
Peter R. Oke and 
Andreas Schiller

CSIRO Marine 

and Atmospheric 

Research

Observing system design using
                  ensemble optimal interpolation:

Results
The standard deviations of  D20 and MLD are shown 

in Figure 1. Under the assumptions of  (1-2), these 

fi elds can be regarded as prior error estimates.

The optimal observation locations for D20 and MLD are 

presented in Figure 2, for experiments using the ACOM2 

and ACOM3 ensemble for two domains that extend 

within ±15º and ±25º of  the equator. We note that while 

the details of  the arrays differ, the general features are 

quite similar. For example, for D20, the optimal arrays 

tend to have many observations between 5-15ºS, with 

very few observations along the equator. By contrast for 

MLD, the optimal arrays tend to have many observations 

within 5º of  the equator; and particularly to the east.

The theoretical posterior error for D20 and MLD are 

presented for all cases considered here in Figure 3 and 4 

respectively. For comparison, we present the root-mean-

squared error (RMSE) for OSSEs spanning the period 1982-

1988 using the ACOM2 ensemble for the period 1989-1994 

in Figure 5. For each of  these OSSEs, we contaminate 

the observations with normally distributed white noise 

with a standard deviation of  4 m. We note that the RMSE 

fi elds in Figure 5 correspond well to the theoretical error 

estimates in the corresponding panels in Figures 3 and 4.

An indication of  the number of  observations the EnOI 

systems require to adequately represent D20 and MLD 

variability is given in Figure 6, showing the basin-averaged 

analysis error as a function of  array size. For comparison, 

the basin-averaged prior error (Figure 1) for D20 and 

MLD is about 20 m and 5 m respectively; and recall that 

the observations are assumed to have an error of  4 m. 

These calculations suggest that an array of  30 moorings 

is probably a good choice for resolving interannual 

variability; and that intraseaonal variability is probably 

poorly constrained by this EnOI system, even when a much 

larger array is used; owing to its small spatial scales.

Some insight into why the EnOI system prefers observations 

at particular locations is gained by considering fi elds 

from the gain matrix in Figure 7. If  only one observation 

is available and the background innovation (d-HwB) is 1 

m, the gain is equivalent to the EnOI-derived increments.

Conclusions
We fi nd that in general, observations south of  8ºS 

and off  the Indonesian coast are most important for 

resolving interannual variability; while observations 

within 5º of  the equator; and particularly to the east, 

are important for resolving intraseasonal variability.
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Figure 2 Map showing the optimal observation locations 

for D20 (left) and MLD (right) using a 152-member ensemble 

from ACOM2 (top) and a 101-member ensemble from 

ACOM3; Crosses (circles) are for the ±25º (±15º) domain.

Figure 1 Standard deviation of D20 (left) and MLD 
(right) from ACOM2 (top) and ACOM3 (bottom).

Figure 3 Theoretical posterior error for D20 from ACOM2 
(left) and ACOM3 (right) using the proposed array (top) and an 
optimal array on the ±15º (middle) and ±25º (bottom) domain.

Figure 4 As for Figure 3, except for MLD.

Figure 5 RMSE for D20 (left) and MLD (right) for OSSEs 
using the proposed array (top) and an optimal array on 
the ±15º (middle) and ±25º (bottom) domain for ACOM2. 
These fi elds should be compared to the Figure 3 and 4.

Figure 6 Plots of  the basin-averaged posterior error as a 

function of  the number of  observations for D20 (bold) and MLD 

(thin) for ACOM2, ACOM3 on the ±15º and ±25º domains.

Figure 7 Examples of  the gain matrix for D20 using the ACOM2 

ensemble, for the best 4 observation locations (denoted by the squares). 

Table 1 Details of model confi gurations

 ACOM2 ACOM3

Model code MOM2 MOM3

Resolution (x, y, z) (2º, 0.5-1.5º, 25 levels) (0.5º, 0.33º, 33 levels)

Wind forcing NCEP-NCAR + FSU ERS1/2

Non-shortwave heat ABL + fl ux correction ABL + fl ux correction

Shortwave heat fl ux as above OLR + NCEP

Freshwater fl ux as above Monthly analyses

Simulated period 1982-1994 1992-2000

Objective
A series of  Observing System Simulation Experiments 

(OSSEs) are performed using Ensemble Optimal 

Interpolation (EnOI) to design an improved mooring array 

for the tropical Indian Ocean. We apply a procedure to 

determine the optimal array of  observations that minimises 

the analysis/posterior error variance. We apply the system 

to the depth of  the 20º isotherm (D20), representing 

interannual variability, and high-pass fi ltered mixed layer 

depth (MLD), representing intraseasonal variability.

Method
We consider fi elds from two different global ocean models 

with different resolution, surface fl uxes and run for different 

periods. The details of  these models are summarised in 

Table 1. EnOI produces gridded analyses wa, by solving

wa  = wB + K (d-HwB)   (1)

K = PBHT (HPBHT + R)-1

where wB is the gridded background fi eld that is here defi ned 

as the temporal mean from a long model run; K is the Kalman 

gain; d is a vector of  observations; H interpolates from grid- to 

observation-space; R = ε 2 I is the observation error covariance 

matrix, where ε= 4m  is the assumed observation error;

PB = AAT /(t-1)      (2)

quantifi es the background error covariances, where t is the 

ensemble size (here equivalent to the number of  realizations 

from a long model run); A = [ w’
1
  w’

2
  ...   w’

t
]  is a matrix 

of  anomalies; and w’
i
 is the ith model anomaly from the 

background fi eld/long-term mean. The theoretical analysis 

error covariance matrix Pa resulting from (1) is given by

Pa = PB - KHPB     (3)

The prior and posterior error variances are given by the 

diagonals of  PB and Pa, respectively; and the basin-averaged 

background and expected analysis errors (EAE) are given 

by   trace(PB)/n  and    trace(Pa)/n, where n is the number of  

grid points.

We seek to defi ne H, such that the EAE is minimised. 

In practice, we start with locations at every model grid 

point, we eliminate the location that, when withheld, gives 

the smallest EAE. We recursively repeat the procedure 

until the desired number of  locations remain.


