High Performance Computing
Model Data Fusion and Earth System Modelling

www.cawcr.gov.au

Tim F. Pugh
CAWCR Senior IT Officer
Australian Bureau of Meteorology
11 May 2010
Questions

• What are the current and expected platforms that the vendors are delivering / promising now?

• What are the critical bottlenecks that must be addressed and balanced
 • Processors: Moore’s Law continue?
 • Memory wall (latency and bandwidth)
 • System interconnects
 • Storage (disk and tape)
 • data management systems
 • Wide area networks

• How would you plan to make use of it in, say, 5 years?
Processor Trends

• Components of Moore’s Law
 • Pipeline depth (gates/clock)
 • Instruction Level Parallelism (ILP)
 • Clock frequency
 • Compute cores

• Problems with increasing frequency/cores and reducing feature size indefinitely:
 • Power proportional to clock frequency and number of cores.
 • Control of fab process increasingly difficult as feature size reduced. Yields drop.
 • Reliability inversely decreases with increased gates
 • Reliability reduced with higher power densities

• Moore’s Law increasingly depending on frequency
• Moore’s Law increasingly depending on cores
• End of Moore’s Law in 2020?
 • Can’t afford the power budgets
 • End of CMOS
 • 32 um -> 22 um -> 15um -> 10 um
 • Approaching a few silicon atoms layer for transistors
 • Power leakage goes up
 • Voltage is pushed down -> loss of reliability

• Reliability
 • Ability to prevent failure

• Resilience
 • Ability to recover from failure
The CMOS Power Problem is at Hand

- Between 2000 and 2009, max chip power will have increased more than 100%
- Heat flux will have more than doubled
- The main culprits are increasing clock frequencies, additional cores, and decreasing feature sizes
 - Power (Watts) = C V^2 f
 - Heat flux = power/area
CMOS Power Perspective

• CMOS situation is similar to what happened to Bipolar in the early 1990s.
 • Difference: there is no ready replacement for CMOS on the horizon.

• As feature size decreases, static power (leakage) will become comparable to dynamic (switching) power consumption. (Loss of reliability)

• Costs of facility infrastructure for providing power to and dissipating heat from supercomputers can no longer be neglected.
Processor Trends (through 2012)

- Multi-Threaded architectures
- Multi-Core Processors
- O(3GHz) clock speeds
- Large/Huge L2, L3 caches
- Media/vector processing extensions
- Static and dynamic power management
• Trends in processor architecture
 • Moore’s Law will slow
 • Even so, the memory wall (latency measured in clocks) will continue to increase
 • Level of system integration on a chip will increase
 • Multi-core on a chip
 • Memory controller on a chip
 • Power consumption issues will increasingly constrain design/market
 • Commodity vs custom chip battle will continue
• All Trends are interrelated and will impact future designs.
• Today's general purpose CPU’s per-core performance has not increased in performance significantly
 • CPU multi-core chip performance increasing --> many-core chips
 • Increasing the number of processors / cores has diminishing value

• Multi-threaded, many-core chips for graphics processing are not general purpose, but they have significant performance advantages over general purpose CPUs

• Peak CPU performance (4 core) Today
 • ~11GFlops per core, 20-30W
 • ~44GFlops per chip, 80-120W

• Peak GPU performance Today
 • 930Gflops, 150-300W
• What’s the catch?
 • Achieving good performance may require significant modifications and/or restructuring
 • Significant time required to transfer data in memory between the GPU and CPU
 • Portability across different accelerator technologies may be challenging
 • Many-core, GPU architectures are quite different
 • OpenCL, CUDA may not be sufficient
 • Limited development tools
• **Scalability Projects**
 - Prepare for the possibility on running codes on (more) massively parallel computers (BlueGene)

• **Optimization Projects**
 - Improve efficiency of codes on scalar CPU architectures
 - Access codes running at 5% of peak today, desire target of 10% or more.

• **Code Portability Projects**
 - Prepare for the possibility on running codes on new processor technology and new languages (GPGPU, FPGA)

• **Collaborative effort with other groups**
 - Access to code and benchmarks for community and HPC help
 - Exploration of new technology benefits and costs
Future Systems

• Enhance our capacity for computing (100x by 2020)
 • Greater computing resources for ensemble model and assimilating data
 • Greater memory resources and performance
 • 3GB memory per Gflop of sustained computing
 • Greater storage resources and performance
 • Global parallel file systems (Lustre) scale-out in storage and bandwidth
 • Flash technology improves I/O bandwidth and Iops

• Enhanced capability for computing depends on
 • Whether the application can scale with growing number of cores?
 • Improvement in communications, and overlaps in computations
 • Hybrid models using MPI-OpenMP
 • Application I/O, parallel I/O or parallel data streams
 • Whether the application needs greater single processor capability?
 • Possibly processors, new coding techniques and languages, or
 • Wait for better tools
Power and Cores

• Today - Processor Counts and System Power
 • TeraScale is >100 cores (~10 KW)
 • PetaScale is >90,000 cores (~10 MW)
 • ExaScale is >90,000,000 cores (>300 MW)

• Tomorrow – Exascale Processor Counts and System Power
 • TeraScale is >1 cores (1 KW?)
 • PetaScale is >1,000 cores (1 MW?)
 • ExaScale is >100,000 cores (100 MW?)

• Is Exascale achievable?
 • Not today. Issues with system power and application scalability (cores)
 • In 2020, yes if...Achieve affordable power budgets
 • Achieve balanced system design
 • Improve application scalability

The Centre for Australian Weather and Climate Research
A partnership between CSIRO and the Bureau of Meteorology
Estimate of HPC Tomorrow

Peak Computational Performance (HPL)

ExaFlops

100P

10P

PFlops

100T

#1 #500 #1 Trend Line #500 Trend Line
NCI CF NCI CF2 BoM 2013 BoM 2017
The Centre for Australian Weather and Climate Research
A partnership between CSIRO and the Bureau of Meteorology

Tim F. Pugh
High Performance Computing

Phone: 03 9669 4345
Email: t.pugh@bom.gov.au
Web: www.cawcr.gov.au

Thank you