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Results are presented from an ensemble prediction study (EPS) of the East Australian Current (EAC) with a
specific focus on the examination of the role of dynamical instabilities and flow dependent growing
errors. The region where the EAC separates from the coast, is characterized by significant mesoscale eddy
variability, meandering and is dominated by nonlinear dynamics thereby representing a severe challenge
for operational forecasting. Using analyses from OceanMAPS, the Australian operational ocean forecast
system, we explore the structures of flow dependent forecast errors over 7 days and examine the role
of dynamical instabilities. Forecast ensemble perturbations are generated using the method of bred vec-
tors allowing the identification of those perturbations to a given initial state that grow most rapidly. We
consider a 6 month period spanning the Austral summer that corresponds to the season of maximum
eddy variability. We find that the bred vector (BV) structures occur in areas of instability where forecast
errors are large and in particular in regions associated with the Tasman Front and EAC extension. We also
find that very few BVs are required to identify these regions of large forecast error and on that basis we
expect that even a small BV ensemble would prove useful for adaptive sampling and targeted observa-
tions. The results presented also suggest that it may be beneficial to supplement the static background
error covariances typically used in operational ocean data assimilation systems with flow dependent
background errors calculated using a relatively cheap EPS.

Crown Copyright � 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Ocean forecasting has seen major advances in the past decade.
Many countries now perform operational forecasts of the meso-
scale ocean circulation (see Hurlburt et al., 2009 and references
therein). Many of the advances in ocean forecasting are on the back
of numerical weather prediction (NWP), particularly those in data
assimilation (Cummings et al., 2009). Ocean forecasting is under-
pinned by satellite observations of sea-level anomalies (SLA) and
sea-surface temperature (SST), and in situ observations from Argo
floats and a sparse array of tropical moorings (Oke et al., 2009). The
most energetic scales of the oceans are in the mesoscale, which is
characterized by eddies and meanders, and occurs particularly in
western boundary current (WBC) regions. These scales are only
marginally resolved by the above-mentioned components of the
global ocean observing system. As a result, we expect the errors
of operational ocean forecasts to be variable in time. The errors
of the day are likely to depend on the coverage of assimilated
observations and the stability of the ocean’s circulation. For atmo-
spheric flows synoptic-scale forecast errors over the extra-tropics
are known to be dominated by the amplification of errors in
specifying the initial state whereas forecast errors in the tropics
011 Published by Elsevier Ltd. All r
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are largely influenced by model error i.e. physics parameteriza-
tions. The respective roles of model and initialization errors in
ocean forecasting remains a largely open question.

One of the most difficult problems in NWP is to predict regime
transitions associated with rapidly growing dynamic instabilities
such as those associated with mid-latitude blocking regime transi-
tions (O’Kane and Frederiksen, 2008a). Currently the dominant ap-
proaches to ensemble prediction (EP) for synoptic scale weather
are based on generating an ensemble of deterministic forecasts
whose differences are perturbation vectors, centered about an
unperturbed or control forecast. The initial perturbation vectors
are typically chosen to capture flow dependent information about
the deterministic chaotic system (Pazó et al., 2010). Operational EP
systems include those based on singular vectors (Molteni et al.,
1996), bred vectors (Tracton and Kalnay, 1993; Toth and Kalnay,
1997) or generalizations of bred vectors such as the ensemble
transform (ET) (Wei et al., 2008) and the ensemble transform Kal-
man filter (ETKF) (Bowler et al., 2009; Wei et al., 2006; O’Kane
et al., 2008).

Several data assimilation approaches use ensembles to model
the time-evolving background error covariance (Evensen, 2003).
These approaches generally require a modest-sized ensemble to
reliably represent the background error covariance. If the ensemble
is too small, the ensemble is likely to be dominated by sampling er-
ror, and the ensemble-based covariance will be corrupted by noise.
ights reserved.
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Localization (Houtekamer and Mitchell, 1998) can be employed to
reduce the sampling error, but this is not an ideal solution because
it can result in the introduction of dynamical imbalance that can
degrade the model’s performance (Mitchell et al., 2002).

The typical ensemble size needed to model a system’s time-
evolving background error covariance can be impractical, due
to the significant computational requirements. Instead, we seek
to explore the possibility of using a very small ensemble of bred
vectors (Toth and Kalnay, 1993; Toth and Kalnay, 1997) to qual-
itatively represent the errors of the day. Bred, Lyapunov and Sin-
gular vectors (to the tangent linear operator) (Trevisan and
Pancotti, 1998; Pazó et al., 2010) may all be applied to identify
the spatial structures of a system’s fastest growing modes. Toth
and Kalnay (1997) suggest that a systems bred vectors, nonlinear
finite amplitude local generalizations of the leading Lyapunov
vectors, should have similar structures to the systems back-
ground errors. Corazza et al. (2003) presented results to support
this conjecture for an atmospheric application using an idealized
quasi-geostrophic model. We seek to further examine this idea
for an oceanographic case study using an ocean general circula-
tion model. Specifically, we hypothesize that the bred vectors
from a small ensemble size (we start with a 4-member ensem-
ble) can provide useful prognostic information about where re-
gions of large forecast or background errors may occur. We
seek to determine whether we can use bred vectors to identify
when and where instabilities are likely to occur in the ocean;
and so-doing identify when and where the forecast skill of an
operational ocean forecast system is likely to be low. To this
end we develop a breeding system for a regional ocean model
of the Tasman Sea (Fig. 1).

