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a b s t r a c t

We have applied an ensemble optimal interpolation (EnOI) data assimilation system to a high resolution
coastal ocean model of south-east Tasmania, Australia. The region is characterised by a complex coastline
with water masses influenced by riverine input and the interaction between two offshore current sys-
tems. Using a large static ensemble to estimate the systems background error covariance, data from a
coastal observing network of fixed moorings and a Slocum glider are assimilated into the model at daily
intervals. We demonstrate that the EnOI algorithm can successfully correct a biased high resolution
coastal model. In areas with dense observations, the assimilation scheme reduces the RMS difference
between the model and independent GHRSST observations by 90%, while the domain-wide RMS differ-
ence is reduced by a more modest 40%. Our findings show that errors introduced by surface forcing
and boundary conditions can be identified and reduced by a relatively sparse observing array using an
inexpensive ensemble-based data assimilation system.

Crown Copyright � 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Operational coastal ocean modelling has benefited from recent
advances in global ocean modelling projects such as Bluelink
(Oke et al., 2008) and high resolution meteorological products
(e.g. Vincent et al., 2008), which supply open ocean and surface
boundary conditions, respectively. A key reason for the recent suc-
cess in eddy-resolving global ocean models has been the inception
and dissemination of high quality observational data provided by
networks such as the Global Ocean Observing System (http://
www.ioc-goos.org/). Until recently, most coastal observing sys-
tems have lacked a centralised data collection and dissemination
system. With the advent of regional observing systems like the
Australian Integrated Marine Observing System – IMOS (http://
www.imos.org.au), this has now changed. The challenge becomes
one of integrating these available observations and improved forc-
ing/boundary conditions into our efforts to model the coastal do-
main. Model-data fusion algorithms, often referred to as data
assimilation, provide a robust framework in which to do this.

There are many examples of data assimilation (DA) techniques
applied to ocean modelling on scales ranging from global to coastal.
The data assimilation techniques that are currently in use within an
ocean modelling framework can be divided into four broad
categories:

1. Variational Methods, e.g. 3D/4D – Var,

2. static parametric ensemble methods, e.g. ensemble optimal
interpolation (EnOI),

3. dynamic parametric ensemble methods, e.g. Kalman Filter/
Smoother (KF/S), and

4. dynamic non-parametric ensemble methods, e.g. Particle
Filters.

The Variational (Kurapov et al., 2011; DiLorenzo et al., 2007)
and EnOI (Oke et al., 2008) approaches tend to dominate the assim-
ilation schemes, while the Kalman (Evensen, 1994; Bertino and
Lisaeter, 2008) and Particle Filter (van Leeuwen, 2009) approaches
are not so well represented, largely due to the computational bur-
den of propagating forward an ensemble with 100–1000 members.
A summary of the schemes used in GODAE, which largely represent
global and regional models, is given in Cummings et al. (2009).
Other approaches that do not fit into the aforementioned catego-
ries include the traditional OI approaches including the original
MERCATOR SAW algorithm (Brasseur et al., 2005), and fast approx-
imate approaches such as ESSE and emulators (Lermusiaux and
Robinson, 1999; Margvelashvili and Campbell, 2012). The compu-
tational burden associated with carrying forward a dynamic
ensemble or the iterative minimisation of a cost function can be
circumvented through the use of a static background ensemble
using the EnOI approach of Oke et al. (2008). This has been shown
to be a computationally tractable algorithm and has been argued
that it gives superior performance in some cases (Oke et al., 2010).

The application of DA systems in coastal/estuary domains could
be considered in its infancy when compared with their application
in the global ocean and the maturing field of numerical weather
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prediction. In this study we have chosen to test an EnOI assimila-
tion technique in the coastal region of south-east Tasmania, Aus-
tralia (Fig. 1). The coastal and shelf regions of south-east
Tasmania are influenced by a number of water-masses where there
is a seasonal interaction between the extension of the East Austra-
lia Current (EAC) and the South Australian Current (SAC) (Schiller
et al., 2008). The seasonal nature of this interaction is discussed
in Cresswell (2000). The near-shore region has been classified as
a Region of Fresh Water Influence (ROFI) due to the freshwater in-
put from two major river systems (Herzfeld et al., 2010). To this
end, the central region of Storm Bay contains the signatures of
the EAC, SAC and the inshore ROFI. As with many coastal domains,
this region is a challenge to model as any inaccuracies in either the
forcing data or prescribed boundary conditions will strongly influ-
ence the internal dynamics of the model.

