

Model-Data Fusion in Water Balance Modelling: Examples from Water for a Healthy Country Flagship

Luigi Renzullo, Albert van Dijk, **Ben Gouweleeuw**, Julien Lerat, et al.

Presentation overview

Overview some of the different flavours of MDF work tried / tested / used in research under CSIRO's Water for a Healthy Country Flagship & WIRADA

> Model development, optimisation, parameter selection/ estimation, calibration, tuning, fitting; data assimilation, state updating; model-data integration, image fusion; statistical blending; data merging; model selection, ...

Talk outline

- Choice of MDF Techniques for Water Balance studies
- Some examples from WfHC Flagship & WIRADA
- Issues for Water Balance MDF
- Conclusions & Recommendations

Choice of MDF Techniques

- 1. Nature of the systems we are modelling governs the appropriateness of the MDF techniques employed
 - System dynamics: e.g. stochastic dynamic, deterministic static,

2. Use of Observations

. . .

"Observations" includes measured direct / indirect (retrieved) or modelled quantities

- **Constraint** e.g. sequentially update model trajectory; batch parameter estimation for time series of data
- **Model development & evaluation** *e.g. inferring model structure, parameterisation, model selection/development, verification*
- **Model forcing & input** e.g. driver data propagating model from one time step to next; spatially varying land surface variable
- 3. Application space & time frames
 - Real-time *e.g. flash flood forecasting,*
 - Retrospective / historical e.g. medium- and long-term predictions, National Research FLAGSHIPS

er for a Healthy Country CSII

Some examples from WfHC and WIRADA

Real time	Retrospective
• Rainfall-runoff modelling Parameter estimation, state updating & forcing adjustment using stream gauges observations	• Landscape water balance model development Using flux tower & stream flow observations to determine optimal level of model complexity
 Open water fraction Integrating multiple sources of remotely- sensed observations to map extent of flooding Precipitation blending Statistical blending of gridded estimates & point measurements of precipitation 	 Spatial modelling of water stores & fluxes Spatial water balance estimation constrained by remote sensing in reanalysis

Real-time flow forecast on the Condamine-Balonne

- System
 - 6 hourly
 - 20 forecasting points
 - Total area of 80 000 km2
- Models
 - Rainfall-runoff
 - River Routing
 - Data Assimillation to update Routing

Real-time flow forecast on the Condamine-Balonne

- Variational DA
 - Assimilation window of 7 days
 - Updating correction factors on
 - rainfall
 - model states
- Issues
 - Raw input data
 - DA not compensating structural errors

Estimating flooded area by blending satellite imagery

Flood extent estimation

MODIS

- 500 m resolution
- cloud affected
- twice daily

AMSR

- 14x8 km resolution
- affected by rain
- 1-2 times daily

Estimating flooded area by blending satellite imagery

The Australian Water Resources Assessment (AWRA) system

The Australian Water Resources Assessment (AWRA) system

Data assimilation: MODIS EVI

Data courtesy Lindsay Hutley, Jason Beringer, Jeff Walker and Robert Pipunic

Result: comparison against flux tower ET

- Prior parameters reproduce ET patterns reasonably well.
- Ensemble Kalman filter to update LAI occasionally leads to improvements, but also degradation at times.
- Much of the recalcitrant differences can be attributed to errors in rainfall (kriging product).

Example AWRA reports

age anomaly

1,000 km

500

250

250 mm

-250 mm

Total water storage

1 February 2010 Total soil and ground water storage combined, compared to average for this day for 1980-2009 (so-called "anomaly")

Blending gauge and satellite-based precipitation

Historical blended gauge and satellite-based precipitation

 Historical archives of rain gauge obs & satellite (TMPA 3B42) retrievals

 Displayed are time series of monthly precip average for 13 drainage divisions Jan 1998 – Dec 2008

- Trend in annual precipitation from the blended product for Jan 1998 – Dec 2008
- Note

50

0

-50

- * Number of gauge obs ~6000 per day (as opposed to ~1000 per day in Real Time)
- * Satellite image history to short for most climate studies **FLAGSHIPS**

Near real-time blended gauge and satellitebased precipitation

- Sequences of daily rainfall for 1-24 March 2010
- Blended satellite and NRT gauge generated ~9pm on day of interest

Some issues

- * Not very "real-time" but is 12 hr latency acceptable for most applications? (probably not for flood warning)
- * Alternative blending approaches & data sets need to be tried
- * Needs objective quantitative assessment of accuracy

Issues

٠

•

. . .

- Nature of the systems
 - Modelling states difficult/impossible
 - e.g. Ground water dynamics
 - Makes development of observation operator challenging
 - Conceptualisation
 - No connection in space (e.g. adjacent catchments)
- Observations
 - Quality control what/where are the error bars on the observations?
 - Timeliness what level of latency is acceptable/unacceptable?

Conclusions & recommendations

- "Models without observations are misguided; observations without models are uninteresting..."
- Observations are essential for determining appropriate level of model complexity, constraining model estimates & evaluating model performance
- Better characterisation of observation errors is needed
 - Obs error needed for assimilation; ensemble modelling; model verification
 - Greater support for field campaigns
- Ask the questions:

٠

- Are we making the most of the data we *currently* have?
- What more data would we like to have & where?

Conclusions & recommendations

- MDF techniques abound not all techniques appropriate for certain applications
 - *"When all you have is a hammer, all problems start to look like a nail"*
- However, some challenges are ubiquitous to all field
 - Encourage dialogue between the communities gathered here
- What would be good to have is ...
 - Access to toolsets/existing algorithms
 - LIS, OpenDA tools, software libraries, ...
 - Access to expertise/capabilities
 - Tap into this community; foster linkages & promote cross-divisional/institutional collaborations
 - Performance testing infrastructure
 - e.g. web-based interface to submit algorithms / outputs to be objectively assessed against alternative approaches. (ET-ICE)
 - Ability to interrogate / develop model structure
 - e.g. revisit rainfall-runoff model paradigm