The main features of the Tasman Sea are the EAC and its eddies.
At any point in time, the EAC is typically characterized by a narrow,
strong southward flow adjacent to the continental shelf between
about 15�S and 32�S. The EAC typically separates from the coast
near Sugarloaf Point (SPt) (denoted in Fig. 1; Godfrey et al.,
1980), forming a complicated field of warm- and cold-core eddies.
Warm-core eddies are typically large, with diameters of several
Fig. 1. Thirteen-year average (1993–2006) SST and surface velocities (left), eddy-kinet
BRAN2p1 (Schiller et al., 2008), and model topography (right). The inset on the left pan
hundred kilometers, forming every 90 days or so (Mata et al.,
2006). Cold-core eddies are smaller, perhaps 50–100 km across
(e.g. Oke and Griffin, 2011), and often form at the point where
the EAC separates from the coast, or on the peripheries of warm-
core eddies. While warm-core eddies are usually well-resolved
by altimetry, cold-core eddies are often missed. We therefore ex-
pect that forecasting the development of cold-core eddies is prob-
lematic, and is unlikely to be skillful. We seek to determine
whether a breeding system can reliably and efficiently identify
when and where regions of large forecast error occur and if these
regions are associated with developing cold-core eddies.

This paper is organized as follows: In Section 2 we discuss the
EAC dynamics and the Australian operational ocean forecast sys-
tem (OceanMAPS). The ensemble prediction methodology and
experimental design are described in Section 3, while the results,
a discussion and conclusions are presented in Sections 4–6.

2. EAC dynamics

Part of the Western Boundary Current (WBC) system associated
with the South Pacific subtropical gyre, the EAC forms near 15�S,
and flows along the coast carrying on average 22 Sv
(1 Sv = 106 m3 s�1) attaining its maximum volume transport at
30�S (Mata et al., 2000) then tending to separate from the coast
near SPt (32.5�S) (Godfrey et al., 1980) before flowing southeast-
ward into the Tasman Sea (Wilkin and Zhang, 2007). After the
EAC separates from the coast it spawns a rich field of mesoscale ed-
dies evident in the time-mean (13 year) eddy-kinetic-energy field
calculated by Schiller et al. (2008) depicted in Fig. 1. The EAC is
complex and characterized by large seasonal and mesoscale vari-
ability (Ridgway and Godfrey, 1997), wind driven upwelling and
eddy formation (Oke and Griffin, 2011; Roughan and Middleton,
2002) and strong eddy–eddy, eddy–mean and eddy–topographic
interactions (Ridgway and Dunn, 2003). Although significantly
weaker than other WBCs in terms of volume transport, the eddy
variability of the EAC is comparable to the aforementioned larger
Northern Hemisphere WBCs (Mata et al., 2000).
ic energy (EKE; middle) computed from daily mean fields of surface velocity from
el shows the location of the region of interest off south eastern Australia.
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Early examination of oceanographic data (Godfrey et al., 1980)
found the separation outflow during summer months to be
typically centered on a line extending south–southeast of SPt. In
winter months the total variability of the EAC was found to de-
crease while the region of maximum variability retreated north-
ward as did the average separation point. More recent studies
using remotely sensed data and ocean models (Mata et al., 2006;
Bowen et al., 2005) characterized EAC eddy variability as originat-
ing via intrinsic instabilities of the current and that eddy shedding
events occur on an �90 days timescale between 32�S and 35�S.
Further, these events were typically preceded by a southward
extension of the current beyond 32�S to as far as 34�S and that post
shedding the current becomes more strongly zonal at the separa-
tion point (32�S).

Time averaged (50 days averages) modeled mean-eddy energy
transfers have been used to show that while both barotropic and
baroclinic instabilities are active in the retroflection region, baro-
tropic processes tend to dominate (Mata et al., 2006). One might
expect however that on much shorter timescales baroclinic insta-
bility associated with eddy formation may dominate. While the
majority of previous studies of EAC mesoscale eddies have focused
on warm core eddies (e.g., Andrews and Scully-Power, 1976; Nils-
son and Cresswell, 1980; Brandt, 1981; Cresswell, 1982; Cresswell,
1983; Tranter et al., 1986; Huyer et al., 1988; Mata et al., 2000;
Mata et al., 2006; Wilkin and Zhang, 2007), some studies have also
noted the importance of cold-core eddies (e.g., Cresswell, 1974;
Huyer et al., 1988; Cresswell, 1994; Gibbs et al., 1997; Oke and
Griffin, 2011; Marchesiello and Middleton, 2000).

Whereas the focus of recent studies of the EAC has been on the
frequency at which anticyclones pinch off from the EAC retroflec-
tion (Wilkin and Zhang, 2007; Mata et al., 2006) and the associated
dynamics of the Tasman Front, our emphasis is on timescales of �
1 week, that are characteristic of an operational ocean forecast sys-
tems data assimilation window. We aim to examine the predict-
ability of the EAC mesoscale eddies and to assess whether
regions of large forecast errors are associated with the rapid ampli-
fication of dynamic instability processes. The mechanisms by
which local instabilities may rapidly amplify (super-Lyapunov
growth) and the relationship to finite time Lyapunov and bred vec-
tors is discussed by Trevisan and Pancotti (1998) and Pazó et al.
(2010), respectively. By developing model initialization methods
that incorporate flow dependencies we hope to not only better
understand the EAC but to be able to better predict it.

There remain many unanswered questions regarding the mecha-
nisms behind eddy shedding and boundary current separation in the
EAC, particularly the role of instabilities and their relationship to
predictability. Further there have been, to-date, no studies of the
predictability of the EAC using advanced ensemble forecasting
methods.
3. Ensemble prediction methodology

Early attempts at establishing the theoretical limits to predict-
ability in the atmosphere focused on error growth using determin-
istic forecasts with the error determined from the divergence of
pairs of initially close states (Charney, 1966; Smagorinsky, 1969;
Kasahara, 1972). Later it was realized that weather forecasting
could be regarded either as a statistical problem of predicting the
probability density function of atmospheric states or, equivalently,
of calculating the moments of meteorological variables. In order to
describe the statistical behavior of a turbulent flow the underlying
nonlinear dynamical equations must be averaged producing an
infinite hierarchy of moment or cumulant equations. This equiva-
lence allows one to examine ensemble prediction schemes on a
fundamental level by exploiting statistical dynamical turbulence
closure theory whereby prognostic equations for statistical
variables are formulated (see O’Kane and Frederiksen, 2008a and
references therein). Leith (1974) famously used closure theory to
show that ensemble averaging acts as a nonlinear filter eliminating
parts of the growing errors, provided the ensemble forecast is ini-
tialized with perturbations representative of the initial probability
distribution of the basic flow about the control analysis. Toth and
Kalnay (1997) demonstrated that this effect is inherent to ensem-
ble averaging and cannot be reproduced by spatial filtering. O’Kane
and Frederiksen (2008b) showed that stochastic approaches to
data assimilation, like the ensemble Kalman filter, produce initial
perturbations that necessarily contain both random decaying er-
rors and dynamically generated growing errors. They developed a
nonlinear statistical dynamical Kalman filter (SDKF O’Kane and
Frederiksen, 2008b), based on an inhomogeneous turbulence clo-
sure, and showed how stochastic filters can suffer from introduced
sampling errors leading to uncharacteristic error growth particu-
larly during large scale atmospheric regime transitions.
3.1. General approach

