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Abstract

The generation and evolution of eddies in the ocean are largely due to insta-

bilities that are unpredictable, even on short time-scales. As a result, eddy-

resolving ocean reanalyses typically use data assimilation to regularly adjust

the model state. In this study, we present results from a second-generation

eddy-resolving ocean reanalysis that is shown to match both assimilated and

with-held observations more closely than its predecessor; but involves much

smaller adjustments to the model state at each assimilation. We compare ver-

sion 2 and 3 of the Bluelink ReANalysis (BRAN) in the Australian region.

Overall, the misfits between the model fields in BRAN3 and observations

are 5-28% smaller than the misfits for BRAN2. Specifically, we show that

for BRAN3 (BRAN2) the sea-level, upper ocean temperature, upper-ocean

salinity, and near-surface velocity match observations to within 7.7 cm (9.7

cm), 0.68◦C (0.95◦C), 0.16 psu (0.18 psu), and 20.2 cm/s (21.3 cm/s) respec-
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tively. We also show that the increments applied to BRAN3 - the artificial

adjustments applied at each assimilation step - are typically 20-50% smaller

than the equivalent adjustments in BRAN2. This leads us to conclude that

the performance of BRAN3 is more dynamically consistent than BRAN2,

rendering it more suitable for a range of applications, including analysis of

ocean variability, extreme events, and process studies.

Keywords: Ocean Reanalysis, Data Assimilation, Ensemble Optimal

Interpolation, GODAE, Operational Oceanography

1. Introduction1

The mesoscale ocean circulation is dominated by the generation, evolu-2

tion, interaction, and decay of eddies. Eddies typically develop as a result3

of instabilities associated with either the horizontal shear of the circulation -4

barotropic instabilities; or vertical shears - baroclinic instabilities (e.g., Lee5

et al., 1991; Marchesiello et al., 2003; Feng et al., 2005). These instabili-6

ties are unpredictable, even on short time-scales (e.g., O’Kane et al., 2011).7

Data assimilation is therefore a necessary tool for initialising and constrain-8

ing an ocean model to realistically reproduce the mesoscale ocean circulation9

in either eddy-resolving or eddy-permitting models (e.g., Carton et al., 2000;10

Oke et al., 2005; Ferry et al., 2007; Carton and Giese, 2008). A free running11

model, without data assimilation, can produce realistic mesoscale variability12

- but without data assimilation, a model will not reliably reproduce particular13

“eddy events”, with eddies in the correct place and time, with the correct in-14

tensity and characteristics. Most applications of data assimilation involve the15

sequential adjustment of the model state to keep it aligned with observations16
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(e.g., Dombrowsky et al., 2009; Zhang et al., 2010; Moore et al., 2011). These17

updates inevitably interfere with the dynamic balance of the model (e.g., Bal-18

maseda and Anderson, 2009; Oke and Griffin, 2011). The adjustments act19

as a source of momentum, heat and freshwater that is not easily associated20

with any specific dynamical process. This makes the use of a data assimilat-21

ing model for understanding processes somewhat problematic. It is therefore22

a common goal of a data assimilating model to reduce the magnitude of23

the adjustments, without compromising the fit to observations. Some data24

assimilating studies have modified the forcing fields and model parameters,25

rather than the model state (e.g., Stammer et al., 2002; Koehl et al., 2007;26

Di Lorenzo et al., 2007; Moore et al., 2009). However, the efficacy of these27

approaches for eddy-resolving applications, where instabilities are prevalent,28

is unclear. As a result most data assimilating eddy-resolving models, even29

those based on variational methods, use a sequential approach involving ex-30

plicit updates to the model state (e.g., Kurapov et al., 2009; Cummings et al.,31

2009; Zhang et al., 2010; Moore et al., 2011; Kurapov et al., 2011; Yu et al.,32

2012). In this study, we present an evaluation of a second generation re-33

analysis system that is shown to match observations more closely than the34

first generation system, even though the adjustments during the assimilation35

step are smaller. This development is a continuation of the Bluelink effort36

(Schiller et al., 2009a), that was founded under GODAE (Smith, 2000), and37

continues under GODAE OceanView (www.godae-oceanview.org).38

More specifically, we compare the performance of the two most recent39

versions of the Bluelink ReANalysis (BRAN) - versions 2p1 and 3p5 - here-40

after BRAN2 and BRAN3. BRAN is a multi-year integration of the Bluelink41
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ocean model, called the Ocean Forecasting Australian Model (OFAM); and42

the Bluelink Ocean Data Assimilation System (BODAS; Oke et al., 2008).43

OFAM and BODAS are combined by sequentially running the model for44

several days, then combining a model field with observations of sea-level45

anomaly (SLA), sea-surface temperature (SST), and in situ temperature and46

salinity from a range of sources. BRAN can be thought of as an observation-47

based estimate of the ocean circulation, where the model is being used to48

interpolate between observations that are sparse in time and space, while49

also extrapolating the observations to provide estimates of unobserved vari-50

ables. Analogous analyses of ocean observations exist for single variables51

(e.g., Le Traon et al., 1998) that have no constraint to dynamics, and mul-52

tiple variables (e.g., Guinehut et al., 2004, 2006; Ridgway and Dunn, 2010)53

that attempt to respect the ocean water mass properties and linear dynamics54

(e.g., geostrophy). By contrast, the type of reanalyses presented here (e.g.,55

Ferry et al., 2007; Oke et al., 2008; Schiller et al., 2008; Balmaseda et al.,56

2012) use primitive equation dynamics to fit data. The risk of this approach57

is that the penalty for over-fitting the data is potentially much greater (e.g.,58

numerical instability). We therefore monitor this closely by analysing the59

model mis-match to unassimilated data; and the size of the shocks during60

each assimilation cycle.61

Results from the first BRAN experiment (BRAN1p0; Oke et al., 2005),62

a 12-year reanalysis, showed that the Bluelink system could produce three-63

dimensional, time-varying fields that are qualitatively consistent with the64

real ocean. The configuration of BRAN1p0 was quite immature, and as a65

result, the model was poorly constrained by observations. The system was66
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refined for BRAN1p5, spanning only 2003-2006, with the addition of the67

assimilation of SST and other minor changes, resulting in a reanalysis that68

was closer to observations, but was still poorly constrained (Oke et al., 2008).69

One of the limitations of BRAN1p5 was the initialisation. BRAN1p5 used70

a simple Newtonian nudging to initialise the model after each assimilation.71

This was a conservative approach that succeeded in eliminating much of72

the “noise” (model-shock) generated after each assimilation, associated with73

the dynamic imbalance introduced during the update step, but resulting in74

observations being under-fitted. Version 2p1 of BRAN (Schiller et al., 2008,75

BRAN2), covered the period 1993-2006, and was largely based on BRAN1p5,76

but included a few moderate changes to the background error estimates, the77

initialisation (but still used nudging), and some changes to the model. Like78

BRAN1p5, BRAN2 under-fitted observations and showed a tendency for the79

eddies to be somewhat discontinuous in time - a characteristic that is clearly80

related to the dynamical imbalance introduced after each assimilation. The81

latest version of BRAN - version 3p5 that is first described here, includes82

changes to the initialisation (Sandery et al., 2011), localisation method, the83

assimilation algorithm, and pre-processing of observations and improvements84

to their error estimates.85

In this paper, the model is described in section 2, and the important as-86

pects of the data assimilation system, including the differences between the87

BRAN2 and BRAN3 configurations, are described in section 3. An overview88

of the assimilated observations is presented in section 4, followed by a series89

of comparisons between both assimilated and withheld observations with90

model fields from BRAN2 and BRAN3 in section 5. An analysis of the incre-91
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ments, or data assimilation adjustments, in section 6, then the conclusions92

in section 7. The technical details of the assimilation and data-processing93

are described in Appendix A.94

2. Model95

The Bluelink ocean model, called the Ocean Forecasting Australia Model96

(OFAM), has been developed over many years. The first and second versions97

of OFAM (OFAM1 and OFAM2) are eddy-resolving in the 90◦-sector centred98

on Australia and south of about 20◦N. In this study we present results from99

BRAN2, using OFAM1 - spanning January 1993 to December 2006; and100

BRAN3, using OFAM2 - spanning January 1993 to September 2012. The101

key differences between the model used for BRAN2 and BRAN3 are listed102

in Table 1.103

OFAM1 and OFAM2 are configurations of the GFDL Modular Ocean104

Model (Griffies et al., 2004, OFAM1 uses MOM40d; OFAM2 uses MOM4p1).105

To date, all versions of OFAM have been developed for analysis and predic-106

tion of the upper ocean circulation, so OFAM2 (OFAM1) has 5 m (10 m)107

vertical grid spacings at the ocean surface and graduated to 10 m vertical108

grid spacings over the top 200 m. The horizontal grid spacings are 1/10◦
109

between 90-180◦E and south of about 20◦N; 1 ◦ across the rest of the In-110

dian Ocean and the Pacific to 60◦N; and 2◦ in the Atlantic and far north111

Pacific Ocean. The horizontal grid spacing changes gradually over 1◦ be-112

tween each transition region. To accommodate the inhomogeneous resolu-113

tion, the horizontal viscosity is resolution and state-dependent, based on the114

