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On the form of the transformation matrix

Results

The root mean-squared error (RMSE) 

for experiments using the LA model 

are plotted for each fi lter as a function 

of  ensemble size in Figure 1. The 

superior performance of  the symmetric 

ETM is clear. An explanation for this is 

partially given in Figure 2, where the 

normalized singular value spectrum 

of  X is shown. This shows that the 

symmetric form in (5) orthogonalises 

X, thereby increasing the quality of  the 

ensemble as an orthogonal basis.

The RMSE for the Lorenz-40 model 

is shown as a function of  ensemble 

size and infl ation factor in Figure 3. 

Because the performance of  each 

fi lter depends on the infl ation factor, we 

present the RMSE versus ensemble 

size for the best infl ation factor for 

each ensemble size in Figure 4. 

Again, the superior performance of  

the symmetric formulation is clearly 

evident; and again the symmetric fi lter 

acts to orthogonalise X (Figure 5).

Discussion

We argue that the EnSKF with the 

symmetric form for T outperforms 

other fi lters because it has 

the following properties:

(a)  Centered Analysis: the correct 

ensemble mean is preserved[3];

(b)  Continuity: If  I+(HXf)TR-1HXf/(m-1)→

I, then T→I. In practice, typically 

T≈I (Figure 6); thus updates to 

X are small; and the problem of  

initialisation is diminished;

(c)  Minimal length solution: the distance 

between Xf and Xa is minimised[4];

(d)  Symmetry: yields the only symmetric 

positive defi nite solution to (2).

Conclusions

Based on a series of  experiments with 

two small models, we have demonstrated 

that the symmetric ETM in the ETKF 

yields a signifi cantly better performance 

than that of  other forms. We attribute 

this superior performance to a number 

of  attractive properties of  the ETM 

and argue that only the symmetric 

form should be used in practice.
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Abstract

We argue that the one-sided solution 

for the ensemble transformation matrix 

(ETM) in the ensemble transform Kalman 

fi lter (ETKF), T=C (Γ+Ι)-1/2, and similar 

expressions in related ensemble square 

root Kalman fi lters (EnSKF) should not 

be used in practice; and should always 

be replaced by the symmetric solution, 

T=C (Γ+Ι)-1/2C, or by corresponding 

expressions in other fl avours of  EnSKF.

Background

The success of  ensemble data 

assimilation depends on the properties 

of  the ensemble, from which background 

error covariances are approximated. 

Two commonly used approaches are 

the classic Ensemble Kalman Filter 

with perturbed observations (EnKF)[1]; 

and EnSKFs[2], where ensemble 

perturbations are transformed to be 

consistent with Kalman fi lter theory. 

Square root fi lters have the advantage 

of  being deterministic; and therefore 

less prone to sampling error.

In the EnSKFs the ensemble mean 

is updated using the standard 

Kalman Filter equations, while the 

ensemble perturbations X around 

this mean are updated using:

Xa=Xf T,                            (1)

where T is the ETM; and superscripts 

a and f refer to analysis and forecast. 

T is defi ned so that the analysis error 

covariance of  the ensemble match 

the theoretical value from Kalman 

Filter theory. The particular form of  

the solution for the ETM depends on 

the fl avour of  EnSKF. In ETKF[3]

T = [I+(HXf)TR-1HXf/(m-1)]-1/2,               (2)

where m is the ensemble size. Given 

the eigenvalue decomposition of  

[I+(HXf)TR-1HXf/(m-1)] = CΓCT; where 

C is orthonormal and Γ is a diagonal 

matrix of  eigenvalues; the solution for T is 

T = CΓ-1/2U,                                           (3)

where U is an arbitrary orthonormal 

matrix. The importance of  the 

particular form of  T has previously 

been underestimated. The three 

different solutions used in the literature 

are the one-sided solution[3,2]:

T = CΓ-1/2;                                             (4)

the symmetric solution[4,5]:

T = CΓ-1/2CT;                                      (5)

and the solution with random rotations[6,7] 

given by (3) if  U is assumed to be 

a random orthonormal matrix.

In early works on the ETKF[3,2] the 

one-sided solution was used. It was 

subsequently realised that the symmetric 

solution has some advantages[5]. However, 

these advantages were reported as 

only giving a “small improvement”. 

The solution with random rotations 

has also been recommended[6,7] as an 

improvement over the one-sided solution.

We compare the performance of  the 

EnSKF with each formulation for T (3-5) 

and the EnKF. As a test bed we perform 

twin experiments using two small 1D 

models: a Linear Advection (LA) model, 

where a 1D fi eld is advected over a 

periodic domain at constant speed[6]; and 

the highly non-linear Lorenz-40 model [8].

> Figure 6 Examples of  T produced using 

the symmetric (left) and one-sided (right) 

solution. Here, T is calculated using an 

ensemble of  10 members of  length 40; each 

state element is normally distributed around 

zero with the variance of  1, and there are 

two observations with error variance of  1.

Figure 1 RMSE of  different fi lters for the LA 

model (no infl ation factor is used for ETKF).

Figure 2 Normalised singular-value 

spectrum for X from for the LA model for 

(a) n=30 and (b) n=60. The number of  

degrees of  freedom in the LA model is 51.

Figure 3 RMSE for the Lorenz-40 model averaged over a long run for the ETKF with the (a) symmetric, 

(b) one-sided and (c) random rotations formulation for T; and (d) the EnKF with perturbed observations. 

The fractal dimension of  the Lorenz-40 model is 27.

Figure 4 The best RMSE from Figure 3 for a 

given ensemble size of  all infl ation factors.

Figure 5 Normalised singular-value 

spectrum of  X for the Lorenz-40 model.

References:
[1] Burgers et al. 1998. Mon. Weath. Rev., 126, 1719-1724.

[2] Tippett et al. 2003. Mon. Weath. Rev., 131, 1485-1490.

[3] Bishop et al. 2001. Mon. Weath. Rev., 129, 420-436.

[4] Ott et al. 2003. http://arxiv.org/abs/physics/0203058.

[5] Wang et al. 2005. Mon. Weath. Rev.., 132, 1590-1605.

[6] Evensen 2004. Oc. Dyn., 54, 539-560.

[7] Leeuweburgh et al. 2004. Q. J. Met. Soc., 30, 1-20.

[8] Lorenz and Emanuel, 1998. J. Atmos. Sci., 55, 399-414.

Poster designed by Lea Crosswell, CSIRO Marine and Atmospheric Research Communication Group