The reasons that deterministic forecasts fail over reasonable
prediction periods was found to be in large part due to the inherent
non-linearity in the system (deterministic chaos; see Lorenz,
1963), errors in the initial conditions (analysis errors; see Cum-
mings et al., 2009; Oke et al., 2009), model deficiencies (e.g. sub-
grid-scale parameterizations; see Frederiksen and O’Kane, 2008)
and forcing errors. In comparison to a single control forecast,
ensemble forecasts can provide not only improved estimates of
the forecast (ensemble mean), but also estimates of the forecast er-
ror covariance and possibly the higher-order moments.

In this article our specific aim is to examine whether a compu-
tationally cheap ocean EPS whose initial perturbations sample only
the fastest growing errors can add useful information to a deter-
ministic ocean forecasting system. We postulate that for regions
of large eddy variability, such as the EAC, forecast errors at lead
times of about a week should largely arise due to local dynamic
instability processes. Our approach is to periodically generate an
initial analysis using an operational ocean data assimilation sys-
tem. An ensemble is constructed by adding to the initial analysis
finite amplitude growing perturbation vectors that are dynami-
cally generated using the breeding technique. The ensemble,
including an unperturbed control or background forecast, is then
integrated forward and the evolved perturbation vectors compared
to the forecast error which is taken to be the difference between
the control forecast and a verifying analysis.
3.2. OceanMAPS data assimilation

The ensemble prediction studies we present in Section 4 utilize
analyses provided by the Australian Bureau of Meteorology’s
Ocean Model Analysis and Prediction System (OceanMAPS; Bras-
sington et al., 2006; Brassington et al., 2007; Oke et al., 2008).
OceanMAPS is comprised of the Ocean Forecasting Australian Mod-
el (OFAM), based on the GFDL MOM4 code (Griffies et al., 2003),
with 1/10� resolution in the region 90�E–180�E, 75�S–16�N with
decreasing resolution elsewhere. OFAM is initialized by the Blue-
link Ocean Data Assimilation System (BODAS; Oke et al., 2008)
based on ensemble optimal interpolation (EnOI) with background
error covariances defined from a stationary, or time invariant,
ensemble of seasonal anomalies (72 members at present) derived
from a long model integration without data assimilation. OceanM-
APS uses an 11 day window of observations that include SLA from
altimetry, temperature and salinity profile observations from XBT,
CTD and Argo, and AMSRE SST.
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3.3. Regional model and adaptive initialization

The model we use is a regional version of OFAM, based on
MOM4p1 (Griffies et al., 2003) and is the ocean component of a
coupled limited area model system documented by Sandery et al.
(2010). It has 0.1� horizontal resolution and 47 z-levels with
10 m vertical resolution in the upper 200 m, expanding to larger
spacing towards full oceanic depths. The regional model is nested
inside the global model and uses sponge layer open boundary con-
ditions for surface height g, temperature T, salinity S, and the u and
v components of the velocity field, and uses the same grid and
bathymetry as the global model. The domain chosen for this study
covers an area in the Tasman Sea enclosed within 148.75�E–
163.75�E and 45.05�S–22.05�S (see Fig. 1). The regional model is
forced by surface fluxes from the Global Analysis and Spectral
Model (GASP) analysis NWP cycle that is run operationally by the
Australian Bureau of Meteorology (Seaman et al., 1995). A dynam-
ical initialization scheme (Sandery and Brassington, 2009; Sandery
et al., 2011) that applies time and space dependent tendency forc-
ing as a function of differences between model and target prognos-
tic variables is also used to maintain dynamical balance.

3.4. BV methodology

A primary aim in EPS is to generate independent initial perturba-
tions as fast-growing disturbances with structures and growth rates
typical of the analysis errors i.e. span the possible errors in the con-
trol analysis. In contrast, random initial perturbations sampled iso-
tropically, grow more slowly and in some cases even decay leading
to underestimated error variances. Additionally the computational
cost of running many realizations of a high resolution model leads
to severe restrictions on the number of available perturbations and
so we aim to sample only the fastest growing error structures.

The method of bred perturbations allows information about the
fast-growing errors to be incorporated into the initial perturba-
tions for the forecast. For particularly dynamic flows, such as when
emergent coherent structures are developing (for example atmo-
spheric high-low blocking dipoles or eddy shedding associated
with oceanic boundary current separation), errors arise due to
fast-growing large-scale instabilities. Toth and Kalnay (1997) ar-
gued from an atmospheric weather perspective that the bred vec-
tors are stochastically and non-linearly modified versions of the
leading Lyapunov vector (LLV) i.e. Lyapunov vectors grow from
an initial perturbation with infinitesimal amplitude and are
evolved for a quasi-infinite time (global), they have linear growth
and are tangent linear to the chaotic attractor.

Toth and Kalnay (1997) also showed that very small amplitude
initial random perturbations growing on tropospheric flows will,
after an initial transient period (about a week or so), converge on
the structure of the LLV. BVs on the other hand are finite ampli-
tude, finite time (local) and for our purposes will be typically con-
structed to be in the nonlinear evolution regime (Pazó et al., 2010).
The breeding method is based on the procedure used to calculate
the Lyapunov vectors and its ease of implementation makes it
readily applicable to nonlinear geophysical models with complex
physical parameterization schemes.

