatation of singular vectors.
Singular vectors are the initial perturbations ttesult in the fastest growing per-
turbations in a target region. For example, Fujiak (2008) seek to predict the
development of the Kuroshio meander with a lead toth60 days. The target area
is the region in which the Kuroshio typically meansl Singular vectors are the
perturbations, either within or outside of the &rgrea, that result in large pertur-
bations in the target area 60-days after inititiiga In NWP, the target area might

be a major city and the time interval might be Hysd The singular vectors are
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the initial perturbations that lead to large changeer that major city 10 days in

the future.

Different choices of time interval, norm, or targeea lead to different sets of
singular vectors (e.g., Palmer et al. 1998; Snedei. 1998). This is in contrast to
bred vectors that are relatively insensitive toc¢heice of rescaling (e.g., Corazza

et al. 2003).

An example of an adjoint-based method used to kefiorecast sensitivity is
described by Fuijii et al. (2008). They use the Maliate Ocean Variational Es-
timation system to investigate the types of pedtidms that influence the large
meanders in the Kuroshio Current. SpecificallyytBhow that the leading singu-
lar vector represents a growing perturbation teats to further development of
the large meander. Figure 4a shows the perturbadioertical velocity and pres-
sure at 820-m depth at initial time. The anticy@cemomaly positioned at 133°E,
31°N causes cold advection across the Kuroshioe@tiand downwelling to the
north. This results in the development of an awtmyic circulation in the deep
layers, and induces baroclinic instability. Theresponding anomalies to sea sur-
face height (SSH) that coincide with these develepis are summarized in Fig-
ure 4b-d, showing the development of a large maaadeut two months after the
initial perturbation. This analysis indicates thatproperly predict the Kuroshio
meander, a forecast model must be well constrayedata assimilation around

133°E, 31°N and particularly at depths of 1000%6@ m. Thus, additional obser-
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vations in that region are likely to benefit thedcast of the variability of the Ku-

roshio Current.
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Figure 12: (a) Perturbation fields for pressurenfoar; dotted lines are negative)
and vertical velocity (shading; positive is downd)aat 820-m depth. (b-d) SLA
(scales are different for each panel) that resalnfthe perturbations represented
in panel (a) at Day 0. Thick lines show the Kuros@iurrent axis in the back-
ground state. Adapted from Fuijii et al. (2008a).
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Summary

The use of models and data assimilation toolsddls design and assessment
of ocean observing systems is increasing. The oasmonly used technique for
evaluating the relative importance of existing alaBons is OSEs and OSSEs.
OSEs are patrticularly useful for evaluating thatige importance of existing ob-
servations. But they are expensive to perform aradyae, and are sometimes dif-
ficult to evaluate and interpret. Despite this pasbably the simplest method for
evaluating observing systems, OSEs are commonly. 8SEs are most useful
for examining the potential benefits of future atva¢ional platforms, and for con-
trasting the relative merits of different obserwvatil strategies. Like OSEs, OSSEs
are easily implemented. However, OSSEs tend taonatuerly optimistic results,
owing to the implicit dynamical consistency betweba model-generateabser-
vations that are assimilated, and the models into whidsehobservations are as-
similated. Also, OSSEs are always limited by thalisen of the models that are

used.

Like OSEs and OSSEs, analysis self-sensitivitiesbmcomputed from an as-
similation system regardless of the assimilatiorthogs being used. Analysis
self-sensitivities quantify the relative importarafeevery assimilated observation
for a given implementation. Unlike OSEs, analysi§-sensitivities are relatively
inexpensive to compute and analyse, and couldigalse implemented routinely
by operational centers. In this case, analysisitbé@tises could provide an up-to-

date, routine evaluation of the current observiggteam. Such analyses could be



45

very beneficial to the observational community,ithentifying existing and devel-

opinggaps in the global ocean observing system.

A range of ensemble-based techniques are avaifablebserving system de-
signh and assessment. These include objective, &hsdrased array design (e.g.,
Sakov and Oke 2008), breeding (e.g., Toth and Kall®07), and variants of
breeding, like the ETKF (Bishop et al. 2001). Enbl¥based methods generally
require an ensemble-based data assimilation systach,as ensemble optimal in-
terpolation (e.g., Oke et al. 2008) or the enseriflalenan Filter (Evensen 2003),
for their application. Ensemble-based techniques generally easily imple-
mented, but often require significant computatioreslources and are subject to

sampling error.

Various adjoint-based methods are also suitableofserving system design
and assessment. These include analysis of repeeséatg., Kurapov et al. 2009),
adjoint sensitivities (e.g., Langland and Baker £08nd singular vectors (e.g.,
Fujii et al. 2008). The application of adjoint-bdgechniques generally requires a

system’s tangent linear model and its adjoint t@atelable.

Bred vectors and singular vectors are somewhabgoat. Both methods di-
agnose the system'’s fastest growing modes, orhiilitiss. With respect to adap-
tive sampling, regions where these modes projeatgly might be good places to
deploy additional observations. Assimilation of¢badditional observations may
improve the initialisation of a forecast, therelmyproving its forecast of the de-

veloping instability. Although bred vectors andggifar vectors are very similar,
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in practice, breeding is much more easily impleraéniAlso the details of bred
vectors are relatively insensitive to the detaflthe rescaling parameter, or norm,
used in the breeding process, but bred vecisensitive to the rescaling inter-
val. By contrast, singular vectors do tend to besiive to the choice of norms

used.

The field of observing system design and assessh@nseen many advances
in techniques over the past decade. Together hithmaturing nature of ocean fo-
recasting, this has seen an increase in the us®aéls and data assimilation tools
to aid the design and assessment of observingmsysfehe relevance of most me-
thods depends on the realism of the models used.v@y to combat this is to
employ multiple methods and multiple models. Untlex auspices of GODAE
OceanView, it is hoped that this can be achieveduiyh real international coop-

eration.
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