Smagorinsky scheme (Griffies and Hallberg, 2000). The bottom topography115

6



for OFAM2 is based on Smith and Sandwell (1997); and OFAM1 is a blend of116

DBDB2 and GEBCO topography (www7320.nrlssc.navy.mil/DBDB2WWW;117

www.ngdc.noaa.gov/mgg/gebco/). The turbulence closure model used by118

OFAM is a version of the hybrid mixed-layer scheme (Chen et al., 1994).119

OFAM2 also uses an implicit tidal mixing scheme to represent the mixing120

associated with tides (Lee et al., 2006). Note that OFAM2 does not include121

explicit tidal forcing - it merely includes a parameterisation that represents122

the mixing effects of tides.123

For both BRAN2 and BRAN3, OFAM is forced with surface fluxes of mo-124

mentum, heat, and freshwater. BRAN2 uses 2.5◦-resolution, 6-hourly fluxes125

from ERA-40 (Kallberg et al., 2004) between 1993 and 2002, and fields from126

the European Centre for Medium-Range Weather Forecasting (ECMWF) op-127

erational forecasts (http://data.ecmwf.int/data/d/era40 daily) between 2003128

and 2006. BRAN3 uses 1.5◦-resolution, 3-hourly fluxes from ERA-Interim129

(Dee and Uppala, 2009). For BRAN2, the above-mentioned fluxes are ap-130

plied to OFAM1 unaltered. We found that this resulted in a trend in global131

averaged MSL due to an imbalance between the precipitation and evapora-132

tion (and river) fields (recall that MOM is volume conserving). This resulted133

in a negative bias in BRAN1.5 and BRAN2 that negatively impacted the134

assimilation (Oke et al., 2008). For BRAN3, we adjust the surface fluxes in135

advance to ensure that the freshwater fluxes are globally balanced. This is136

achieved by adding a small amount of precipitation everywhere - a “drizzle”.137

The magnitude of the drizzle is smaller than all other components of the138

freshwater budget and changes annually to ensure that the model’s global-139

and annual-averaged MSL remains constant for the duration of the run. We140
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also scale the long wave flux so that the averaged net heat flux is 1.3 W m−2
141

following Trenberth et al. (2009).142

OFAM has been used for many studies, including ocean reanalyses (Oke143

et al., 2005, 2008; Schiller et al., 2008), observing system experiments (Oke144

and Schiller, 2007), an investigation of a series of coral bleaching events in145

the Great Barrier Reef (Schiller et al., 2009b), an analysis of eddy dynamics146

in the Tasman Sea (Oke and Griffin, 2011), an analysis of fronts in the147

Southern Ocean (Langlais et al., 2010), an investigation of the seasonality148

of Chlorophyl a in anti-cyclonic eddies off Western Australia (Dietze et al.,149

2009), and climate downscaling (Sun et al., 2012). An operational version of150

OFAM2 is run at the Bureau of Meteorology and is described by Brassington151

et al. (2007). The most recent version of OFAM, OFAM3, has been integrated152

for an 18-year run and evaluated by Oke et al. (2013), but a data-assimilating153

run of OFAM3 has not yet been conducted.154

3. Data Assimilation155

The data assimilation system used for all BRAN experiments is called156

BODAS (Oke et al., 2008). An overview of the changes to BODAS for BRAN157

are summarised below and in Table 2. There are many differences between158

the version of BODAS used for BRAN2 and BRAN3. The version used for159

BRAN3 includes many technical changes that were motivated to improve160

the scalability and robustness of the system, to make it computationally161

more efficient, and to enable the extraction of additional diagnostics. The162

improvements to the scalability mean that more observations can be assim-163

ilated directly for the same cost, yielding analyses that have a better fit to164
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the data. The other major change for BRAN3 relates to the initialisation -165

the step in the assimilation when the model state is updated. Other changes166

relate to the specific implementation of BODAS and the parameters used in167

its application, including changes to the error estimates of the background168

field and the observations, and improved pre-processing of observations. The169

details of the differences in the assimilation system are presented in Appendix170

A.171

The data assimilation method used here is Ensemble Optimal Interpola-172

tion (EnOI; Oke et al., 2002; Evensen, 2003). EnOI is based on the Ensemble173

Kalman Filter (EnKF; Evensen, 1997, 2003), but it uses a time-invariant en-174

semble to approximate the system’s background error covariance. EnOI is175

inexpensive and robust, and has been tested and shown to be effective for176

a range of ocean applications (e.g., Oke et al., 2005, 2007, 2008, 2009, 2010;177

Counillon et al., 2009; Fu et al., 2009; Counillon and Bertino, 2009; Wan178

et al., 2010; Xie and Zhu, 2010; Srinivasan et al., 2011).179

For an EnKF, the ensemble mean and the ensemble perturbations are180

updated during every assimilation cycle. This yields a time-varying estimate181

of the system’s background error covariance. By contrast, for EnOI, the182

ensemble is time-invariant, so only the background field (analogous to the183

ensemble mean in the EnKF) is updated. Here, we apply efficient methods184

developed for the EnKF to EnOI.185

Specifically, the covariance localisation method, used in the previous ver-186

sion of BODAS (Oke et al., 2008), is replaced by a local analysis. Both187

methods are known to be fundamentally similar (Sakov and Bertino, 2011),188

except that the local analysis has some significant practical advantages. The189
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main advantage is that while covariance localisation requires an inversion in190

observation-space, local analysis makes it possible to perform inversions in191

ensemble-space. For most practical applications, the ensemble size is many192

orders of magnitude less than the number of observations assimilated. An193

inversion in ensemble-space is therefore much more efficient than an inversion194

in observation-space. The details of the assimilation algorithm and localisa-195

tion are described in Appendix A.1.196

The initialisation of the ocean model is as important as the accurate cal-197

culation of each analysis. A poor initialisation scheme (e.g., direct insertion),198

results in a poor forecast. The analyses produced by EnOI are dynamically199

unbalanced. That is - the analyses are not precisely a solution to the model’s200

equations. However, the analysis increments that are introduced after each201

analysis can be shown (see Appendix A.1) to be comprised of a linear com-202

bination of model anomalies. Since the model produced these anomalies203

during a free model run, the resulting increments are consistent with the204

model equations and the model configuration. That is, the ensemble only205

contains scales and features that the model can generate. Although this206

doesn’t yield analyses that are in perfect dynamic balance, owing to model207

non-linearities, the consistency between analyses and the model is regarded208

as a strength of ensemble data assimilation.209

For BRAN2, we calculate an analysis every 7 days, then update the model210

using nudging over one day with a 12-24 hour nudging time-scale, with shorter211

time-scales at higher latitudes (see Schiller et al., 2008, for details). For212

BRAN3, we calculate an analysis every 4-days, then update the model us-213

ing adaptive initialisation (Sandery et al., 2011). Adaptive initialisation is214