In the bred vector method the perturbations are periodically re-
scaled using a global (or regional) scaling factor which will for our
application typically be chosen so that they approximate fast-grow-
ing errors within the period of a typical OceanMAPS data assimila-
tion cycle. The choice of initial perturbation amplitude and period
between rescaling sets the spatio-temporal scales of interest, thus
the BV approach potentially allows one to focus on dynamical insta-
bilities with a range of growth rates and saturation amplitudes.

The approach we have outlined readily allows our ensemble to
be initialized about a control analysis from data assimilation but to
contain, by construction, information about the evolving flow
dependent growing errors. Thus it is reasonable to assume that
the bred vectors structures should often be found in regions where
forecast errors are large.

3.4.1. Ensemble initialization
In our study of the EAC we wish to excite processes associ-

ated with baroclinic instabilities (i.e. eddy formation) with error
growth rates and structures appropriate to the control analysis
errors over a 7 day data assimilation window. In order to locate
where the dominant EAC instabilities arise we perturbed the
model initial temperature T at all vertical levels with a small
uniformly distributed uncorrelated perturbation and integrate
forward for several days repeating this procedure at 7 day inter-
vals over the 6 month period. The error growth rate (i.e. the ratio
between the initial and evolved RMS error) was calculated at
each vertical level and the response to the perturbation noted.
In nearly all cases the largest response was found to be at, or
close to, the 250 m level i.e. centered at or close to the thermo-
cline. This is consistent with observational studies of baroclinic
instabilities in the EAC (Ridgway and Godfrey, 1997). Further
tests examined a variety of approaches to initializing the ensem-
ble, ranging from perturbing SLA (as in Miyazawa et al. (2005),
Yin and Oey (2007)) to perturbing SST only. These exploratory
tests identified introducing a small uniform random spatially
uncorrelated perturbation to temperature T at all vertical levels
to be an effective means of ensemble initialization prior to
breeding with subsequent rescaling against RMS error at T250.
A close relationship was observed between the BV spatial pat-
terns of T,S and SLA (not shown) suggesting that rescaling
against RMS errors in salinity at 250 m or SLA would be equally
effective choice of norms. The critical point is to measure error
growth at the thermocline. Equilibrated BVs were found to be
relatively insensitive to initial disturbances whether they be ran-
dom or weekly anomalies.

3.4.2. Growth rates and rescaling parameters
The procedure for computing n bred vectors is as follows.

1. First we add n random fields to the analysis temperature fields
at all levels. In practice we apply a small uniformly distributed
random perturbation to T at all horizontal grid points and at all
vertical levels so that the perturbed field is given by
Tp

nðt0Þ ¼ Taðt0Þ þ dTn where p denotes perturbation, a analysis,
t0 is the initial time and where dT is a 3-dimensional field of
spatially uncorrelated random numbers.

2. Next the model is integrated forward for dt = 7 days for n per-
turbed fields and for an additional unperturbed control forecast
Tc(t0) = Ta(t0).

3. After integration, the difference between the n perturbed fore-
casts Tp

nðt0 þ dtÞ and the control forecast Tf(t0 + dt) are calculated
and scaled using the L2 or Euclidean norm. Specifically the
rescaling factor fn is determined as the ratio of initial anomaly
RMS over evolved anomaly RMS at T250 for each n perturbed
forecasts. This rescaling factor is now applied globally to all per-
turbation fields and at all model levels, for all prognostic vari-
ables. We now have n perturbation vectors Pn for each field
Fi=1,. . .,5 2 (g,T,S,u,v)
PnðFin ; t0 þ dtÞ ¼ fnðt0 þ dtÞðFp
in
ðt0 þ dtÞ � Ff

i ðt0 þ dtÞÞ ð1Þ

where superscripts p and f denote perturbation and forecast
respectively.

4. The n rescaled perturbation vectors are now added to the cur-
rent analysis provided by the EnOI data assimilation system
and the new ensemble is integrated forward.
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5. Repeat step 2 noting that we now have n perturbed fields for
(g,T,S,u,v) and steps 3 and 4.

After an initial transient period (N � 10 cycles) clearly defined
growing perturbation vector structures develop. Now we define
the initial bred vectors after N cycles at time t = t0 + Ndt to be the
rescaled perturbation vectors Eq. (1) while the evolved bred vec-
tors are the evolved unscaled perturbation vectors

PnðFin ; t0 þ NdtÞ ¼ ðFp
in
ðt0 þ NdtÞ � Ff

i ðt0 þ NdtÞÞ ð2Þ

after 7 days integration. In our experiments we consider a maxi-
mum of n = 12 ensemble members. As in Corazza et al. (2003), we
take the growth over an analysis period (7 days) to be the inverse
of the bred vector rescaling parameter at the analysis time. We have
chosen to use the ensemble average of the individual BVs as a
means for determining regions that remain coherent and relatively
non-dispersive over finite periods of time; we will refer to these as
regions where BVs are coincident. In the subsequent results and dis-
cussion sections we take the difference between the day 7 control
(unperturbed) forecast and the verifying analysis to be the control
forecast error. Also considered were paired BVs, where for each
respective initial BV a perturbation vector of opposite sign was also
added such that the ensemble average of the initial perturbation
vectors was identically zero. Little qualitative difference was found
between paired and un-paired BVs.

3.5. Discussion

Predictability is associated with the stability of the flow with re-
spect to perturbations (errors) and their associated growth. For
infinitesimal initial perturbations error growth may be close to lin-
ear and the growing perturbations may be well described using a
tangent linear approximation to the full non-linear evolution equa-
tions. In such cases SVs i.e. the perturbations with the greatest lin-
ear growth over a specified time interval, for a given norm and
defined over a specified target area, are appropriate. However, in
predictability studies of strongly nonlinear systems linear growth
is seen over only an initial small fraction of the predictability time,
hence what is more relevant to predictability than the leading
Lyapunov exponent is the evolution of finite size perturbations un-
der the full non-linear equations. Moreover, it is often the case that
for a given norm some perturbations with given spatial structures
may rapidly amplify whereas others will grow more slowly or even
decay. That is perturbations that are well embedded on the chaotic
attractor will grow whereas those that are not will decay.