Unlike ‘‘blue-water’’ or open-ocean eddy resolving ocean gen-
eral circulation models (OGCMs), where meso-scale chaotic behav-
iour (e.g. eddies) is the dominant source of error, the effects of
friction in coastal ocean models tend to damp out this meso-scale
chaotic behaviour. However, fine-scale features such as eddy shed-
ding in the lee of headlands and the chaotic behaviour of upwelling
and river plume filaments may be present, although in many cases
difficult to observe. Observation platforms such as gliders (Rudnick
et al., 2004) and AUV’s can provide high resolution data in both
time and space with coastal domains (Schofield et al., 2007). They
are analogous to the profiling Argo floats used in OGCM DA sys-
tems. In coastal domains where the water depth exceeds 30 m,
gliders are proving to be an invaluable observing platform to
source observations of the water column for assimilation (Shulman
et al., 2009; Dobricic et al., 2010).

Our fundamental premise for invoking a data assimilation
scheme in a coastal ocean model is to correct for any errors intro-
duced into the model due to the forcing data or prescribed bound-
ary conditions, rather than the correction of chaotic behaviour. To
the best of our knowledge, this is the first time that an EnOI algo-
rithm has been applied to a high resolution (500–2000 m grid)
coastal model. The purpose of this paper is to:

1. present an ensemble optimal interpolation (EnOI) scheme suit-
able for use in coastal ocean modelling,

2. investigate the correlation structure that the static ensemble
has captured,

3. make use of both fixed and mobile in situ observation platforms,

4. assess the ability of the EnOI scheme to correct for biases in the
model state that enter through forcing and boundary conditions.

This paper is organised into the following sections. The South
East Tasmania (SETas) model and ensemble optimal interpolation
(EnOI) algorithm is described in Section 2. The SETas EnOI system
is then trialled in a three month case study (Section 3) followed by
a discussion (Section 4) and conclusion (Section 5).

2. Model and algorithm description

2.1. SETas model

The south-east Tasmania (SETas) model is based on SHOC
(Sparse Hydrodynamic Ocean Code), a finite difference, hydrody-
namic, primitive equation model (Herzfeld, 2006). SHOC is based
on the three-dimensional equations of momentum, continuity
and conservation of heat and salt, employing the hydrostatic and
Boussinesq assumptions. The equations of motion are discretized
on a finite difference stencil corresponding to the Arakawa C grid.
The model uses a curvilinear orthogonal grid in the horizontal,
with a resolution of approximately 250 m in the estuaries and riv-
ers, increasing to 2500 m at the open ocean boundaries. The verti-
cal coordinate system uses a fixed staggered z coordinate grid, with
a resolution of 1 m in the upper layers increasing to 10 m in the
deeper layers. The z vertical system allows for wetting and drying
of surface cells, useful for modelling regions such as tidal flats
where large areas are periodically dry. SHOC has a free surface
and uses mode splitting to separate the two-dimensional (2D)
mode from the three-dimensional (3D) mode. The SETas model
grid is shown in Fig. 2, with details included in Table 1.

2.2. SETas EnOI

Analysis fields for temperature (T) and salinity (S) are computed
using the ensemble optimal interpolation (EnOI) analysis equa-
tions detailed in Oke et al. (2008):

wa ¼ wb þ Kðwo � HwbÞ; ð1Þ

where w is the state vector, and the superscripts a, b and o denote
the analysis, background and observed fields respectively. The state
vector is given by:

Fig. 1. The regional circulation around Australia (left panel) is dominated by the Leeuwen Current (LC) in the west, the East Australian Current (EAC) along the eastern
seaboard and the South Australian Current in the south. The coastal ensemble optimal interpolation scheme is trialled in south-east Tasmania (right panel). This area is
characterised as a mixing zone for the extensions of the EAC and SAC as well as the inshore region of freshwater influence (ROFI).
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w ¼ ½T S�T ; ð2Þ

where the superscript T denotes the matrix transpose. We could in-
clude sea-level (g) and the horizontal velocity vectors (u,v), but at
this stage we do not assimilate or relax towards any sea-level or
velocity fields (due to lack of observations). K is the gain matrix:

K ¼ PHTðHPHT þ RÞ�1
; ð3Þ

H is an operator that interpolates from the model grid to measure-
ment location. R is the observation error covariance matrix and is in
this case assumed to be diagonal. P is an estimate of the background
error covariance (BEC) matrix:

P ¼ AAT

n� 1
; ð4Þ

where A is an ensemble of anomaly fields containing all the state
variables from (2). If there are m wet cells in the model, A will be
2m rows (2, because we are only adjusting T and S state variables)
by n columns, where n is the ensemble size

