Model-Data Fusion in Water Balance Modelling: Examples from Water for a Healthy Country Flagship

Luigi Renzullo, Albert van Dijk, Ben Gouweleeuw, Julien Lerat, et al.
Overview some of the different flavours of MDF work tried / tested / used in research under CSIRO’s Water for a Healthy Country Flagship & WIRADA

Model development, optimisation, parameter selection/estimation, calibration, tuning, fitting; data assimilation, state updating; model-data integration, image fusion; statistical blending; data merging; model selection, …

- **Talk outline**
 - Choice of MDF Techniques for Water Balance studies
 - Some examples from WfHC Flagship & WIRADA
 - Issues for Water Balance MDF
 - Conclusions & Recommendations
Choice of MDF Techniques

1. Nature of the systems we are modelling governs the appropriateness of the MDF techniques employed
 • System dynamics: e.g. stochastic dynamic, deterministic static, ...

2. Use of Observations
 “Observations” includes measured direct / indirect (retrieved) or modelled quantities
 • Constraint e.g. sequentially update model trajectory; batch parameter estimation for time series of data
 • Model development & evaluation e.g. inferring model structure, parameterisation, model selection/development, verification
 • Model forcing & input e.g. driver data propagating model from one time step to next; spatially varying land surface variable

3. Application space & time frames
 • Real-time e.g. flash flood forecasting,
 • Retrospective / historical e.g. medium- and long-term predictions, climate change studies
Some examples from WfHC and WIRADA

<table>
<thead>
<tr>
<th>Real time</th>
<th>Retrospective</th>
</tr>
</thead>
</table>
| **• Rainfall-runoff modelling**
Parameter estimation, state updating & forcing adjustment using stream gauges observations | **• Landscape water balance model development**
Using flux tower & stream flow observations to determine optimal level of model complexity |
| **• Open water fraction**
Integrating multiple sources of remotely-sensed observations to map extent of flooding | **• Spatial modelling of water stores & fluxes**
Spatial water balance estimation constrained by remote sensing in reanalysis |
| **• Precipitation blending**
Statistical blending of gridded estimates & point measurements of precipitation | |
Real-time flow forecast on the Condamine-Balonne

- **System**
 - 6 hourly
 - 20 forecasting points
 - Total area of 80 000 km²

- **Models**
 - Rainfall-runoff
 - River Routing
 - Data Assimilation to update Routing
Real-time flow forecast on the Condamine-Balonne

- **Variational DA**
 - Assimilation window of 7 days
 - Updating correction factors on
 - rainfall
 - model states

- **Issues**
 - Raw input data
 - DA not compensating structural errors
Estimating flooded area by blending satellite imagery

Flood extent estimation

MODIS
- 500 m resolution
- cloud affected
- twice daily

AMSR
- 14x8 km resolution
- affected by rain
- 1-2 times daily
Estimating flooded area by blending satellite imagery

Weight of sensor based on cloud cover fraction
The Australian Water Resources Assessment (AWRA) system

• AWRA model development

• Surface obs from **flux** towers & **stream flow** observations were used to derive a model of Australian water balance of optimal complexity.
The Australian Water Resources Assessment (AWRA) system
Data assimilation: MODIS EVI

Howard Springs savanna

Kyemba grassland

MODIS greenness (EVI) observations

prior parameter estimates

parameter fitting followed by EnKF LAI

Data courtesy Lindsay Hutley, Jason Beringer, Jeff Walker and Robert Pipunic
Result: comparison against flux tower ET

- Prior parameters reproduce ET patterns reasonably well.
- Ensemble Kalman filter to update LAI occasionally leads to improvements, but also degradation at times.
- Much of the recalcitrant differences can be attributed to errors in rainfall (kriging product).
Total water storage
1 February 2010
Total soil and ground water storage combined, compared to average for this day for 1980-2009 (so-called “anomaly”)

Example AWRA reports
Blending gauge and satellite-based precipitation

Statistical blending of gauge & gridded precipitation data (Li & Shao, *J Hydrol*. 2010)

TRMM Multi-satellite Precipitation Analysis
3B42 precipitation product

NCC Daily rainfall observations

Blended satellite-gauge daily rainfall

2003-04-12
1200 UTC

2003-04-13
Daily Rainfall Estimates (24 hr to 9am local time)
Historical blended gauge and satellite-based precipitation

- Historical archives of rain gauge obs & satellite (TMPA 3B42) retrievals

- Displayed are time series of monthly precip average for 13 drainage divisions

- Trend in annual precipitation from the blended product for Jan 1998 – Dec 2008

Note

- Number of gauge obs ~6000 per day
 (as opposed to ~1000 per day in Real Time)
- Satellite image history to short for most climate studies
Near real-time blended gauge and satellite-based precipitation

- Sequences of daily rainfall for 1-24 March 2010
- Blended satellite and NRT gauge generated ~9pm on day of interest

- **Some issues**
 * Not very “real-time” – but is 12 hr latency acceptable for most applications? (probably not for flood warning)
 * Alternative blending approaches & data sets need to be tried
 * Needs objective quantitative assessment of accuracy
Issues

• Nature of the systems
 • Modelling states difficult/impossible
 • e.g. Ground water dynamics
 • Makes development of observation operator challenging
 • Conceptualisation
 • No connection in space (e.g. adjacent catchments)

• Observations
 • Quality control – what/where are the error bars on the observations?
 • Timeliness – what level of latency is acceptable/unacceptable?

• ...
Conclusions & recommendations

• “Models without observations are misguided; observations without models are uninteresting…”

• Observations are essential for determining appropriate level of model complexity, constraining model estimates & evaluating model performance

• Better characterisation of observation errors is needed
 • Obs error needed for assimilation; ensemble modelling; model verification
 • Greater support for field campaigns

• Ask the questions:
 • Are we making the most of the data we currently have?
 • What more data would we like to have & where?
Conclusions & recommendations

- MDF techniques abound – not all techniques appropriate for certain applications
 - “When all you have is a hammer, all problems start to look like a nail”
- However, some challenges are ubiquitous to all field
 - Encourage dialogue between the communities gathered here
- What would be good to have is …
 - Access to toolsets/existing algorithms
 - LIS, OpenDA tools, software libraries, …
 - Access to expertise/capabilities
 - Tap into this community; foster linkages & promote cross-divisional/institutional collaborations
 - Performance testing infrastructure
 - e.g. web-based interface to submit algorithms / outputs to be objectively assessed against alternative approaches. (ET-ICE)
 - Ability to interrogate / develop model structure
 - e.g. revisit rainfall-runoff model paradigm