The chaotic attractor of a nonlinear system is a zero volume
structure of typically fractal dimension (less than the dimension
of phase space) and is built from the remote past through a stretch-
ing-and-folding mechanism common to globally bounded chaotic
dissipative systems possessing at least one Lyapunov exponent
greater than zero (Kalnay, 2003). While singular vectors corre-
spond to the disturbance that yields the largest linear growth over
a specified time interval they are often not well embedded in the
attractor. Perturbation vectors that contain by construction infor-
mation from the past i.e. have evolved within the flow, such as
bred vectors and finite time normal modes will by construction
have the advantage of being well adapted to the attractor. Vectors
using only information about the future, such as SVs cannot be ex-
pected to reflect the geometry of the attractor. Pazó et al. (2010)
showed that perturbations initialized as SVs have been found to
lead to strongly correlated perturbations at large-scales thereby
implying a low degree of diversity. Such methods require addi-
tional methods to construct a proper and diverse ensemble, for
example mixed initial and evolved SVs or rotated SVs (Molteni
et al., 1996).
Ensemble prediction methods may be deterministic, such as
those based on rescaling i.e. bred vectors or the so called square
root ensemble Kalman filter family, or stochastic (ensemble Kal-
man filter with perturbed observations). In large scale atmo-
spheric applications on synoptic timescales an extended period
of linear error growth is often observed. In such cases it is not
uncommon for all types of perturbation vectors (finite and infin-
itesimal) to show a tendency to converge to the leading Lyapunov
vector with the consequence that ensemble diversity is greatly re-
duced. In response alternative approaches that combine aspects
of both deterministic and stochastic methods have been demon-
strated by O’Kane and Frederiksen (2008a), whereby bred pertur-
bation vectors are used to project onto fast growing large scale
atmospheric disturbances associated with mid-latitude regime
transitions complemented by stochastic forcing of the small
scales representative of subgrid scale stochastic processes. Re-
cently the ensemble transform Kalman filter in conjunction with
small scale stochastic forcing has been applied in operational
ensemble numerical weather prediction (Bowler et al., 2009;
O’Kane et al., 2008). This methodology produces perturbations
that are closely related to BVs but periodically orthogonalized
(see Bowler et al., 2009). For the EAC, and presumably for highly
non-linear flows dominated by large eddy variability, we have
found that bred perturbation vectors do not show a tendency to
collapse onto the LLV but instead remain globally diverse. In such
cases, and in contrast to typical atmospheric applications, BVs are
inherently norm dependent, finite time, nonlinear generalizations
of Lyapunov vectors.

Ensemble prediction methods, such as those developed for NWP
have only very recently been applied to explore the dynamics and
predictability of oceanic flows, however their applicability to WBCs
seems a natural choice. Miyazawa et al. (2005) used BVs in an
ensemble forecast experiment (using 10 members) of the Kuroshio
meander, successfully predicting the meander position with a lead
time of 60 days. Fujii et al. (2008) also studied the Kuroshio but
using singular vectors (SVs).

Yin and Oey (2007) applied the BV method (using 20 mem-
bers) to a case study of an eddy shedding event in the Gulf of
Mexico (2006). Both (Miyazawa et al., 2005 and Yin and Oey,
2007) perturb and rescale by SLA and assimilate only a limited
set of observations. Our approach differs from that previously
applied to Northern Hemisphere WBCs (Miyazawa et al., 2005;
Yin and Oey, 2007) in that we assimilate SLA from altimetry,
temperature and salinity profile observations from XBT, CTD
and Argo, and AMSRE SST and rescale against T250 (throughout
and for convenience we take T250 to mean temperature at
254.86 m) rather than SLA. Our motivation for doing this is that
by rescaling against T250 we directly sample from the region of
dominant instability, the thermocline, at the spatio-temporal
scales of interest.

An alternative approach can be found in a case study of the Gulf
of Mexico by Counillon and Bertino (2009) who employed a novel
approach to rescale variances of forecast error in an EnOI data
assimilation scheme combined with stochastic perturbation of
the lateral and atmospheric boundary conditions. EnOI assumes
that the temporal variability is representative of the instantaneous
forecast errors, or alternately that a climatology of errors in which
no flow dependency or errors of the day are present, can be a rea-
sonable representation of the instantaneous forecast error. Counil-
lon and Bertino (2009) showed promising results using a 10
member ensemble with a 7 day forecast horizon.

Although a standard approach in operational NWP finite ampli-
tude dynamically generated perturbation vectors such as those
produced by BVs, ET and ETKF methods are not used in current
operational ocean forecasting systems. Indeed the aforementioned
EPS studies encompass nearly the entirety of the published
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literature as pertinent to the oceans. To-date there has been no dis-
cussion about how, or if, bred vector structures relate to forecast
errors, and if so does the possibility exist to generate background
Fig. 2. Top) bred vector growth and bottom) rescaling factors beginning 20th Novemb
interpretation of the references to color in this figure legend, the reader is referred to th

Fig. 3. Surface height on T cells. Row 1 (a)–(d); day 7 ensemble forecasts valid for the 18t
vector field has been overlaid. Evolved bred vectors correspond to the difference betwe
error covariances based on flow dependent errors of the day in
ocean data assimilation. We examine these issues in the following
results section.
er 2007 through to 13th May 2008 for 4 BVs (red) and their average (blue). (For
e web version of this article.)

h March 2008. Row 2 (e)–(h); corresponding evolved bred vectors on day 7. Velocity
en control and perturbed forecast after 7 days.
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4. Results

Our primary aim is to examine the structure of bred vectors and
their relation to forecast errors (forecast minus verifying analysis)
over a typical 7 day forecast period. We compute a total of 12 per-
turbed ensemble members. However, due to the high cost of oper-
ational systems, we are particularly motivated to explore the
information content of smaller ensembles. Further we note that
(Tracton and Kalnay, 1993) (see also Toth and Kalnay, 1997) imple-
mented the first operational BV EPS for NWP at the National Mete-
orological Center (NMC) using a 4 member ensemble.