A ¼ w01w02w03 . . . w0n
� �

; ð5Þ

the 0 denotes the anomaly field of the state. The ensemble of anom-
aly fields was constructed from a long control run of the SETas mod-
el (see Section 3.1), where no data were assimilated, and spans the
period of 1st of March 2008 to 31st of December, 2009. The anom-
aly fields used in (5) are intended to represent the dominant errors
within the model (Oke et al., 2008). There appears to be little, if any,
formal consensus in the formulation of these anomaly fields. In the
EnOI formulation of Counillon and Bertino (2009), the ensemble is
constructed using weekly output of the Gulf of Mexico model. Im-
plicit in their ensemble construction is the introduction of seasonal
variation, which is addressed through a scaling factor which can be
introduced into (4), and imposes a degree of stationarity to the
ensemble. Alternatively, Oke et al. (2008) constructs the anomaly
fields by subtracting monthly means from seasonal means, again ta-
ken from a long integration of the model with no assimilation,
which yield anomaly fields that contain length-scales associated
with meso-scale chaotic behaviour. Oke et al. (2008) do not use a
scaling factor as it is assumed that the ensemble is stationary.

The two time-scales chosen to construct the anomaly fields are
therefore somewhat arbitrary. However, there are some logical
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Fig. 2. SETas Model bathymetry and grid.

Table 1
SETas model configuration.

Horizontal grid Orthogonal curvilinear: 175 � 120 cells
Horizontal resolution 2500 m (Open Ocean) 250 m (Huon River)
Vertical grid Geopotential vertical coordinate system: 21 layers
Vertical resolution 1–10 m
Minimum depth 1 m
Maximum depth 200 m
Atmospheric forcing MesoLAPS
Open ocean boundary

forcing
OceanMAPS

Head of estuary forcing Gauged river flow
Time step (dt) 45 s
Bathymetry Margvelashvili et al. (2009)
Vertical mixing Mellor-Yamada 2.0
Bottom friction Combination of linear and quadratic (Herzfeld and

Waring, 2009)

E.M. Jones et al. / Ocean Modelling 47 (2012) 1–13 3
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choices to use in the coastal ocean; we want to choose as short a
timescale as possible to represent the‘‘errors of the day’’, yet this
needs to be long enough to preclude the effects of tides. The natu-
ral choice then is to average over one tidal cycle which corresponds
to approximately one day in this domain, �w1day, where the over-bar
denotes a time averaged value. The second timescale, should be
characteristic of the timescales in which the errors are introduced.
We hypothesise that these errors are introduced into the model
over timescales that are shorter, or approximately equal to, that
of the synoptic weather-band forcing; timescales that range be-
tween 5 and 12 days. We have chosen to average over 7 days,
�w7day. The control run of the SETas model can be divided into 91
consective 7 day windows (the first four windows are shown in
Fig. 3a). We then take the 7 day average of the state over each
7 day window ( �w7day). A 1 day mean centred on each 7 day window
is also calculated ( �w1day). A corresponding anomaly field for the
state centred on each window is then calculated:

w0 ¼ �w1day � �w7day: ð6Þ

This is done for each of the 7 day windows from the control run
which yields a 91 member ensemble of anomaly fields. This 91
member anomaly field, A, does not evolve during time and is there-
fore considered ‘‘static’’, one of the key differences between the
EnOI and EnKF algorithms. It should be noted that the shorter of
these timescales used to construct the anomaly field is equal to
the assimilation/forecast cycle used in the case study. If the assim-
ilation/forecast cycle were run on a weekly cycle or longer, the
choice of timescales may need to be reconsidered. A time series of
anomalies at four locations indicates the anomaly fields have little
or no discernible serial correlation (Fig. 3b) and are therefore con-
sidered stationary. We have chosen a 91 member ensemble as this
is the number we were able to generate and handle within our com-
putational constraints, and we regard it as a satisfactory size for the

application described in this paper. Lastly, unlike the Bluelink EnOI
system (Oke et al., 2008), covariance localisation is not used as we
anticipate domain wide correlations.