10



a more sophisticated form of nudging, where the model is nudged towards215

an analysis (that was constructed by combining the model state with obser-216

vations) using a time-scale that changes with time and space. Where and217

when the difference between the model state and the analysis is large, the218

nudging time-scale becomes short. As the model state approaches the analy-219

sis, the nudging time-scale increases. Using this approach, the discontinuity220

in the model forcing at the end of the nudging period is greatly reduced,221

so that the model smoothly transitions back to a free-running, dynamically222

consistent integration.223

Another difference in the initialisation of BRAN2 and BRAN3 is the vari-224

ables that are explicitly updated. For BRAN2, only the sea-level, tempera-225

ture and salinity were updated. The velocity field was left to adjust during226

and after the nudging period. For BRAN3, only the temperature, salinity,227

and velocity fields are updated. During the initialisation period, the model228

sea-level is left to adjust according to the model physics without explicit229

adjustments applied to sea-level directly. In short trial runs of the systems,230

we found little difference between experiments with and without explicit ad-231

justments to sea-level. However, in some circumstances, it was found that232

explicitly adjusting sea-level resulted in the generation of barotropic waves233

that degraded the solution.234

The most important differences in the data assimilation system applied to235

BRAN2 and BRAN3 are described above. Other differences (Table 2) include236

the ensemble size - BRAN2 and BRAN3 use a 72-member and 144-member237

ensemble, respectively. The ensemble for BRAN3 (BRAN2) is constructed238

using fields from a model run called Spinup6p8 (Spinup4/5), a configura-239
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tion of OFAM2 (OFAM1). BRAN3 uses shorter localising length-scales than240

BRAN2, allowing BRAN3 to better fit observations. Several aspects of the241

observations are also different, for example refined instrument error estimates242

(see Appendix A.3), particularly with respect to the “age error” of obser-243

vations; and the assimilation of data from different (better) observational244

databases (e.g., higher resolution satellite SST). The assimilation of altime-245

ter data has been improved in BRAN3 - with more careful processing of246

altimeter data to avoid biases arising from the assimilation of observations247

that include the effects of thermal expansion into a (Boussinesq) model that248

does not include the effects of thermal expansion.249

4. Assimilated observations250

Both in situ and satellite observations are assimilated in a single step251

by BODAS. The time-distribution of the assimilated data is displayed in252

Figure 1 that includes an indication of the availability of data from differ-253

ent satellite missions, and the number of temperature and salinity profiles254

assimilated at each assimilation step in BRAN3. Data from all available255

altimeters are assimilated into BRAN2; while data from GFO are withheld256

from BRAN3. We with-hold GFO from BRAN3 because it has greater errors257

than other altimeters, and to keep it in reserve as a with-held data set for258

comparison. For BRAN3, all altimeter data were obtained from RADS in259

August 2012. BRAN2 was produced in 2005, using the Geophysical Data260

Records (GDRs) for all altimeters. Satellite SST data are assimilated from261

AVHRR throughout BRAN2 and BRAN3, using a composite of data from262

Pathfinder (and NAVO for BRAN3), using the pre-processing described by263
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Andreu-Burillo et al. (2010). BRAN2 assimilated a 54-km resolution version264

of Pathfinder SST, while BRAN3 assimilates a 4-km resolution version of265

the same database. SST from AMSR-E is assimilated in both BRAN2 and266

BRAN3.267

In situ profiles of temperature and salinity are assimilated from a range of268

sources. Prior to January 1998 we assimilate hydrographic data from World269

Ocean Circulation Experiment (WOCE) Hydrographic Program (WHP), World270

Ocean Database 2005 (WOD05; Boyer et al., 2006), and the Quality con-271

trolled Ocean Temperature Archive (QuOTA; Gronell and Wijffels, 2008),272

which contains all XBT data in the Indian and South-West Pacific. Af-273

ter January 1998 we assimilate the WOCE Upper Ocean Thermal (UOT)274

database that includes global XBT data, except in the Indian Ocean where275

we use QuOTA for XBTs. This change in data source explains the increase in276

the number of assimilated temperature profiles in 1998 in Figure 1. We also277

assimilate profiles from Argo, and temperature and salinity from the TAO278

array. The dramatic increase in the number of in situ profiles - particularly279

for salinity - when the Argo program became established is clearly evident280

(Figure 1a).281

Before each assimilation, all observations that are available for assimi-282

lation are pre-processed. Although all assimilated observations are sourced283

from delayed-mode quality controlled sources; we also apply a simple back-284

ground check, flagging as bad any data that differs significantly from the285

model background field. Specifically, if an observation differs by more than286

five times the intraseasonal standard deviation (computed from the ensem-287

ble) than the data is not assimilated. Along-track SLA (atSLA; and SST)288
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observations are combined to form super-observations so that there is no289

greater than one “super-observation” for every 0.2×0.2◦ box. The details of290

this processing are described in Appendix A.5. Similarly, the in situ profiles291

that are available for assimilation are “thinned” prior to assimilation , so292

that no greater than one profile of each type (i.e., temperature and salin-293

ity) is assimilated for every 0.5×0.5◦ box. A different nominal resolution of294

the super-obing for atSLA and SST, and sub-sampling for in situ profiles295

differs because of the different resolution of the original data-sets, with at-296

SLA spaced about 7-km along altimeter tracks, SST spaced 4-km, and Argo297

profiles typically spaced 100-300 km. Again, the details of this processing298

are described in Appendix A.5. The other important aspect of observation299

pre-processing relates to the conversion of the model sea-level to SLA. There300

are many subtle aspects to this processing that are described in Appendix301

A.4.302

5. Results303

5.1. Comparison with altimetry304

We compare daily-averaged SLA fields from BRAN2 and BRAN3 with305

atSLA from Topex/Poseidon (T/P) for the entire T/P mission (1993-2005) in306

Figure 2. We show time-series of the root-mean-squared difference (RMSD)307

and the correlation between the observed and modelled fields for different308

regions that are defined in Table 3 and in Figure 3. Although T/P data309

are assimilated into both BRAN2 and BRAN3, we regard this comparison as310

important, because it demonstrates the degree to which the reanalyses match311

those observations - a necessary, but not sufficient criterion for validating the312
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reanalyses. We interpret the RMSDs and correlations presented here as an313

indication of the errors in the reanalyses. However, we note the observations314

are imperfect. Indeed, during the assimilation step, we assume that the315

T/P data has an error ranging from 3-20 cm, depending on the estimated316

representation and age errors of the data (see Appendix A.3).317

The RMSD and correlation statistics in Figure 2 are produced by first318

removing a reference MSL from the model’s sea-level, and then interpolat-319

ing the daily-averaged model SLA to each observation location for each day.320

The resulting model-observation comparisons differ from the comparisons321

performed during the assimilation step in constructing the innovations (ob-322

served fields minus the interpolated background fields; see Appendix A.1323

and equation (A.1)). For each analysis in BRAN3 (BRAN2) atSLA altime-324

ter data in a 21-day (11-day) time-window, centred on the analysis time, are325

assimilated by first differencing them with the model SLA at the analysis326

time. For assimilation, each observation is weighted by assigning an error327

variance that includes a significant component due to the relative “age” of328

each observation (see Appendix A.3 for more details). Further, many obser-329

vations are combined, forming“super-observations”, as described above. By330

contrast, for the comparisons presented here, we compare the model SLA for331

each day with the atSLA observations for just the same day. The T/P atSLA332

observations used here for evaluation are from the RADS database (accessed333

in August 2012). This is the same data assimilated into BRAN3, but recall334

that BRAN2 used altimeter data from the GDRs.335

The RMSD between the observations and the BRAN3 SLA are less than336

the BRAN2 SLA for 99.8% of the time (see Figure 2). Similarly, the BRAN3337
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correlations of SLA with T/P are almost always greater than the BRAN2338

correlation. Within the Australian region, the time-averaged (plus or minus339

the standard deviation) BRAN3 RMSD from T/P atSLA is 7.7±0.5 cm and340

the BRAN2 RMSD is 9.7±0.8 cm.341

Maps of the RMSD between BRAN SLA and T/P atSLA are shown in342

Figure 4, along with a map of the standard deviation of the T/P atSLA.343

This latter field provides a comparison between the model-data differences344

and the observed signal. The statistics in Figure 4 are produced by compar-345

ing time-series of the modelled and observed fields in 2×2◦ bins. We find346

that in all regions around Australia, the RMSD for BRAN3 is less than the347

standard deviation of the observed signal - indicating that the signal to noise348

ratio for SLA is greater than one everywhere (and much greater than one in349

many locations). By contrast, the RMSD for BRAN2 exceeds the observed350

standard deviation in some locations, including the west Tasman Sea and351

some eddy-rich regions along the path of the Antarctic Circumpolar Cur-352

rent (ACC). Between the latitudes of 20◦S to 20◦N, the average RMSD for353

BRAN3 is about 4 cm, which is comparable to the instrument error of T/P354

atSLA that is assumed in the assimilation step and estimated by Ponte et al.355

(2007). This indicates that in those regions, the model is fitting the T/P356

observations to an optimal degree - fitting any closer would be over-fitting.357

The RMSD in the west Tasman Sea, where the eddy field associated with the358

East Australian Current (EAC) is very energetic, shows a local maximum in359

both BRAN2 and BRAN3. In that region the RMSD for BRAN3 is about360

half the RMSD in BRAN2. At some locations along the path of the ACC,361

the RMSD in BRAN2 and BRAN3 are comparable, but at many locations362
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the results for BRAN3 are clearly better than BRAN2.363