In Fig. 2 we compare (top) bred vector growth rates and (bot-
tom) bred vector rescaling factors over the entire 25 week period
considered including the spin-up period. We find that from initial-
ization with random perturbations to development of well orga-
nized spatial structures the spin-up period for bred vectors
development in the EAC is 10 cycles. This is similar to the typically
Fig. 4. Surface height on T cells. Columns 1–4 depict results valid for the 4th, 11th, 18t
7 days control forecasts. Row 3 (i)–(l); Comparison of ensemble averaged (4 members) br
(j) 11th; (k) 18th and (l) 25th March 2008. Row 4 (m)–(p); ±0.35 m contours for each o
3–5 days (6–10 cycles) period observed in ensemble NWP studies
(O’Kane et al., 2008). We also find that the rescaling factor is >1
over the first 4 weeks and it is only after the instability structures
are sufficiently coherent that growth (i.e. rescaling factor < 1) oc-
curs. This result, similar to that observed by Yin and Oey (2007), re-
flects the tendency of the model to damp random perturbations
(this effect is related to dissipation operator as discussed by Grif-
fies and Hallberg (2000)). The results in Fig. 2 are for 4 independent
bred vectors and the ensemble average. The rescaling factor
asymptotes to �0.85 corresponding to an average growth factor
of �1.17 over 7 days. As stated previously the rescaling factors
are calculated for the entire domain.

Recalling that the initial (t0) perturbations are uncorrelated
noise, the evolved bred vectors have spatially coherent structures
that resemble anomalies associated with eddies (Toth and Kalnay,
1997). For chaotic systems the linear long term growth rate of any
random perturbation converges to the first Lyapunov exponent and
h and 25th March 2008 respectively. Row 1 (a)–(d); Analysis fields, Row 2 (e)–(h);
ed vectors (±0.35 m contours) and day 7 forecast error (shaded) valid for the (i) 4th;
f the 4 individual bred vectors.
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the LLV is the vector to which, given sufficient time, all random
perturbations will converge (Kalnay, 2003). Because the method
of calculating BVs is an extension of that used to calculate the first
Lyapunov exponent one might expect all bred vectors to converge
to the LLV. However, when attempting to forecast complex systems
where multiple instabilities coexist we are interested in the finite
time or local spatio temporal stability properties of the flow rather
than the long term or global properties. In Fig. 3, we show SLA and
surface velocity components of the 7 day perturbed forecasts valid
for the 18th March 2008 for 4 ensemble members. Also shown in
Fig. 3 (row 2) are the SLA and velocity components of the associ-
ated BVs. We clearly see that the BVs are globally distinct, but note
some common features including a large amplitude coherent
structure in the area offshore from SPt and Cape Howe (CH:
Fig. 5. Comparison of ensemble averaged evolved bred vectors (4 members contours
beginning on the 26th February 2008. Contours shown are ±3.5 �C, ±2.0 �C and ±1.0 �C.
37.50�; 149.97�E). These features are indicative of localized areas
of instability.

For the EAC we are interested in where the BVs are coincident as
determined by coherent regions where local instabilities are dom-
inant. We determine these regions of coincidence by taking the
ensemble average of the BVs. In Fig. 4 (rows 1 and 2) we show
the verifying analysis (from the current DA cycle) and the 7 day
forecast valid for the same date. In (rows 3 and 4) an ensemble
average of 4 evolved (day 7) BVs are compared to the control fore-
cast error (row 3; shaded) for sea level for 4 successive 7 days peri-
ods beginning on the 26th February 2008 and valid on the 4th,
11th, 18th and 25th of March. Having identified local regions of
instability through ensemble averaging of the individual BVs we
are interested to see if these areas correspond to regions of large
) and forecast error (shaded) for T250 at weekly intervals over a 6 weeks period
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forecast error. Fig. 4 (row 4) shows individual BVs (red, blue, green,
magenta) at the 0.35 m g contour (chosen for clarity). The corre-
sponding ensemble average has been superimposed on the forecast
errors (Fig. 4 row 3, black contours). The individual BVs illustrate
the inherent instability of the EAC. It is clear that the ensemble
averaged BV structures are in regions corresponding to the domi-
nant dynamic instabilities centered offshore of SPt (32.5�S), Jervis
Bay (35�S), Merimbula (36.90�S) and Cape Howe (37.50�S). These
regions, associated with the Tasman Front and the EAC extension,
also correspond to the areas of the largest forecast errors.

The evolving BVs and their corresponding growth factors (Fig. 2)
describe the growth and decay of dynamic instabilities and areas of
large forecast uncertainty. Clearly 7 day forecast errors are
dominated by the eddy variability of the EAC and the coherent
areas of large forecast error associated with fast growing
Fig. 6. As for Fig. 5 but for the 6 weeks period beginning on the 8t
instabilities appear to be captured by the BVs. The EAC exhibits
constantly evolving instabilities that undergo rapid growth and de-
cay cycles. These instabilities are associated with eddy variability
in a band extending East between 32� and 35�S. This behavior
can be seen in the evolution of the BV averages in Figs. 5 and 6
where we examine T250 over a 12 week period beginning 26th
January 2008. These figures show the evolved BVs at day 7, show-
ing the ±3.5, ±2.0 and ±1.0 contours, and the forecast error (color).
Figs. 5 and 6 further demonstrate the close correspondence and
anti-correlation of the ensemble averaged BV structures to the
forecast errors over the entire 3 month period shown. The corre-
spondence between the ensemble averaged BVs and the forecast
error is often quite remarkable. Consider for e.g. 11th March
(Fig. 5(c)). This shows several fairly localized areas of large forecast
error including the negative errors (blue filaments) around 34�S
h April 2008. Contours shown are ±3.5 �C, ±2.0 �C and ±1.0 �C.
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plus a large positive forecast error around 35�S. These errors are
well predicted by the BV ensemble average, with similarly shaped
co-located perturbations of opposite sign in those regions. The
forecast errors and BVs are not always coincident, but sometimes,
even the small scale, relatively noisy, forecast errors are well rep-
resented by the BVs (e.g. Fig. 5(f), 155�E and South of 40�S). These
results imply that the largest 7 day control forecast errors arise due
to instability processes associated with the intrinsic variability of
the EAC. Further, we find that the BVs generally do an excellent
job of representing these instabilities.