2.3. Initialisation

The assimilation cycle used in the SETas EnOI system involves
running the model twice over a prescribed time period. This two-
step procedure is used to avoid rapid changes in the model state
(Bloom et al., 1996), which can have serious implications if the
assimilating solution is used to drive a coupled biogeochemical
model. The SETas model is not reinitialised to the analysis field
within the assimilation cycle, but rather it is relaxed towards the
analysis field using a prescribed time-varying relaxation constant,
sr(t):

@w
@t
¼ w�wa

srðtÞ
: ð7Þ

sr(t) is a quadratic function with units of time of the form:

srðtÞ ¼ aðt � taÞ2 þ k; ð8Þ

where a is set to 20 days�1, ta is the analysis time and k is set to
15 min. The constants a and k can be used to vary the strength of
the relaxation used. This relaxation procedure is applied to a time
window spanning t = ta � 1 day to t = ta. The solution to (7) adds
an increment to the state w at each time step, and is considered a
form of ‘‘nudging’’. These increments then form part of the solution
to the primitive equations. A comprehensive study by Sandery et al.
(2011), investigates the effects of this nudging term on various
diagnostic variables and compares different forms of relaxation.
We acknowledge that there is a need for further investigation into
the choice of initialisation procedures and the impacts of varying

Fig. 3. An outline of (a) the method used to construct the anomaly fields of the state (w0) and (b) a plot of the anomaly field at selected locations.

4 E.M. Jones et al. / Ocean Modelling 47 (2012) 1–13
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the strength of the relaxation, however this will be dealt with in a
further study.

The assimilation cycle (presented graphically in Fig. 4) proceeds
as follows:

1. The model is initialised at t = 0 with the state for the corre-
sponding time of the control run.

2. A forecast is made for t + 1, the model state at t + 1 constitutes
the model background (wb).

3. An analysis field is generated by combining wb with observa-
tions (wo) following Eqs. (1)–(3).

4. The model is then reinitialised with the model state at time t
and again integrated forward in time to t + 1, but now relaxed
towards the analysis field.

5. The time increment is updated, t ? t + 1, and a new forecast is
made. Steps 2–4 are repeated until the end of the time period
of interest.

The time increment used in this analysis cycle is presently
1 day, which resembles the assimilation cycle that will be imple-
mented within the operational modelling framework detailed in
Margvelashvili et al. (2009).

2.4. Observations

Only in situ T and S data from moorings and gliders have been
assimilated in this study. During the analysis step of the assimila-
tion cycle, observations that fall within a 30 min window either
side of the analysis time are used. Available data from each sensor
are averaged in time (and space in the case of a glider) during the
observation window, yielding a mean (lobs) and variance r2

obs

� �
for

each sensor. This process in analogous to the ‘‘super-obing’’ pre-
sented in Oke et al. (2008), with the exception that observations
from moorings are not averaged in space. Through the process of
‘‘super-obing’’ we are explicitly accounting for the unresolved
sub-grid scale variability that will be present in the observational
data, a topic that is thoroughly discussed in Oke and Sakov
(2008). Of the available data, only 5% have been assimilated into
the model, the rest being withheld for validation.

Data collected from mobile platforms (e.g. gliders) are handled
in a slightly different way to the mooring data. When glider data
are available, data points are extracted from the record in a similar
way to the mooring data (e.g. data within a 30 min window of the
analysis time). We have chosen to aggregate all of the glider data
into a single horizontal position, that is the mean longitude and lat-
itude of the record. The data are then ‘‘binned’’ into vertical levels
that correspond to the vertical grid used in the model. This approach
has been taken as spatial correlations are longer in the horizontal
than vertical. Data are then averaged in each of these ‘‘bins’’ yielding
a mean (lobs) and variance r2

obs

� �
for T and S at the centre of each

corresponding vertical cell in the model. The variance within each
of these vertical cells will capture the horizontal variance associated
with the horizontal aggregation of the glider observations.

The model is interpolated onto the observation locations using
the observation operator H. The observation error covariance ma-

trix, R, is diagonal, which assumes that observation errors are inde-
pendent of each other. For each observation, the corresponding
diagonal element is given by the sum of instrument/sensor error
r2

error

� �
and the variance from the observation record r2

obs

� �
; Ri;j ¼

r2
error þ r2

obs. In this case, r2
error , is 0.1 �C2 for temperature and 0.05

PSU2 for salinity. By explicitly including r2
obs, we are accounting

for the representation error (Oke and Sakov, 2008), which includes
errors associated with advection, horizontal movement of the
sensor and small-scale spatial variability.

3. Case study

3.1. Control run

The control run of the model is used to form the anomaly fields
(Eq. (6)) and as a benchmark with which to compare the assimilating
run. Comparisons between the control run and glider observations
suggest that there is a 1 �C over estimation of the temperature field
in central storm bay in April (Fig. 8) and that this reduces during the
onset of winter conditions. The salinity structure lacks the fine scale
structure seen in the observations, however it closely resembles the
observations to within 0.2 PSU. The exception is the inshore region
of Storm Bay, which does not place the river plume in the correct
location, hence it appears to be missing in Fig. 9.