Maps of the correlation between SLA from the BRAN experiments and364

T/P atSLA are shown in Figure 5. This comparison demonstrates that the365

SLA in BRAN3 is better correlated with observations everywhere, compared366

to BRAN2. BRAN3 shows high correlations between about 30◦S and 20◦N,367

with particularly high correlations in the Indian Ocean at about 10-12◦S,368

where seasonal Rossby waves are prevalent (e.g., Schouten et al., 2002; Rao369

and Behera, 2005). The correlations in BRAN3 are also significantly greater370

than BRAN2 in the west Tasman Sea and in the region east of the Philippines.371

This indicates than BRAN3 is more realistically reproducing the variability372

- and particularly the eddies - in these energetic western boundary current373

regions. West of New Zealand, and south of the Great Australian Bight374

(GAB), the correlations for both BRAN2 and BRAN3 are relatively low.375

However, we note that the magnitude of the SLA signal in those regions is376

very small (Figure 4c), so the signal to noise ratio in the observations is low377

rendering the use of T/P observations for model-evaluation in those regions378

somewhat problematic.379

In both BRAN experiments the RMSD increases, and the correlations380

decrease, at higher latitudes to the south. We suspect that this is due to381

a combination of shorter length-scales of baroclinic features in the ocean382

at higher latitudes (due to greater rotation, and weaker stratification), and383

the increased relative importance of transient, rapidly propagating barotropic384

signals driven by the strong winds (e.g., Vivier et al., 2005). These barotropic385

signals are under-sampled by the altimetry in both time and space, and386

probably not well represented individually in the model because of the limited387
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accuracy of their representation in the 6-hourly archive of analysed wind388

fields. Recall that for BRAN2, the model SLA was perturbed to correct389

the misfit to altimetric SLA at each assimilation step, while for BRAN3390

we perturb the velocity fields instead. BODAS uses EnOI so an altimeter391

track that samples a large-scale barotropic signal will be mapped onto the392

model state via small perturbations of the velocity field, rather than SLA393

perturbations of similar size to the observation. It appears, from Figures 2-394

5, that the BRAN3 approach is a better way of using altimetry to constrain395

the baroclinic features of the ocean.396

5.2. Comparison with in situ profiles397

We compare modelled and observed profiles of temperature and salinity398

in Figures 6 and 7, respectively. Specifically, we show the RMSD and the399

mean bias (computed as the observed minus modelled mean) for different400

regions around Australia (Table 3 and Figure 3). The statistics presented401

are based on comparisons with all available profiles for the entire BRAN2402

period (1993-2006). Like altimetry, for each analysis, in situ profiles within403

a centred time-window of 11 (7) days for BRAN3 (BRAN2), are consid-404

ered for assimilation. However, unlike altimetry, profiles are not combined405

to form super-observations - and not all profiles are assimilated. Instead,406

profiles are “thinned”, retaining no more than one profile of each variable407

for every 0.5×0.5◦ box. When more than one profile is present within the408

given time-window, a single profile is selected by identifying the profile that409

was measured closest to the analysis time. As for the comparisons with al-410

timetry, much of the data used for this evaluation was assimilated. Despite411

this, we regard this comparison as a necessary step in the evaluation of each412
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reanalysis.413

The comparisons in Figure 6 show that the temperature errors in BRAN3414

are almost everywhere less than the errors in BRAN2. BRAN2 has smaller er-415

rors than BRAN3 only at about 1250 m depth in the EAC and GAB regions,416

and around 1000 m in the South-West (SW) region. In each of these isolated417

regions, the increased RMSD is due to a warm bias in BRAN3. Above 300418

m depth, the errors for temperature in BRAN3 are often much less than for419

BRAN2. Indeed, for the upper 300 m, for the Australian region the area-420

averaged RMSD for BRAN3 (0.68◦C) is 28% less than the BRAN2 (0.95◦C)421

temperature error. The temperature bias in BRAN3 is almost everywhere422

less than the temperature bias in BRAN2. This difference is most evident423

in the North-West (NW) region, where the strong negative temperature bias424

between about 100 and 200 m depth in BRAN2 is virtually eliminated in425

BRAN3.426

The comparisons in Figure 7 indicate that the salinity errors in BRAN2427

and BRAN3 are comparable in most regions. In some regions (e.g., Coral428

Sea, NW region) BRAN3 salinity is significantly better than BRAN2 in the429

upper ocean, with improvements of 0.05-0.15 psu. But in other regions (e.g.,430

SW and GAB region) BRAN3 salinity is up to 0.05 psu worse than BRAN2.431

For the upper 300 m, the area-averaged RMSD for BRAN3 (0.155 psu) is 7%432

less than the BRAN2 (0.167 psu) salinity error. This indicates that overall,433

in the upper ocean, BRAN3 salinity is about 7% better than BRAN2 salin-434

ity. Notably, in several regions (e.g., EAC, SW and GAB regions), BRAN3435

salinity has a greater RMSD between about 500 m and 1500 m, owing to a436

significant negative bias of about 0.1 psu.437
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The statistics of bias in Figures 6 and 7 indicate that BRAN3 is saltier and438

warmer than observations between 500 and 1000 m depth. This indicates that439

the properties of the intermediate water masses are imprecise in BRAN3, and440

perhaps indicates that BRAN3 either produces too little Intermediate Water,441

or that the properties of BRAN3’s intermediate water are unrealistic. This442

is an aspect of BRAN that will be further considered in future development.443

However, aside from the deep ocean comparisons, we find that in the upper444

ocean temperature and salinity in BRAN3 is more realistic than BRAN2,445

with reductions of the RMSD with observed profiles of 28% and 7% for446

temperature and salinity, respectively.447

5.3. Comparison with XBT data448

Data from several eXpendable BathyThermograph (XBT) transects across449

the Tasman Sea - including PX34, running between Sydney, Australia, and450

Wellington, New Zealand - were withheld from both BRAN2 and BRAN3451

for some time periods (September 2003 - December 2006). Data from these452

XBT transects were assimilated for other time periods (February 1993 - July453

2003). The PX34 section is occupied 3-4 times each year with high-density454

sampling. The with-held XBT data along this transect are ideal for indepen-455

dent evaluation - both because they were not used in either reanalysis, and456

because they traverse a very energetic region of the ocean, with strong sea-457

sonality (e.g., Ridgway, 2007) and strong eddies (e.g., Everett et al., 2012).458

Here, we compare BRAN2 and BRAN3 to data along PX34 for periods when459

the data are assimilated - to show how tightly each BRAN is constrained to460

those data; and for periods when the data are with-held - to show how each461

BRAN matches independent data.462
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Figure 8 shows sections of objectively analysed temperature, based on ob-463

servations that are assimilated into both reanalyses, and temperature from464

BRAN2 and BRAN3. Each XBT section takes 3-4 days to traverse - how-465

ever, we simply sample the model on the central day of each section. Overall,466

both BRAN2 and BRAN3 realistically reproduce the observed features along467

PX34, but the BRAN3 fields are clearly in better agreement with the assim-468

ilated observations. This indicates that the assimilation used for BRAN3469

is better at fitting the assimilated observations. Figure 9 shows sections of470

withheld XBT observations along PX34 and temperature from BRAN2 and471

BRAN3. Overall, both BRAN2 and BRAN3 realistically reproduce the in-472

dependently observed features along PX34 in Figure 9. In most cases both473

reanalyses reproduce almost all of the observed features that are associated474

with mesoscale variability.475

To enable a more quantitive comparison, we compute the depth of the476

15◦C isotherm (D15) along PX34 for the entire BRAN2 period and com-477

pare time series of the D15 anomaly in Figure 10. The temporal sampling478

of PX34 is insufficient to resolve all of the mesoscale variability there - but479

the evolution of several large-amplitude, long-lived events is evident. All of480