A measure of the nonlinearity may be made by estimating the
Rossby number (Fig. 7) as the relative vorticity averaged over 0–
200 m divided by the absolute value of the Coriolis parameter.
Fig. 7. Rossby number for 7 days forecasts valid for the 18th March 20

Fig. 8. The divergence for 7 days forecasts valid for the 18th March 20
We do this for the control and two perturbed forecasts valid on
the 18th March. The corresponding divergence fields are shown
in Fig. 8. In both Figs. 7 and 8 the area of largest horizontal gradi-
ents occurs near the separation region close to SPt and in an area of
large positive vorticity south of Cape Howe. These regions have not
only correspondingly large BV structures (Fig. 5) but also are re-
gions of large forecast error. During the period 1st–15th April
(Fig. 5(f) and Fig. 6(a) and (b)) we note a region of large forecast er-
ror, with corresponding BV structures, off the east coast of Tasma-
nia between 41 and 44.5�S and centered on 153.5�E. These features
are associated, not with the dominant branch of the EAC, but with a
weaker southward extension of the current to higher latitudes and
the development of a pair of cold core (43.5�S, 152.5�E)/warm core
08. (a) control forecast, (b) and (c) individual perturbed forecasts.

08. (a) control forecast, (b) and (c) individual perturbed forecasts.
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(42�S, 153.5�E) SLAs that persisted through this period (for details
see www.marine.csiro.au/remotesensing/oceancurrents/SE).

More generally, during this period, a series of alternating warm
and cold core SLAs formed along the east coast for latitudes below
30�S. The positions of these SLAs are associated with large forecast
Fig. 9. Comparison of day 7 forecast error (left), ensemble averaged bred vectors (middle)
Showing T250 (a)–(c) and vertical sections along 33.55�S (d)–(f) and 34.15�S (g)–(i).
encompassing the dominant coherent error structures.
errors and are closely reflected by the positions of the BV struc-
tures at T250 (Fig. 5(f) and Fig. 6(a) and (b)).

In contrast to the control forecast (Figs. 7 and 8(a)) the perturbed
forecasts (Figs. 7 and 8(b) and (c)) display markedly increased re-
gions of nonlinearity and divergence. The area averaged Rossby
and ensemble averaged forecast error (right) (4 members) valid on the 11th March;
RMS errors are shown for the entire domain and for subdomains (in brackets)

http://www.marine.csiro.au/remotesensing/oceancurrents/SE
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number and divergence are 0.14 and 0.37 � 10�6 s�1 in the control
and greater than 0.18 and 0.57 � 10�6 s�1 in the perturbed runs.
We interpret this as evidence that individual BVs are more able to
capture areas of enhanced instability.

We next examine T250 and through the water column in verti-
cal sections (Figs. 9–11). We focus on a three week period, 11th,
Fig. 10. As for Fig. 9 but on 18th March and for sec
18th and 25th March, when both large coherent forecast error
and BV structures formed, centered on 34�S; 156�E. This period
corresponds to the growth of a cold core eddy to the southeast of
SPt. In Fig. 9 we see the dominant local forecast error centered
on 34�S, 154�50E occurring on the 11th March in vertical sections
along 33�550S (offset from the anomaly) and 34�150S (centered
tions along 33.15�S (d)–(f) and 35.15�S (g)–(i).



Fig. 11. As for Fig. 9 but on 25th March and for sections along 30.65�S (d)–(f) and 35.15�S (g)–(i).
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on the anomaly). In these vertical sections we see regions of coin-
cidence between the evolved BV averages and the control forecast
errors. In many cases (but not all) these are regions where substan-
tial reductions in the ensemble forecast errors occur and we inter-
pret these to be regions of large dynamic instability. It is clear that
the instabilities in the region 151.2�–157�E are centered around
250 m and extend down to 1000 m. It is also evident that the
7 day ensemble forecast errors (4 members) have significantly
smaller amplitudes and contracted vertical structures as compared
to the control forecast errors. For this case the RMS scores for the 4



Table 1
Day 7 control versus ensemble forecast RMS errors 11th–25th March 2008 corresponding to the domains shown in Figs. 9–11. RMS errors are shown
for the entire domain and for the subdomains (in brackets) encompassing the dominant coherent error structures.

Forecast RMS

Control BV average (4) BV average (8) BV average (12)

11th March T (250 m) 0.95 0.88 0.87 0.88
18th March T (250 m) 0.91 0.92 0.90 0.88
25th March T (250 m) 0.81 0.91 0.94 0.84

11th March 34.15�S 1.59(2.41) 1.27(1.66) 1.29(1.71) 1.29(1.64)
18th March 35.15�S 1.38(2.15) 1.43(1.87) 1.37(1.59) 1.33(1.65)
25th March 35.15�S 1.00(2.06) 1.29(2.33) 1.20(1.69) 1.22(1.90)

11th March 33.55�S 1.33(1.86) 1.23(1.59) 1.20(1.61) 1.22(1.58)
18th March 33.15�S 1.22(1.74) 1.12(1.25) 1.17(1.39) 1.14(1.25)
25th March 30.65�S 0.82(1.72) 1.01(1.24) 1.03(1.25) 0.95(1.19)
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member ensemble forecast are noticeably better than the control
and that increased ensemble size (up to 12 members) resulted in
only modest reductions in RMS errors (see Table 1). In this case
the ensemble forecast outperforms the single control.