3.2. Correlation structures

Using the ensemble-based background error covariances (BEC’s)
it is possible to derive the correlation structures from point mea-
surements taken within the model domain. These spatial correla-
tion structures give an indication of the footprint, or region of
influence, of observations for each location. An observation of sur-
face temperature at the CSIRO wharf results in a correlation struc-
ture (Fig. 5a) that suggests this observation carries information
about the surface temperature both up- and down-stream of this
point. A surface observation at the mouth of the Derwent Estuary
at Cape Deliverance (Fig. 5b) yields information not only on the
surrounding waters, but also for much of the D’Entrecasteaux
Channel and nearby shallow Coastal Locations. A surface observa-
tion in central Storm Bay (Fig. 5c) contains information about the
surrounding water to the base of the mixed layer (not shown).
These are the typical structures that are contained in the BEC’s that
are implicit to the ensemble and are used to spread the observa-
tional data to regions of the domain where no observations exist.

The correlation structure depicted in Fig. 5a, suggests that two
spatially separate river systems (the Derwent and Huon) share a
reasonable degree of cross-correlation with values ranging be-
tween 0.5 and 0.7 for temperature and similar values for the salin-
ity (not shown) fields. Intuitively, this feature makes sense because
these river systems are affected by the same synoptic weather pat-
terns, which strongly influence the baroclinic dynamics (Herzfeld
et al., 2010).

A temperature observation taken in the surface layer of the
model at Cape Deliverance (Fig. 5b), has a footprint that encom-
passes most of the sheltered inshore waters of the SETas domain.
Again, most of these regions are influenced by the same synoptic
weather system. An interesting phenomenon is the absence of
any correlation adjacent to the southern capes on the Tasman Pen-
insula and Bruny Island (denoted by areas of purple shading in
Fig. 5a and b). These areas have a correlation very close to 0, which
are not statistically significant (discussed below). The regions sur-
rounding the aforementioned capes are prone to relatively high
current speeds due to the interaction of the tide with the regional
circulation discussed earlier. As a result, wake-like formations may
occur in the lee of these features, which could act to destroy any
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Fig. 4. A schematic outling the SETas EnOI assimilation cycle.
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correlation on the timescales that we are targeting with a static
BEC. Based on a t-test with 89 degrees of freedom (recalling we
have 91 ensemble members, N � 2 degrees of freedom), and a p-va-
lue of 0.01, any correlation with an absolute magnitude of below
0.27 is not statistically significant.

The observation in central Storm Bay (Fig. 5c) contains some
information about these energetic areas, but the cross-correlation

is still weak. None of the observations in near shore regions or cen-
tral Storm Bay yield any strong correlation signal at the boundary.
Accordingly, we cannot expect coastal in situ moorings to correct
for any biases associated with open ocean boundary conditions.
Alternative sources of data will need to be considered, e.g. coastal
gliders, remotely sensed SST, or if and when it is available, a remo-
tely-sensed coastal sea level anomaly product.

Fig. 6. An in situ time series of temperature and salinity collected at the CSIRO Wharf in Hobart. Model control run (black line), model assimilating run (green line),
observations (blue dots), analyses (red dots). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. An example of the ensemble-based cross-correlation structure for a temperature observation in the surface cell for (a) the CSIRO Wharf, (b) Cape Deliverance and (c)
central Storm Bay. The statistically significant 0.27 correlation contour is shown in all three panels. Black crosses indicate the position of the observations and the dashed
black line denotes the approximate path of the repeat Slocum glider transect.

6 E.M. Jones et al. / Ocean Modelling 47 (2012) 1–13



Author's personal copy

The cross-correlation structures have plausible domain wide
information. Also, the ensemble-based correlation fields are not
particularly noisy, so we conclude that sampling error is not a ma-
jor issue for this application. For these reasons covariance localisa-
tion has not been implemented. In any case, there are so few
independent observations available that the rank of the ensemble
typically exceeds the number of observations.

