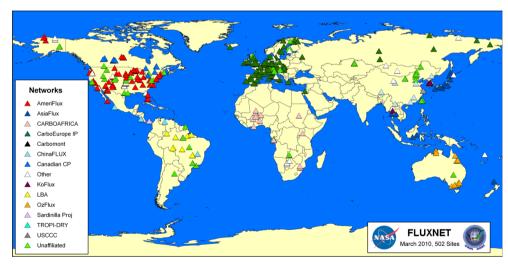
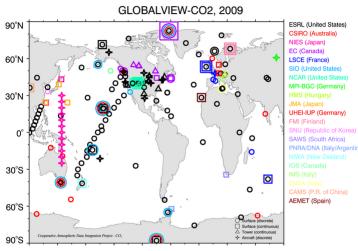
Model-data fusion strategy workshop: Land carbon initial overview

Cathy Trudinger, with input from Damian Barrett, Ian Enting, Ian Harman, Rachel Law, Peter Rayner, Ying Ping Wang

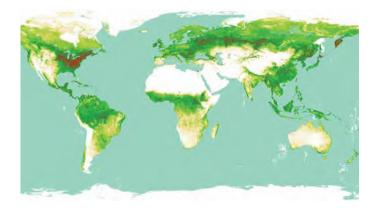
Australian Government

Bureau of Meteorology


The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology



Data

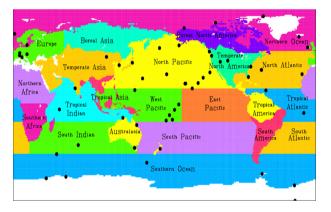


- Atmospheric concentration at selected sites
- Flux network
- Remote sensing (LAI, fAPAR, land cover, CO₂)
- Forest inventories
- Also need meteorology, topography, soil properties, land use history

100°E 140°E 180° 140°W 100°W 60°W 20°W 20°E 60°E 100°E

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Models


- Atmospheric transport model to relate fluxes and concentrations: infer surface carbon fluxes from spatial and temporal variation of atmospheric concentration data ("top-down" inversion; no process model)
- Land surface model: calibrate parameters using flux data, forest inventories ("bottom-up", process model allows prediction)
- Land surface model and atmospheric transport model: calibrate LSM parameters using atmospheric concentration data plus site and remotely sensed data (combines "top-down" and "bottom-up" approaches, e.g. CCDAS)

Bureau of Meteorology

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Issues

- Large spatial heterogeneity (climate forcing, soil types, vegetation, land use history)
- Limited spatial coverage of concentration data
- Atmospheric transport needed for top-down
- Representation error (point observations vs model grid)
- Aggregation error
- Hard to combine different types of data, and data providing information on different timescales
- Don't have advantage of daily comparison of forecasts like NWP
- Incomplete process knowledge, poorly known model parameters
- Equifinality, observability of parameters covariance between parameter estimates. Consequences for prediction outside range of calibration.
- Parameter estimation assumes process representations are structurally correct
- Models or observations may be biased (Gaussian assumption invalid)

The Centre for Australian Weather and Climate Research Australian Government **Bureau of Meteorology**

A partnership between CSIRO and the Bureau of Meteorology

State of the science

• Now

- MDF using multiple data-streams for carbon still hard (models probably not good enough)
- Currently using toy systems for MDF
- Disjoint in scale (time & space) between where MDF is 'possible', where we'd like to do it, and where real process information resides and different sources of data available.

• In 10 years?

- Operational MDF with carbon as a by-product (GEMS+GEOLAND)
- MDF component in all developing models (e.g. more efficient parameter estimation, models developed with better code standards to allow adjoints)
- Use of remotely sensed CO₂
- Consistency of carbon accounting with our modelling
- Multi-model data fusion

Where should we aspire to be?

- Intellectual not operational leadership (limited resources)
- Operational focus should be regional
- Make as much as possible of remote-sensing
- Should be joining big collective efforts (e.g. there should be a community MDF toolbox in the same way as there's a community climate model)
- Exploit connection with other terrestrial cycles water, nutrients, energy
- More use of information in high frequency variations (for concentration data need good transport)
- Terrestrial model error feeding into future climate predictions and stabilisation scenarios (best done in MDF framework)
- Move initiation of seasonal forecasts and decadal climate projection science away from equilibrium constructs

Australian Government Bureau of Meteorology

Current & planned activities

- ATACC Assimilation of Trace Atmospheric Constituents for Climate, lead by Peter Rayner
 - Generate transport model consistent with ACCESS; assimilate observations including remotely sensed CO₂, build global CCDAS optimized for Australia.

Australia-RECCAP

- Global RECCAP = REgional Carbon Cycle Assessment and Processes, Global Carbon Project activity – comparison of bottom-up and top-down estimates on regional scale http://www.globalcarbonproject.org/activities/RECCAP.htm
- Australia-RECCAP = Establish the mean carbon balance of the Australian continent for the period 1990-2008, including its component sink and source fluxes. It will be achieved by using a combination of bottom-up and top-down measurements and model outputs from Australian and global analyses.
- Uncertainty analysis Ian Enting

Current & planned activities

- AWAP Australian Water Availability Project
 - Focus so far has been on estimating soil moisture and water fluxes over the Australian continent http://www.csiro.au/awap/
 - Extend by adding carbon to the model, and assimilating remotely sensed observations of vegetation greenness
 - Explore multi-model data fusion
- CarbonTracker
 - Inversion for carbon fluxes using the square root ensemble Kalman filter, with open access to results on the internet http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/
 - Focuses on Nth America; also being developed for other regions including Europe, Asia and Australasia (at NIWA, NZ) and for methane.

- Stakeholder needs
 - Carbon accounting community verifying country emissions
- Key gaps
 - Computational resources and people
- Areas where rapid progress is possible
 - Expect rapid progress in ensemble methods
- Important areas where progress is likely to be limited
 - Model development (this is the major limitation for land carbon MDF at the moment)
- Relates research areas
 - Geosequestration Funding additional Australian monitoring site with a flux tower in Queensland

Australian Government **Bureau of Meteorology**