In Figs. 10 and 11 and Table 1 we contrast BV and ensemble
forecast error averages for 4, 8 and 12 member ensembles with
the control forecast valid on the 18th and 25th March respectively.
As we have initialized the control forecast with an analysis on the
11th March information about the strengthening cold core eddy is
now represented in the analysis and we expect the subsequent
7 day control forecast errors to be smaller. In addition as we are
perturbing about the analysis we should also see corresponding
reductions in the magnitude and spatial extent of coherent regions
of large forecast error and associated BVs. This is evident in Figs. 10
and 11(g) and (h), respectively for vertical sections along 35�150S
where we see the vertical extent of the coherent feature in the in-
ner box is successively reduced from 1000 m (Fig. 9(g) and (h)) to
750 m and 500 m, respectively. One also expects that where the
dominant regions of forecast error are not due to dynamic instabil-
ity then larger ensembles may be required for improved forecasts.
This was found to be the case in RMS scores for T at 250 m (Table 1).
In these cases, while only 4 members were needed to identify re-
gions of large forecast uncertainty due to dynamic instability, we
required increased ensemble size in order to get comparable RMS
scores over the period during which the dominant instabilities de-
cay. This point is illustrated in Table 1 where RMS scores for con-
trol forecasts are compared to those from ensemble averaged
forecasts (4, 8 and 12 members) on the 11th, 18th and 25th March
2008 with domains corresponding to those shown in Figs. 9–11,
respectively.

In Figs. 10 and 11 we also focus on smaller forecast error struc-
tures along 33.15� and 30.65�, respectively. In the region 33.15�S;
151.5–155.5�E, Fig. 10(d) and (e) we see a coherent cold forecast
error structure extending down to 500 m with maximum near
250 m and a corresponding warm BV structure. We also note in
Fig. 11(a) for the T250 there occurs a localized region of large fore-
cast errors close to the coast centered along �30.65�S and that
although the associated BV structure (Fig. 11(b)) is relatively weak,
the ensemble forecast (Fig. 11(c)) is substantially improved in this
region.

The results presented demonstrate that the coherent structures
we have identified through taking ensemble averages of the
respective BVs tend to anti-correlate with regions of large forecast
errors. We also find that these highly localized error structures,
while typically associated with the Tasman Front and the EAC
extension, may also occur in any area where dynamic instabilities
are expected to be the dominant processes. Moreover our results
demonstrate that these dynamic instabilities are generated at or
near the thermocline and are therefore most likely baroclinic in
nature.
5. Discussion

Because BVs are generated in regions of dynamic instability
large coherent BV structures, indicative of regions of likely large
forecast errors, are typically found to be associated with the emer-
gence of eddies and meanders. We find that over 7 days, dynamic
instabilities in the EAC originate at around 250 m and that the larg-
est instabilities are typically located off SPt.

The EAC is inherently unpredictable because it has large eddy
variability with a wide range of spatio-temporal scales of interest,
therefore representing a severe test of any EPS. We find that fore-
cast errors may be large over 7 days and that, in contrast to a con-
trol forecast, BV perturbed forecasts tend to be more strongly
nonlinear, with corresponding regions of large divergence. This is
because BVs, by construction, contain information about the flow
dynamics. BV perturbed forecasts have also been shown to exclude
large forecast errors in areas of large dynamic instability and that
very few ensemble members are required to qualitatively predict
areas of large forecast error. However our results also show that
where rapidly growing dynamic instabilities are not present, eddy
variability is in a sense more random, and therefore less inherently
predictable, many realizations of a forecast may be required to re-
duce sampling error to the point where the ensemble forecast is
useful. This is illustrated in the results of Figs. 5 and 9, 10, 11 where
we see a large coherent forecast error structure centered about
34.15�S:151.5–156.5�E on the 11th March that grows in less than
a week but decayed over more than 2 weeks. In the rapid amplifi-
cation phase we see that only 4 bred vector members are required
to clearly identify the forecast error structure using temperature.
However during the subsequent decay phase, although we could
still identify the diminishing coherent region we required an in-
crease in the number of realizations to gain improvement in the
ensemble forecast. In general BV structures are associated with re-
gions of the EAC where eddy variability is significant and the cur-
rent is well defined. A particular example is shown for the period
1st–15th April where the EAC extended along the east coast of Tas-
mania. For this period large forecast errors and BV structures are
associated with the EAC extension to higher latitudes.

The motivation for this study is the representation, or predic-
tion, of regions of large forecast error. In practice, we show that a
4-member ensemble of BVs can predict the regions of largest fore-
cast uncertainty. In some cases, it can even predict regions of
small-scale forecast error. Another motivation for BVs is that of
adaptive sampling, or targeted observations. Adaptive sampling
asks the question: where should additional observations be made
to better constrain a forecast? We show that BVs project onto re-
gions of large coherent forecast errors. We speculate that the
assimilation of additional observations in those regions would
likely improve the subsequent forecast of the ocean state. For
example, suppose a glider was deployed at the end of February
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in the vicinity of 155�E and 35�S. If observations from such a glider
were assimilated, the large forecast error on the 4th March may be
reduced. We expect that in the future BVs will prove a useful tool
for guiding the adaptive sampling of the ocean.
6. Conclusion

We have conducted an ensemble prediction study of the EAC
with a specific focus on the examination of the role of dynamical
instabilities and flow dependent forecast errors. We have devel-
oped an EPS based on the breeding method to identify the spatial
patterns of the fastest growing errors for a given initial state. Here
the initial state is an analysis product from the Australian opera-
tional ocean forecast system which employs an EnOI DA scheme.
We considered a 6 month period spanning the Austral summer
and autumn of 2008 corresponding to the seasons of largest eddy
variability. We have shown that individual perturbations gener-
ated as bred vectors, while globally distinct, can, through ensemble
averaging, be used to identify areas of coherence corresponding to
regions of large dynamic instability and forecast error. In particular
these regions correspond to where the EAC separates from the
coast and bifurcates to form the Tasman Front and the EAC exten-
sion. Our results show that over 7 days forecast errors arise due to
dynamic instabilities and that these forecast errors can be expected
to dominate analysis errors. Moreover BVs show some potential to
be an effective, computationally inexpensive means to calculate
flow dependent background information critical to accurate fore-
casting. Further a very small BV ensemble may be run to identify
regions where additional observations may be targeted.
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