3.3. SETas case study

The SETas EnOI system was tested in the south-east Tasmanian
(SETas) region using data collected between the 1st of March and
31st May 2009. During this period there were two real-time moor-
ings located in coastal regions of the model domain (Fig. 1):

1. CSIRO Wharf (147.3376�E, 42.8853�S), T and S at surface
(�2.0 m) and bottom (�10.5 m),

2. Cape Deliverance (147.4070�E, 43.0467�S), T and S at surface
(�2.0 m) and bottom (�10.0 m).

A Slocum glider was deployed in Storm Bay for 25 days during
April 2009. It traveled 450 km, dived to within 10 m of the bottom
(50–160 m) and completed over 2000 casts in total (see Fig. 5 for
approximate transect line). Data collected for assimilation were
conductivity, temperature and depth.

3.3.1. Moored in situ time-series comparison
Moored in situ observations of T and S at two locations were

assimilated into the model. The control run (no assimilation) is
typically too warm and and too salty throughout the water column
(Figs. 6 and 7), and lacks the synoptic scale variability seen in the
observations. This is highlighted by the inability of the control
run to capture the freshwater flow event seen between the 6th
and 22nd of May (Fig. 6a). The salinity within the Derwent Estuary
is also not adequately captured in the control run, as there is no
evidence of the tidal advection of a salinity front at the sensor as
seen in the observations (Fig. 6a), largely due to the poor resolution
within the Derwent River. The control run is able to capture the
magnitude of the diurnal heating/cooling cycle in the surface tem-
perature record (Fig. 6c), but there is some bias with the model
typically too warm. The control run displayed similar behaviour
at the mouth of the Derwent Estuary (Cape Deliverance, Fig. 7),
and is again too warm and too salty. Both locations capture the
seasonal cooling trend which is caused by the transition from au-
tumn to winter conditions.

The SETas EnOI scheme is able to correct for the bias seen in the
control run. While the assimilation scheme can correct for the syn-
optic scale freshwater fluxes, seen in the improvement in the salin-
ity record between the 6th and 22nd of May, it is not able to
reproduce the advection of the salinity front at the observation
location over a tidal cycle. Rather, it is able to track the observa-

Fig. 7. An in situ time series of temperature and salinity collected at Cape Deliverance which is located at the mouth of the Derwent Estuary, downstream of Hobart. Model
control run (black line), model assimilating run (green line), observations (blue dots), analyses (red dots). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

E.M. Jones et al. / Ocean Modelling 47 (2012) 1–13 7
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tions that are assimilated into the model during the assimilation
window. This is discussed in more detail in Section 4. The modelled
surface temperature captures the diurnal heating/cooling cycle, al-
beit at a reduced amplitude. This reduction in amplitude is an arti-
fact of the relaxation scheme used to reconcile the model state
with the analysis. The modelled bottom temperature has two dis-
tinct behaviours corresponding to the time period during the first
35 and the last 60 days. During the first period there is bias to-
wards the over-prediction of the bottom temperature (Fig. 7d
and Fig. 6d). However, during the second period, this bias is re-
moved and the modelled bottom temperature tracks the observa-
tions well. The removal of this bias on the 5th of April,
corresponds to the time when Glider data from Storm Bay are
available for assimilation.

3.3.2. Mobile in situ profile comparison
The deployment of the Slocum Coastal Glider in Storm Bay,

yielded a very high resolution (in both space and time) dataset.
Observations from the Glider have identified four main
watermasses:

1. A warm salty water mass that resides in the surface layer in the
offshore region. This is likely to be derived from the extension
of the EAC and/or the extension of the SAC (Schiller et al., 2008).

2. A cold and salty water mass that lies below the water mass pre-
viously described.

3. Derwent Estuary water that is typically fresh (S < 30) and has a
temperature signature that is close to that of the overlying air.
This water mass is often seen as a plume that exits the mouth of
the Derwent Estuary at Cape Deliverance and flows into Storm
Bay.

4. Waters residing in Storm Bay are a mixture of these three
source water masses, that are mixed together with the proper-
ties slightly modified through evaporation, heating and cooling.

In periods of calm weather there is some stratification of the
water column in central Storm Bay, whereas, during the passage
of vigorous synoptic weather systems, the Bay becomes well
mixed. When the control run is compared with the observed Glider
data, the temperature structure in the Bay is too warm, by up to 3�
(Fig. 8; centre panel), the freshwater plume from the Derwent
Estuary is absent from the profiles (Fig. 9; centre panel), and the
overall T and S structure of the Bay lacks both the fine scale detail
seen in the observations and also the general placement of the
dominant structures. The prescribed open ocean boundary condi-
tions strongly influence the internal dynamics of coastal models.
We suspect that this explains the inconsistencies between the
observations and the control run.