the large-amplitude events evident in the observations are also evident in481

BRAN3; however, they are not all evident in BRAN2. Examples include the482

large negative anomaly at around 154◦E between the start of 1995 and the483

end of 1996; the positive anomaly at the same longitude during 1997; and a484

positive, westward-propagating anomaly originating around 158◦E between485

the start of 1999 and the end of 2000. There is excellent correspondence486

between these events in the observations and BRAN3, which is much better487
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than the BRAN2 estimates. Other short-lived, but large-amplitude anoma-488

lies are also clearly evident in both the observations and BRAN3 - but less489

evident in BRAN2. During the period when the PX34 data are with-held,490

BRAN3 again appears to be in better quantitive agreement with observations491

than BRAN2.492

The evaluation of D15 along PX34 is quantified in Figure 11, showing493

the RMSD, bias, and correlation between the observed D15 and the D15 in494

BRAN2 and BRAN3. The standard deviation of the observed D15 is also495

shown in Figure 11. A comparison between the RMSDs and the observed496

standard deviation shows that in the western part of PX34, the signal to noise497

ratio for D15 is quite good, with errors that are typically 30% less than the498

observed signal. At some points along PX34, the RMSD for BRAN2 exceeds499

the size of the observed signal. This is not the case for BRAN3. In the region500

west of 158◦E, the bias in BRAN3 is much smaller than in BRAN2, and the501

RMSD is reduced by as much as 30%. In the same region, the correlations502

for BRAN3 exceed the correlations for BRAN2 by 0.1-0.2. In the middle503

part of PX34, between 158-166◦E, there is little difference between the D15504

fields in BRAN2 and BRAN3. But along the eastern part, east of 166◦E, the505

BRAN3 correlations again exceed the BRAN2 correlations at several points,506

and the RMSDs and the bias are less.507

The bias of D15 along PX34 in BRAN2 is quite significant (in excess508

of ±40 m), particularly west of 158◦E. We think that this is an indication509

that the location of the mean EAC jet and/or its horizontal and vertical510

shears are wrong in BRAN2. On average, D15 slopes upwards to the east511

along PX34. The positive-negative shape of the bias in BRAN2, centred512
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around 154◦E, means that the upward slope of D15 to the east in BRAN2513

is less than observed. As a result, the geostrophic flow associated with the514

EAC there is less vertically sheared (i.e., more barotropic) in BRAN2. This515

result is consistent with the analyses of Chiswell and Rickard (2008), who516

assessed BRAN2 velocities against observed velocities inferred from surface517

drifting buoys and Argo floats, and concluded that BRAN2 velocities in the518

deep ocean are too strong (i.e., BRAN2 appeared to be too barotropic in519

the Tasman Sea). This characteristic appears to be significantly improved in520

BRAN3, based on the smaller bias evident along PX34.521

5.4. Comparison with independent surface drifting buoys522

Data from surface drifting buoys are not assimilated into BRAN2 or523

BRAN3, and are therefore ideal for independent evaluation (e.g., Oke et al.,524

2012; Blockley et al., 2012). Using daily-averaged velocities derived from525

krigged drifter positions (obtained from NOAA AOML; www.aoml.noaa.gov/526

phod/dac/dacdata.php), we compare the model velocities at 12 m depth (the527

approximate depth of the drifter sea-anchors), with the drifter-derived veloc-528

ities.529

We first present a qualitative comparison of modelled velocities and drifter-530

derived velocities for a short period in the EAC region (Figure 12). We show531

only comparisons from a short period - but we note that the results pre-532

sented here are representative of other periods. Also shown in Figure 12 are533

observed and reanalysed SST anomalies, and geostrophic velocities derived534

from a Gridded SLA product (GSLA; see http://oceancurrent.imos.org.au).535

The observed SSTA fields shown in Figure 12 are 6-day composite AVHRR536

SST fields, processed at CSIRO under the Australian Integrated Marine Ob-537
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serving System (IMOS; http://oceancurrent.imos.org.au).538

The drifter trajectories in Figure 12 are for an 8-day period preceding the539

day for which the model fields are shown, so precise agreement between the540

observed and reanalysed trajectories is not expected due to the change of the541

flow field with time. However, the comparisons show that there is generally542

good agreement between the model velocities and the drifter-derived veloci-543

ties. Close inspection suggests that some of the mesoscale fields are slightly544

mis-placed in BRAN - though it is unclear whether the mis-placement is real,545

or due to the aliasing referred to above. In some cases shown in Figure 12,546

where there is good agreement between the BRAN3 fields and observations,547

there is poor agreement between the BRAN2 fields and observations. The548

fields on 18 and 26 January 2012 are good examples of this - with good549

correspondence between the drifter trajectories and the BRAN3 and GSLA-550

derived velocities, but poor correspondence for BRAN2 fields.551

A quantitative comparison of the drifter-derived velocities and the model552

velocities is presented in Figure 13, showing the RMSD and correlation be-553

tween the observed and modelled velocities for the whole Australian region,554

and the other regions defined in Table 3 and Figure 3. Comparisons are for555

the period 2003-2006 and only include observations when the observed speed556

exceeds 3 cm/s (to exclude cases where the drifter may have lost its drogue;557

though we note that this will not exclude all un-drogued drifters; Rio, 2012).558

The number of drifter observations in the Australian region totals 35000, and559

the number of observations within each domain is 2000-4000.560

We find little difference between the statistics for the zonal and merid-561

ional component of velocity - so we present these together in Figure 13. The562
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correlations shown in Figure 13 are the amplitudes of the complex, or vector,563

correlation (Kundu, 1976). The phase angles of the complex correlation (not564

shown) are small for all regions (±10◦) except the GAB, where it is -60◦.565

Also shown in Figure 13 is the standard deviation of the observed speed.566

The RMSDs in Figure 13 indicate that both BRAN2 and BRAN3 have er-567

rors that are less than the observed standard deviation, so the signal to noise568

ratio in BRAN2 and BRAN3 exceeds one. Further, we find that the BRAN3569

velocities have smaller RMSDs than BRAN2, with errors that are typically570

1-2 cm/s smaller. This represents an overall, albeit small, improvement in571

velocity of about 5%. The amplitudes of the complex correlations shown572

in Figure 13 are only moderate, with value of around 0.3 to 0.5. Despite573

these relatively low correlations, we note that the large number of observa-574

tions implies that these correlations are statistically significant (even with575

only 100 degrees of freedom a correlation of 0.2 is statistically significant).576

The correlations for BRAN3 are typically about 0.1 greater than BRAN2577

- suggesting a significant improvement in BRAN3. The only place where578

BRAN3 is poorer than BRAN2 is in the GAB region and the region around579

New Zealand. In those regions, the amplitude of the observed velocities are580

smallest, so the signal to noise ratio in the observations is relatively low.581

6. Analysis582

A comparison between the RMS of the increments for temperature and583

salinity at 100 m depth and sea-level are shown in Figure 14, 15 and 16 respec-584

tively. Recall that during each assimilation step the model is initialised to585

match the analysis field. For BRAN2, temperature, salinity and sea-level are586
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simply nudged to the analysis fields for one day, using a nudging time-scale587

of one day. For BRAN3, temperature, salinity and velocities are adjusted to588

match the analyses using adaptive initialisation (Sandery et al., 2011). In589

BRAN3, sea-level is not adjusted explicitly, but during the initialisation of590

the other model variables, we find that sea-level adjusts to closely match the591

analyses computed by BODAS. Recall that the increments that are added to592

each assimilation step do not necessarily have any physical meaning. They593

are simply compensating for model limitations, including the inability of a594

model to reproduce instabilities associated with chaotic and unpredictable595

dynamics. Ideally, the increments should be as small as possible. Figures 14-596

16 show that the size of the increments for BRAN3 is significantly less than597

the size of the increments in BRAN2. Indeed, the area-average ratio of the598

BRAN3 to BRAN2 increments for temperature is 0.65, for salinity is 0.6, and599

for sea-level is 0.78. The minimum ratio in the region shown in Figures 14-16600

is 0.06, 0.05, and 0.01 for temperature, salinity and sea-level respectively.601

This indicates that, on average, the BRAN3 increments are 22-40% less than602

the BRAN2 increments; and as much as 94, 95, and 99% less at some points603

for temperature, salinity, and sea-level respectively.604

Analysis of the magnitude of the increments for all variables at other605

depths (i.e., above and below 100 m), indicates that for much of the water606

column, the increments in BRAN3 are typically 30-50% less than the incre-607

ments in BRAN2. These results indicate that the assimilation system for608

BRAN3 is doing substantially “less work” than BRAN2.609

There are a few reasons why the increments in BRAN3 are so much610

smaller than BRAN2. BRAN3 updates more frequently (4-days instead of611
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7-days); the model that underpins BRAN3 is better - with improved pa-612

