Model Data Fusion in Flood Prediction

Thomas Pagano (Wang, Lan, Hapuarachchi, Toscas) May 10-12 2010, Cape Schanck

A water information R & D alliance between the Bureau of Meteorology and
CSIRO’s Water for a Healthy Country Flagship
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Model data fusion
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Simple water balance model

Inputs, Parameters, Outputs

Potential evaporation
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Simple water balance model
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Simple water balance model

Inputs, Parameters, Outputs

Potential evaporation

Rain
? Evaporation control

Actual evaporation

0 =» Excess runoff
Soil
capacity <

Release rate

Soil Subsurface runoff

moisture

NAA Water Information - Racoral Fescerch @

~ <) CSIRO




Semi-distributed: Node link structure
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Typical modelling problem

~100 spatial units (irregular gridcells) per catchment
~3-12 internal states per spatial unit

Streamflow observation at outlet
and ~0-10 upstream points

~5k-50k historical/~50 forecast timesteps
Simulation skill r2=0.5-0.9

Initial condition and forcings ~equally important
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Special challenges of flood forecasting

Realtime data quality/coverage is poor

Future forcings uncertain

Timesteps are short and “dynamic” processes active
Semi-distributed and seasonally varying processes
Data-to-product latency is O(minutes-hours)

Lives and property at stake
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SWIFT: Short-term Water Information Forecasting Tools
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Parameter calibration
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Parameter calibration

100.0
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Define “good”... this is our
“objective function” (OF)
e.g. Nash sutcliffe
1 - Sum((Sim-Obs))?

Sum((Avg-Obs))?
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Parameter calibration
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Define “good”... this is our
“objective function” (OF)
e.g. Nash sutcliffe

1 - Sum((Sim-Obs))? Release
Sum((Avg-Obs))? rate
Try parameter combinations, O

evaluate objective function Soil capacity
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Parameter calibration
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Parameter calibration
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Parameter calibration

100.0

— Observed — Simulated
We want a good fit gm
between simulated 2
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e.g. Nash sutcliffe worse
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Parameter calibration
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Parameter calibration
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Parameter calibration
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If you tried millions of combinations
you could draw a “response surface”
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Parameter calibration
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If you tried millions of combinations
you could draw a “response surface”
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Parameter calibration
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If you tried millions of combinations
you could draw a “response surface”

Release “

Automatic calibration tries to find

. 1] . ” rate
quickest path to “global optimum Q
but can get trapped in “local optima”
or give nonsense parameter values Soil capacity
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Automatic Parameter Estimation

Single objective global optimization: (1988-1994)
Genetic Algorithms, SCE, Simulated annealing, Particle Swarm

Multiple objective optimization: (1998-)
MOCOM, NSGA-II

Iterative calibration: (2001)
BARE

Monte Carlo/Metropolis: (2003)
MOSCEM

Combined optimization and assimilation: (2006)
SODA

Hybrid Automatic/Manual calibration: (2000-2006)
MACS, Boyle et al 2000
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Automatic Parameter Estimation

Single objective global optimization: (1988-1994)
Genetic Algorithms, SCE, Simulated annealing, Particle Swarm

Multiple objective optimization: (1998-)
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WIRADA activities

Parameter calibration:

Use Shuffled Complex Evolution with scalarized multiple objectives

How to use forecasters’ subjective ideas for calibration objectives?
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Streamflow (mm/{d)

Percent full

State updating
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Main state updating techniques

« Kalman Filter (~1980). Need modified model, computationally
impractical.

« Ensemble Kalman Filter (~1994) Linear updating can be a problem.

* Variational (~2003) Needs adjoint model. Time invariant model
covariance not a realistic assumption.

* Particle filter (~2006) States not updated, but rather their likelihoods.

 Assimilation of ancillary states (>2006). e.g. snow, soil moisture, leaf
area index. Direct insertion rarely works, need history.
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WIRADA activities

State updating:

Have done EnKF and Particle filter for 1 spatially lumped catchment.
Skill for the 2 methods was about the same.

How to apply these in semi-distributed models with
time lag between rain and runoff?

soils
model streams
observed

streamgage
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Streamflow (mm/d)

Percent full

Error correction

4.0
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ARMA models common, Quantile mapping

DHI/MIKE has methods that considers timing errors (~1989)
and state-updates and error-corrects simultaneously (2005)
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WIRADA activities

Error correction:

Implementing DHI/MIKE 1989 method
Developing “dual timescale” error correction (e.g. 1 day+12 months)
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Personal reflections

Operational practice is very basic
Manual calibration
Manual state updating
“Matching” (direct use) of upstream observed streamflow

Current system transparent and works well with data of realtime quality
Allows the use of “soft” information, expertise

Would operations accept highly formalized black box methods?

Even “optimal” methods have tunable parameters

w- WC|Ter |nform0'|'|on National Research ‘mm’

FLAGSHIPS csiro




Open questions

How to work within streamflow forecasting’s
very non-linear, non-Gaussian space?

How to account for the lag between states and flow?
How to update semi-distributed model states?

How to merge the best of the
automatic/objective and manual/subjective?
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Future directions

1. Where do you want to be at the end of your project?
Develop and help implement operationally effective
and practical model-data fusion techniques

2. Where should we be in 5 years?
How do you handle short-record datasets?
How to make and use retrospective forecasts?
How do we find the human-machine balance?
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Future directions

3. Do other areasl/fields affect us?

4. Who else would benefit from our work?
Will hydrology and land surface modeling converge?
Seasonal hydro forecasting is relevant but simpler
Meteorology is often 5-10 yrs ahead of hydrology
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CSIRO Land and Water
Thomas Pagano
Hydrologic Modeller

Email: Thomas.Pagano@csiro.au

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176
Email: Enquiries@csiro.au Web: www.csiro.au
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