The assimilating run of the model has reduced the temperature
Root Mean Square Difference (RSMD) between the glider and mod-
el by 90% (Fig. 10), most of which is a reduction in bias. The dom-
inant T and S structures are now in the correct place, the

Fig. 8. Temperature profiles along a repeat glider transect through central Storm Bay (Fig. 1). Observed profile (top panel), the control model run (central panel) and the
assimilating model run (lower panel).
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temperature bias has been corrected and more importantly the
vertical structure of the Bay is more consistent with observations.
Additionally, there is now more fine scale structure within the
assimilating run of the model. There is a more modest improve-
ment in the salinity structure, the Derwent Estuary plume is now
resolved which is likely due to the control run having less bias in
the salinity record than seen in the temperature record.

3.4. Comparison with remotely-sensed SST data

An independent validation of the SETas EnOI scheme was
undertaken using data obtained from the Group for High-Resolu-
tion Sea Surface Temperature (GHRSST) level 2 dataset (Donlon
et al., 2009). During the 3 month reanalysis period there were
3276 pixels that fell within the model domain which had an error
of less than 0.3 �C. A 3 month average RMSD was calculated for
each model cell that had a minimum of 10 GHRSST observations
within a 1000 m radius of the cell centre. The spatial maps of the
RMSD for SST in the control and assimilating runs of the model
are shown in Fig. 11. The control run exhibits a strong cross-shore
gradient in RMSD, with typical inshore values exceeding 1.4 �C,
reducing to 0.4 �C near the offshore boundary. The RMSD in the
assimilating model run displays a more complex distribution. In
regions where observations carried substantial influence, e.g. cen-
tral Storm Bay, the RMSD was reduced by between 40% and 90%,
but there was little reduction along the offshore boundary. How-
ever, there was a substantial reduction in the RMSD to the south

and south-west of Bruny Island. Based on the reported circulation
patterns, this area is ‘‘upstream’’ of Storm Bay, therefore observa-
tions from the Glider transect are being spread to the area, which
result in the reduction of the mean RMSD. The domain wide aver-
age reduction in RMSD was 40% over the 3 month reanalysis
period.

4. Discussion

Sequential data assimilation algorithms (including the EnKF and
EnOI) are derived based on the assumption that the underlying
model is unbiased. That is to say that for a sequential system to
be optimal, the model should be unbiased. It is true that in this par-
ticular application the control run is biased in the temperature
field, but so far as the assimilation algorithm is concerned, there
only exists bias in the initial conditions. However, what is impor-
tant is the degree of bias entering the model over an analysis cycle,
i.e. Is the background biased? A time-series of spatially averaged
increments for the temperature and salinity fields show that the
algorithm is consistently removing heat from the model until day
7 (Fig. 12). Once this initial bias in the temperature field has been
removed, the spatially averaged temperature increment fluctuates
about a mean value of�0.05 �C, with the 95% confidence interval of
approximately ±0.5 �C. This means that for half the time, the incre-
ments are positive, not negative. If the background field were
biased towards predicting warmer than observed temperatures,
the spatially averaged increment would be consistently negative.

Fig. 9. Salinity profiles along a repeat glider transect through central Storm Bay (Fig. 1). Observed profile (top panel), the control model run (central panel) and the
assimilating model run (lower panel).
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Once the excess heat has been removed from the model, bias does
not enter the background field over the duration of the assimila-
tion cycle. There is less temporal variation in the spatially averaged
salinity increments, with a spatial mean of 0 and a 95% confidence
interval extending to ±0.5 PSU.

The number of assimilation cycles per day was increased from 1
cycle per day to 4 cycles per day. The assimilating model was then
initialised on the 1st of April and observations (both glider and

moorings) were assimilated for 15 days. It takes approximately
6–8 assimilation cycles (2 days) to remove the bias when the mod-
el is initialised from the control run (Fig. 13a and b), which is con-
sistent with the number of cycles required for the longer
assimilation cycle previously presented. Observations were assim-
ilated for a further 13 days, then from this point onwards, no
observations were assimilated and the model was integrated for-
ward until it converged with the control run (Fig. 13).
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There are two timescales we need to consider when interpret-
ing Fig. 13:.

1. The time taken for the control and assimilating extension to
converge;

2. the time taken for the assimilating extension to diverge from
the observations.

The extension to the assimilating run takes approximately
75 days to converge with the control run. Both of these models
are forced with the same open ocean, head of estuary and surface
boundary conditions. The only differences between these runs are
those in the initial conditions at day 15. We hypothesise that, due
to the advective nature of the region, the time taken for these runs
to converge should be approximately equal to the flushing time.
This is in fact the case and agrees well with the flushing times pub-
lished in Herzfeld et al. (2010).