rameterisations (e.g., Lee et al., 2006), improved topography, and improved613

surface fluxes; the pre-processing of the observations is better, and the ini-614

tialisation scheme in BRAN3 is better. We think that together, these fac-615

tors allow the model to more realistically evolve the initialised model fields,616

requiring less adjustment at each assimilation step, resulting in a more dy-617

namically consistent reanalysis that requires less adjustments to stay aligned618

with observations.619

Figures 14-16 include RMS fields for different time periods: 1994-1996620

and 2004-2006. The magnitude and spatial distribution of the increments621

changes with time, depending on the observing system. We chose the above-622

mentioned periods to highlight the impact of changes in the observing system,623

and to highlight the multivariate nature of the assimilation. In Figure 14a,b,624

the increments in 1994-1996 show a clear signature of the XBT transects625

(IX1, IX12, IX15) in both BRAN2 and BRAN3. Similarly, the increments626

associated with several XBT tracks in the Pacific (PX05, PX06, PX31, PX30)627

are also evident - particularly in BRAN3. Interestingly, the influence of628

many of these temperature observations is also clearly evident in the salinity629

increments (Figure 15a,b), particularly IX1. However, the influence of these630

data are not clearly evident during 2004-2006 (Figure 14a,b and 15a,b). This631

is because during 2004-2006 the number of observations associated with the632

Argo program increased - so the sampling is much better allowing more633

observations to do “less work” - which is preferable than fewer observations634

doing“more work”.635

We also note that the impact of the longer length-scales used for the636
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localisation in BRAN2 tend to “smear” the influence of the XBT data in637

space during 1994-1996 (Figure 14a,b and 15a,b), with broader influence638

evident in the BRAN2 fields and narrower influence in BRAN3. The narrow639

influence of the observations from the TAO array is also evident, with small640

“bullets” in the increment fields.641

Apart from the recognition that the magnitude of the increments in642

BRAN3 is generally much smaller than the magnitude of the increments643

in BRAN2, we also note the systematic differences in the structure of the644

increments. This is particularly clear for salinity and sea-level during 2004-645

2006 in the Pacific between about 20-5◦S, where a band of high increments is646

evident (Figure 15d and 16d). This feature is not present in the BRAN3 in-647

crements. The mean increments in BRAN2 and BRAN3 are relatively small648

in most regions around Australia (not shown) - but are large for BRAN2 in649

this tropical part of the South Pacific. This indicates that BRAN2 had a650

bias in this region, requiring constant adjustment in the “same direction”.651

We attribute this problem to two factors in BRAN2. Firstly, the systematic652

differences between the reference MSL used for BRAN2 and BRAN3 are a653

factor (see Appendix A.4). The reference MSL plays a key role in determin-654

ing the mean circulation in each reanalysis - and the MSL used for BRAN3655

is superior to the field used for BRAN2 owing to improvements in the model656

and model forcing. Secondly, the pre-processing of the altimeter observations657

is a key factor. For BRAN2, we assimilated the atSLA data that included658

the signal of sea-level rise. We recognise that this is inconsistent, because the659

(Boussinesq) model does not include the effects of thermal expansion - a key660

contributor to sea-level rise (Church and White, 2006). The solution to this661

28



incompatibility is to use a non-Bousinesq model - but, short of that, we have662

improved the compatibility by eliminating the global means from the model663

and the atSLA data prior to assimilation. Although this approach is not per-664

fect - it is an improvement on previous methods used for ocean reanalyses.665

We attribute the improvements in BRAN3 in this region of the South Pacific666

to this more careful pre-processing of the altimeter observations.667

7. Conclusions668

One of the main goals of the Bluelink effort that began in 2001 is the669

generation of an eddy-resolving ocean reanalysis for the circulation around670

Australia, that can be used to understand upper-ocean dynamics, telecon-671

nections, and variability. To achieve this goal, a dynamically consistent re-672

analysis system is the “holy grail”. However, the generation and evolution673

of eddies in the ocean are largely due to instabilities that are unpredictable,674

even on short time-scales. This means that an eddy-resolving model requires675

frequent adjustments to keep it aligned with observations. We use an EnOI676

system to constrain the model to observations by updating the model state677

regularly. With such a data assimilation approach adopted, the goal then678

becomes the generation of a reanalysis that matches both assimilated and679

with-held observations, and involves increments that are as small as possi-680

ble. Given the chaotic nature of the eddy-scales in the ocean, as discussed681

above, there is a lower limit to which the size of the increments can be re-682

duced, and yet still keep the model aligned with observations. This lower683

limit will depend on the observation errors, the length of the assimilation684

update cycle, and the growth-rate of instabilities. With BRAN3, we are685
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approaching this limit in many parts of the domain of interest here. For686

example, we show that the reanalysed SLA in BRAN3, is within the error-687

bars of the observations at low latitudes. Further, we show that the model688

temperatures and salinity in the upper ocean have errors that are 7-28% less689

than the previous version of BRAN. Specifically, we show that for BRAN3690

(BRAN2) the sea-level, upper ocean temperature, upper-ocean salinity, and691

near-surface velocity match observations to within 7.7±0.5 cm (9.7±0.8 cm),692

0.68±0.08◦C (0.95±0.18◦C), 0.16±0.02 psu (0.18±0.02 psu), and 20.2 cm/s693

(21.3 cm/s) respectively.694

Somewhat counter-intuitively, we also show while BRAN3 produces re-695

analyses that more closely match observations, the increments applied to696

BRAN3 are 20-50% smaller than the equivalent adjustments in BRAN2. This697

means that the data assimilation system in BRAN3 is doing less work than in698

BRAN2 - but achieving better results. We attribute these improvements to699

a few major changes: including the initialisation scheme, the employment of700

the local analysis approach to localisation, improvements to data processing701

and improvements to the model configuration; higher frequency of assimi-702

lation; and several minor changes, relating to the error estimates and the703

technical configuration of the assimilation system.704

The analyses presented in this study have identified one outstanding issue705

in BRAN3, namely the quality of the temperature and salinity fields at inter-706

mediate depths. We find that the BRAN3 fields are warmer and saltier than707

observations - and in some places are poorer than the predecessor, BRAN2.708

This aspect of the BRAN effort will be the focus of future developments.709

To summarise, we have shown that BRAN3 produces observations that710
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more closely match observations than BRAN2, and yet requires less ad-711

justment via assimilation. These factors indicate that BRAN3 is more dy-712

namically consistent than BRAN2 - with more realistic reanalyses and less713

non-dynamical interference. This leads us to conclude that BRAN3 is more714

suitable for a range of applications, including analysis of ocean variability,715

extreme events, and process studies.716
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Table 1: Summary of the key differences between models used for BRAN2 and

BRAN3. The term “globally balanced” refers to the freshwater fluxes that

have been adjusted so that the annual averaged, global average freshwater

fluxes are zero; and the global average of applied net heat flux is adjusted to

the observed global average.

BRAN2 BRAN3

Model OFAM1 OFAM2

MOM version MOM40d MOM4p1

Period 1/1993-12/2006 1/1993-9/2012

Vertical resolution 10-m surface 5-m surface

Vertical mixing Chen Chen + Lee

Topography DBDB2+GEBCO Smith&Sandwell

Forcing ERA-40+ECMWF ERA-Interim

6-hourly 3-hourly

Unaltered Globally balanced
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Table 2: Summary of the key differences between data assimilation system

used for BRAN2 and BRAN3.

BRAN2 BRAN3

BODAS version BODAS5p0 BODAS8p2

Update cycle 7-days 4-days

Ensemble size 72 144

Ensemble run Spinup4/5 Spinup6p8

Localisation method Covariance Local analysis

Localising length-scale 8◦ 250 km

Initialisation Weak nudging Adaptive initialisation

Updated variables T, S, sea-level T, S, U, V

Age error RMS of ensemble RMS of time-difference

Altimetry data All GFO with-held

Altimetry window 11 days 21 days

Altimeter processing Unaltered Volume conserving

Altimeter mask 200 m depth 200 m depth

Reference MSL Spinup4/5 OFAM3

SST window 1 day 5 days

AVHRR SST data 54-km Pathfinder 4-km Pathfinder

SST mask 100 km from coast 20 m depth

T/S window 7 days 11 days
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Table 3: Summary of the different regions around Australia for which statistics

are computed throughout this study. See also Figure 3.

