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Overview

- Past DA work done (CBM/CABLE)

- Synthetic Twin

- In-situ one-dimensional observations
- Spatial remotely sensed observations

* |Issues/Limitations Identified
 Current Work — ARC Project
 Summary/Future Directions
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Motivation

* Which observations are best for constraining particular
quantities in hydrologic cycle?

 All possible land surface model data assimilation approaches for
hydrology not fully explored in research literature (and not with
CBM/CABLE)

Many examples of soil moisture and some of skin surface temperature
assimilation studied with different models

Assimilation of LE and H observations, or combinations of different variables has
not been explored in depth

- Better understand data assimilation impacts on CBM/CABLE.
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CBM / CABLE Specs Relevant to Assimilation

* Model forced at each time step by:

« Incoming short wave and long wave radiation; Air temperature; Rainfall; Wind
speed; Specific humidity; Air pressure.

* Soil Moisture and soil temperature for 6 soil layers are the

prognostic state variables
Traditional state updating applied with assimilation — no parameter optimisation.

« Skin surface temperature is the sum of the radiative temperature
from the soil and from vegetation -> Strong link to surface soil
temperature, leaf canopy temperature in the model.
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Ensemble Kalman Filter (EnKF) used:

* Perturbed ensembles of initial conditions, and forcing time series
data (eg. Turner et al., 2008)

Results in model prediction ensembles for error covariances

* Observation ensembles 2 normally distributed random
perturbations added to observation value

engineering research foi
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Observations used for data assimilation experiments: Energy
and water balance data types related to remote sensing........

Specs Pros Cons
i i * Once every |- Insensitive to clouds;  Sensitive to thick
Soil Moisture _ : _
_ 1-3 days; - Higher res. airborne data vegetation/forest cover;
(p.asswe *10’s km can supplement satellite data | - Top few cm of soil;
microwave) | resolution - Low spatial resolution.
» Twice daily * Measure over different  Sensitive to cloud
Latent (LE) & | to fortnightly; | vegetation; cover;
Sensible (H) |- 1 km to 100’s | - More direct link to energy  Higher res. data on
heat fluxes m resolution balance driving water cycle longer timescale;
« Hard work to validate.
» Twice daily * Measure over different  Sensitive to cloud
Skin Surface |to fortnightly; | vegetation; cover;

Temperature |+1 km to 100’s | - More direct link to energy * Higher res. data on
m resolution balance driving water cycle longer timescale
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Synthetic Twin Data Assimilation Experiment

* Proof-Of-Concepts Study

- Investigate the assimilation of different remote sensing data
types and their impact on CBM/CABLE

- Assimilate synthetically derived LE, H, soil moisture and skin surface
temperature observations on remote sensing time-scales

- Examine how different observations impact on key hydrologic variables.

* Published:
Pipunic et al., 2008, Remote Sensing of Environment, vol. 112
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Assimilation Runs
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Surface Soil Moisture Assimilated
Every 3 Days (SMOS Time Scale)
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Synthetic Twin Summary

* Soil moisture assimilation best for soil moisture - Does not
necessarily translate to the best LE predictions

 LE, H and Skin surface temperature assimilation give overall
better LE and H predictions on MODIS remote sensing time scale
- More direct impact on model’s energy balance

- Alternatives to soil moisture assimilation seem promising for
improving fluxes = Warrants further testing with real data......
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Kyeamba Creek

 Assimilation experiments with real 1D scale field
data in Murray Darling Basin

* In-situ ET — Eddy covariance, Soil moisture, Skin
temperature

* Observations sampled on remote sensing time
scales (include cloud filtering for skin temp and flux
data)
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Spatial Remote Sensing Data Assimilation

* Include AMSRE soil moisture observations (25km) and LE and H
instantaneous products at Skm (SEBS algorithm — Su, 2002)

- Modelling over 25km AMSRE soil moisture pixel domain for
Kyeamba Creek area. Model simulation resolution Skm.

engineering research foi
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Summary

* No treatment of model structure, parameter error

« With more vegetation cover (higher LAI) skin temp has less
relationship with prognostic state variables.

« With spatial RS data, number and scale of in-situ data inadequate to
properly validate.
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Current Work

* ARC Linkage Project with DPI Victoria

* Investigate data assimilation as a tool to highlight model deficiencies
and target structural improvement.

* More detailed ground based monitoring activity to for Remote
sensing calibration/validation.

engineering research for the ben:



MeERIT

Multi-sensor Data Assimilation MELBOURNE ENGINEERING
RESEARCH INSTITUTE

THE UNIVERSITY
MELBOURNE

» Greater observation network — different scales.

 Closer dialogue with model developers = want models with variables
that are more closely matched to what we can observe
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