The rate at which the assimilating extension then diverges from
the observations indicates the time-scales that errors are intro-
duced into the model. There are a number of events where the
assimilating extension diverges from the observation, over periods
of 7–14 days. These events are most noticeable in the temperature
time series from the CSIRO wharf sensor (seafloor) in Fig. 13. This
agrees with our hypothesis outlined in Section 2.2, that errors en-
ter the model at timescales longer than the assimilation cycle used
in Section 3.

Fortuitously, the control run converges with the observations
approximately 90 days after initialisation. During this period there
is a transition from summer to winter conditions. This result sug-
gests that errors in the forcing data and/or model parametrisation,
are substantially less during the winter months.

The time taken for the assimilating extension to converge with
the control run is the same as the time taken for the control run to
converge with the observations. Unfortunately, we do not have a
dense dataset that spans the transition from winter to summer
conditions and therefore cannot quantify any intra-seasonal varia-
tion in these time-scales. However, bearing these time-scales in
mind, there are many possible sources of error that could contrib-
ute to this slow convergence between the control run and assimi-
lating extension, and also the divergence between the assimilating
extension and the observations. We suggest that the following
three sources are likely candidates, as they directly influence the
heat content of the model:

1. the global ocean model used to force the open ocean boundaries
may be biased,

2. the net heat flux could be too high or seasonally biased,
3. the shortwave radiation is being incorrectly distributed

throughout the water column.

A comparison between the OceanMAPS and the temperature
sensors on the IMOS Maria Island reference station (located near
the north-east boundary) shows no persistent bias in the open
ocean boundary conditions (not shown). Apart from the GHRSST
data, there are no observations near the south-west boundary.
However, the time-averaged RMSD along the southern and wes-
tern boundary are 0.2 �C which is substantially less than the 1 �C
bias seen in the interior of the domain. Futhermore, given OceanM-
APS is a data-assimilating ocean model, persistent over estimation
of the temperature is unlikely and has not been reported. Without
a richer observational dataset to use for model calibration it is dif-
ficult to separate the relative contribution of errors in the net heat
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flux or parametrisation of the distribution of shortwave radiation.
There is no evidence that the surface forcings derived from the
MesoLAPS product are seasonally biased (Vincent et al., 2008). If
the bulk heat flux formulation were itself biased, then this would
manifest as a persistent rather than seasonal bias. This suggests
that the most likely source of the seasonal over-estimation of tem-
perature is the shortwave parametrisation.

The parameters that control the distribution of shortwave radi-
ation through the water column are transmission, absorption in
the upper layer and bottom reflectance, all of which are invariant
in space and time (Herzfeld and Waring, 2009). In coastal domains
that experience periodic influxes of freshwater and have spatially
varying bottom types in optically shallow water, the assumption
of spatio-temporal invariance in these parameters can lead to er-
rors. Therefore, with little a priori knowledge of how these param-
eters may vary in space and time, they cannot be mechanistically

modelled. For this reason we use the EnOI system to correct for
these slowly evolving errors.

5. Conclusion

We have applied an efficient data assimilation scheme suitable
for use in operational coastal hydrodynamic models. The use of a
static BEC field has highlighted the ‘‘long distance’’ domain wide
correlation structures inherent to coastal regions. We suspect that
these structures are realistic and do not contain spurious long
range correlation as seen in global ocean models (Oke et al.,
2008), and exist due to the spatially coherent synoptic forcing
through small coastal domains. For this reason, covariance localisa-
tion is not employed, and as a result, observations can carry a large
‘‘footprint’’ of influence.
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The assimilation of in situ observations from gliders and moor-
ings into the SETas forecast system was very successful. The assim-
ilating model run realistically reproduces the observed variability,
including the Derwent River freshwater plume in Storm Bay. We
have identified domain wide correlation structures caused by the
spatially coherent forcing data. In regions of dense observations,
the RMSD between GHRRST and the model was reduced by up to
90%, with a more modest 40% reduction in the domain wide RMSD.
Furthermore, we have shown that this system can remove bias at
initialisation within eight assimilation cycles. Once the initial bias
has been removed, bias does not re-enter the model during the
forecast period.

We have suggested the dominant source of error in the model
relates to the parametrisation of shortwave radiation distribution
through the water column. This error will manifest itself in all
cases where there is little ‘‘a priori’’ knowledge of the optical and
seafloor characteristics. However, as these errors are introduced
at time scales much longer than the assimilation cycle, the EnOI
algorithm is able to correct for them.
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