Region Longitudes Latitudes

Australian region (Aust) 90-180◦E 60◦S - equator

East Australian Current (EAC) 147-165◦E 50-25◦S

Coral Sea 143-165◦E 25-5◦S

North-Western Australia (NW) 100-143◦E 20-5◦S

South-Western Australia (SW) 100-116◦E 35-20◦S

Great Australian Bight (GAB) 116-147◦E 50-30◦S

Antarctic Circumpolar Current (ACC) 90-180◦E 70-50◦S

New Zealand (NZ) 165-180◦E 50-25◦S
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Figure 1: Time series of (a) the number of in situ temperature and salinity profiles or

moorings (including the TAO array) assimilated at each analysis step in BRAN3 (note

that many profiles are used in multiple consecutive assimilation cycles); and a schematic

showing data availability from each SST database and altimeter mission. The grey bar for

GFO indicates that these data were with-held from the assimilation. Altimeter data were

accessed from RADS in August 2012 (and updated for 2012-data in October 2012).
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Figure 2: Time series of the RMSD (left) and anomaly correlation (right) between T/P

atSLA BRAN2 (red) and BRAN3 (blue) SLA for different regions (see Table 3). The

observed standard deviation (green) is also shown.
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Figure 3: Map of the region of interest showing the different regions around Australia for

which statics are computed throughout this study (see Table 3).
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Figure 4: Map of the RMSD between T/P atSLA and (a) BRAN3 and (b) BRAN2 SLA;

and (c) the standard deviation of the T/P atSLA observations. Data have been analysed

in 2x2◦ bins and processed for the period 1/1993-12/2004.
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Figure 5: Map of the correlation between T/P atSLA and SLA from (a) BRAN3 and

(b) BRAN2. Data have been binned over 2x2◦ bins and processed for the period 1/1993-

12/2004.
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Figure 6: RMSD (bold lines) and bias (thin line; observed minus model) between the

temperature from BRAN3 (blue) and BRAN2 (red) for different regions (see Table 3).

Comparisons are made for the period January 2003 to December 2006. The average

number of observations n, at each depth in the top 700 m is recorded in the bottom of

each panel.
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Figure 7: As for Figure 6, except for salinity.
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Figure 8: Comparisons between observed and assimilated temperature along the XBT

track PX34 (left), and temperature from BRAN3 (middle), and BRAN2 (right), for differ-

ent times (recorded to the left of each row). The triangles along the bottom of the BRAN3

and BRAN2 panels indicate that the corresponding observed profile is assimilated.
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Figure 9: As for Figure 8, except showing comparisons with with-held XBT observations.
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Figure 10: Hovmoller diagram showing the D15 anomaly from XBT observations along

the PX34 line (left), and from BRAN3 (middle), and BRAN2 (right). XBT data along

PX34 are assimilated before July 2003, and with-held thereafter.
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Figure 11: (a) Correlation and (b) RMSD (bold) and bias (thin line; observed minus

modelled) between D15 derived from observations and D15 derived from BRAN3 (blue)

and BRAN2 (red) along the PX34 XBT line. Also shown on panel (b) is the standard

deviation of the observed D15 (green).
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Figure 12: Sequence of daily-averaged SST anomalies and near-surface velocities (white

vectors) off south-east Australia in early 2006 from BRAN3 (top), BRAN2 (middle), and

observations (bottom), with observed surface drifting buoy trajectories overlaid (black

vectors). SST anomalies are with respect to a 15-year seasonal climatology from a spin-up

run of OFAM2. Model velocities represent flow over a 5 day period. Drifter trajectories

are for a 8-day period preceeding the date of each image.
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Figure 13: Comparison between BRAN near-surface velocity (12 m depth) and drifter-

derived velocity (drogued between 10-15 m), showing (a) the RMSD and the RMS of the

observed standard deviation, and (b) the magnitude of the vector correlation for different

regions (see Table 3).
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Figure 14: RMS increments for potential temperature at 100 m depth over three different

time periods (a-b) 1994-1996 and (c-d) 2004-2006 from (a,c) BRAN3 and (b,d) BRAN2.

The area-averaged and minimum ratio of the increments in BRAN3 and BRAN2 are 0.60

and 0.06 respectively.
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Figure 15: As for Figure 14, except for salinity at 100 m depth. The area-averaged and

minimum ratio of the increments in BRAN3 and BRAN2 are 0.66 and 0.05 respectively.
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Figure 16: As for Figure 14, except for sea-level. The area-averaged and minimum ratio

of the sea-level increments in BRAN3 and BRAN2 are 0.7 and 0.01.
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Appendix A. Assimilation details966

Appendix A.1. Assimilation algorithm and localisation967

Calculation of an analysis using either an EnKF or EnOI is typically968

performed using either covariance localisation or a local analysis. The version969

of BODAS used for BRAN2 uses covariance localisation, as described by Oke970

et al. (2008), while the version used for BRAN3 uses a local analysis that is971

described below. BODAS uses EnOI, combining an array of observations y972

(p×1, where p is the number of observations) of different types, with a model973

background field wf (n × 1, where n is the dimension of the model state),974

yielding an analysis wa (n × 1), using the standard Kalman filter update975

equation:976

wa = wf + PfHT (HPfHT + R)−1(y −Hwf ) (A.1)

where Pf = 1
m−1

AAT (n× n) is the background error covariance matrix, H977

(p×n) is the linearised observation operator, and R (p×p) is the observation978

error covariance matrix. Equation (A.1) can be re-written in terms of the979

ensemble transform as follows:980

wa = wf + Ab (A.2)

= wf +
m∑
i=1

Aibi (A.3)

where Ai is the ith ensemble member, and bi is the weight of the ith member,981

where982

b = ST (I + SST )−1s (A.4)

= (I + STS)−1ST s, (A.5)
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and S and s are standardised ensemble anomalies and standardised innova-983

tions that are given by984

S ≡ R−1/2HA/
√
m− 1 (A.6)

and s ≡ R−1/2(y −Hxf )/
√
m− 1. (A.7)

Equations (A.4) and (A.5) are formally equivalent, but require inversion of985

matrices of different sizes. Equation (A.4) requires an inversion of a p × p986

matrix, where p is the number of observations, while equation (A.5) requires987

an inversion of a m×m matrix, where m is the ensemble size.988

The ensemble size is typically many orders of magnitude less than the989

number of degrees of freedom of the model - so a naive implementation of an990

EnKF or EnOI by simply solving (A.3) yields are a poor fit to observations991

because the ensemble is severely rank-deficient. This is one of the main992

reasons why ensemble data assimilation requires localisation (e.g., Oke et al.,993

2007). Here, we implement localisation by adopting a local analysis (Evensen,994

2003), also called domain localisation (Nerger et al., 2011). This approach995

involves the calculation of a separate analysis for every horizontal grid point996

in the model. For each such analysis, only observations within a prescribed997

distance (here we use 250 km) are used, and the calculated ensemble weights998

b, from (A.3), are stored for each grid point. The analysis in adjacent grid999

points uses almost the same observations, so the ensemble weights change1000

smoothly over space. To further ensure this smoothness in space, we reduce1001

the magnitude of the ensemble anomalies as a function of distance from each1002

analysis location. This is equivalent to the approach introduced by Hunt1003

et al. (2007), who increased the observation error variance as a function of1004

distance from the each analysis location. The resulting ensemble weights are1005
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then spatially dependent, so (A.3) becomes:1006

wa = wf +
m∑
i=1

Aibi(x, y). (A.8)

In practice, the ensemble weights in (A.8) are computed for each horizon-1007

tal grid point independently on multiple processors (we use 192 processors)1008

and stored for later use. The analysis update, the second term in the right-1009

hand-side of (A.8), is constructed after all calculations to compute bi(x, y)1010

are complete.1011

Appendix A.2. Ensemble1012

EnOI uses a time-invariant ensemble A, to approximate the system’s1013

background error covariance matrix Pf . For both BRAN2 and BRAN3 we1014

use output from a long model run to construct an ensemble of intrasea-1015

sonal anomalies. These anomalies are generated by calculating the difference1016

between a 3-day mean and a 3-month mean. One ensemble member is com-1017

puted for each month of a long model run, with the 3-day means computed1018

by averaging fields from the 14-16th of each month; and the 3-month means1019

computed for the 3-month period centred on the 15th of each month. For1020

BRAN2, we use fields from the last 6-years of a 9-year integration of OFAM11021

(called spinup4/5), to generate a 72-member ensemble. For BRAN3, we1022

use fields from the last 12-years of an 18-year integration of OFAM2 (called1023

spinup6p8), to generate a 144-member ensemble.1024

Appendix A.3. Observation error standard deviation estimates1025

Every observation that is assimilated requires an explicit estimate of the1026

observation error variance. Observation error is here considered to have1027
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three components: instrument error, representation error, and age error.1028

Here, we estimate each component of the observation error explicitly, and1029

combine them with a quadrature sum. Instrument error arises simply because1030

observations are imperfect, and prone to measurement noise. A list of the1031

assumed instrument errors for different platforms is presented in Table A.1.1032

Representation error arises from the fact that observations typically mea-1033

sure a point in time and space, that represents processes on all time- and1034

space-scales; while the model represents only a finite range of time- and1035

space-scales. The mis-match between these scales is called representation1036

error - because the observation “represents” variability that differs from the1037

variability that the model “represents”. For both BRAN2 and BRAN3 we1038

use representation error estimates based on the approach described by Oke1039

and Sakov (2008). The representation error is typically large (e.g., up to1040

10 cm for SLA) - particularly in boundary currents and the ACC, where1041

small-scale variability is prevalent.1042

The last component of the observation error is the age error. For each1043

assimilation step, we typically assimilate observations from a time-window1044

that is centred around the analysis time. For BRAN3 (BRAN2) we use all1045

observations of SLA, SST, and in situ T/S that were made within 21 (11),1046

5 (1), and 11 (7) days of the analysis time, respectively. As a result, most1047

assimilated observations were made at a different time to the analysis time.1048

The absolute value of this difference in time is here referred to as the “age”1049

of an observation. An observation with a small age is assigned a smaller1050

age error than an equivalent observation with a large age. For BRAN2, we1051

simply chose a time-scale of 3 days - and assumed that the age error increases1052
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as a Gaussian over this time-scale, approaching the background variability1053

(approximated with the RMS of each variable from a spin-up run). For1054

BRAN3, we adopt a more novel approach to the age error. Taking model1055

fields from an 18-year spinup run, we calculate the difference between each1056

variable n days apart at all model grid points. We calculate these differences1057

for every month of the model run, and then calculate the RMS of the resulting1058

differences. This yields estimates of how much each variable changes over n1059

days for each location in the model. Assuming the observations change with1060

similar magnitudes and on similar time-scales to the model , these RMS1061

fields represent the age error of the observations. We estimate the age error1062

for each variable for ages ranging from 1-10 days, and use them for each1063

assimilation step. Examples of the age error for SST and SLA are presented1064

in Figure A.1. This figure shows that in regions of high variability, such as1065

the boundary currents, the ACC, and near the coast, the age error of an1066

observation increases with age, as we expect. The age error for SLA near the1067

coast increases quickly, saturating after 2-3 days. In some regions, where the1068

variability is small (e.g., offshore of the GAB, and west of NZ) the age error1069

remains insignificant for all ages. This indicates that even “old” observations1070

in those regions, are useful for data assimilation.1071

Appendix A.4. Reference MSL1072

A reference MSL field is used during each assimilation step to convert1073

the model sea-level into SLA. This allows the model SLA to be compared1074

directly to atSLA from satellite altimetry - the first step in the assimilation1075

process. The reference MSL is critical for the success of the reanalysis be-1076

cause it largely determines the mean circulation. For BRAN2, we use the1077
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time-averaged sea-level from a 13-year model run of OFAM1 (Spinup4/5);1078

and for BRAN3, we use the time-mean sea-level from the last 18-years of1079

a 33-year run of OFAM3 (Oke et al., 2013). A comparison of the different1080

MSL products is presented in Figure A.2. This comparison shows that there1081

is generally good agreement between the different reference MSL products.1082

However, there are several significant differences. Most relevant for the com-1083

parisons in this study is the difference between the reference MSL used for1084

BRAN2 and BRAN3 (Figure A.2d). This difference field shows several sys-1085

tematic differences, including a band of positive and negative difference along1086

the path of the ACC. This indicates that the mean ACC is at a different lat-1087

itude in these fields. Also, the large differences south of Papua New Guinea1088

indicate that the strength and structure of the South Papua gyre is different1089

in the different reference field. There is also a broad band of positive differ-1090

ence in the Indian Ocean at low latitudes that extends to the south-western1091

corner of Australia; and a broad band of negative difference south of this.1092

Similarly, in the Pacific Ocean there is a band of negative difference between1093

about 20-5◦S, and a narrow band of positive difference along the path of1094

the South Equatorial Current. These large-scale differences in the reference1095

MSL fields used in BRAN2 and BRAN3 indicate that the mean circulation1096

associated with these fields are very different.1097

The differences between the BRAN reference MSL fields and the CNES-1098

CLS09 MSL (Figure A.2e-f) are also significant. There are broad scale dif-1099

ferences that are similar in structure to the differences between the BRAN21100

and BRAN3 references. These differences are smaller for BRAN3, but in1101

both BRAN fields they are large. The reason for using a model-based esti-1102
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mate of the reference MSL is to ensure that the mean circulation associated1103

with the reference field is compatible with the model - though we note that1104

other groups have adopted observation-based reference fields in preference to1105

model-based reference fields (Cummings et al., 2009).1106

Appendix A.5. Observation pre-processing1107

Note that for BRAN3, we have carefully prepared the surface fluxes so1108

that the annual- and global-average MSL remains constrained for the dura-1109

tion of the model run. Consistent with this, we also calculate and remove the1110

global mean sea-level from the atSLA observations prior to each assimilation1111

step. In this way, we have processed the altimetry so that it is effectively1112

volume-conserving - consistent with the model. This eliminates a small, but1113

significant, source of bias in the reanalysis that was identified by Oke et al.1114

(2008).1115

Not all available observations are assimilated. For altimeter and SST1116

observations, we combine individual observations into super-observations.1117

Within the 1/10◦-resolution region of the model domain, we prepare super-1118

observations on a nominal 0.2×0.2◦ grid. Where no observations are avail-1119

able, no super-observations are computed. The estimated error of each super-1120

observation is calculated based on the estimated errors of the raw observa-1121

tions using standard error propagation techniques (e.g., Taylor, 1997, , pp45).1122

For in situ measurements, we don’t compute super-observations. Instead, we1123

simply “thin” the database to retain no greater than one profile of tempera-1124

ture or salinity for every 0.5 degrees.1125

Altimeter data tends to have larger errors in shallow water, owing to1126

limitations of global tide models and atmospheric corrections used in their1127
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processing. We attempt to eliminate contaminated altimeter observations by1128

only assimilating observations over water depths that exceed 200 m. Simi-1129

larly, satellite SST observations can become contaminated near the coast. To1130

eliminate contaminated SST observations in BRAN3, we only assimilate SST1131

observations over water depths that exceed 20 m. In BRAN2, we eliminated1132

more SST data in this step - with-holding satellite SST data within 100 km1133

of any coastline - an approach that was too conservative and with-held data1134

unnecessarily from the reanalysis.1135
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Table A.1: Summary of the assumed standard deviation of the instrument

errors used in BRAN2 and BRAN3.

BRAN2 BRAN3

CTD temperature 0.01◦C 0.05◦C

CTD salinity 0.05 psu 0.02 psu

XBT temperature 0.2◦C 0.2◦C

AVHRR SST 0.5◦C 0.5◦C

AMSR-E SST 0.25◦C 0.4◦C

T/P, J1, J2 3 cm 3 cm

Envisat, Cryosat 5 cm 5 cm
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Figure A.1: Age error estimates for sea-level (left) and SST (right) for different ages (1,

2, 4, and 10 days; top-to-bottom).
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Figure A.2: Comparison of the reference MSL used for (a) BRAN2, (b) BRAN3, and (c)

the CNES-CLS09 MSL; and the difference between the (d) BRAN2 and BRAN3 reference

MSL, (e) BRAN2 and CLS09 reference MSL, and (f) BRAN3 and CLS09 reference MSL.

The contour interval in panels (a-c) is 0.3 m.
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