Michael Naughton
CAWCR Earth System Modelling

Model Data Fusion Workshop
10-12 May 2010
Motivation for Ensemble Prediction

- NWP forecasts greatly improved but are still uncertain
- Internal and external users can make better decisions when uncertainty information is provided
- Ensemble prediction is a good way to estimate forecast uncertainty
Service requirements for probability forecasts

- **Thunderstorms** – probability of conditions favourable to severe weather
- **Heat wave warnings** – probability of exceeding critical heat stress index based on temperature, humidity, and wind speed
- **Precipitation** – probabilities of exceeding critical accumulation thresholds
- **Wind** – probability of gales – crucial for tropical regions
- **Waves** – probabilities of exceeding critical wave heights
- **Tropical cyclones** – strike probability
NWP Ensemble Prediction Methodologies

Multi-model ensemble (Poor Man’s Ensemble) – form ensemble from deterministic forecasts from available local and overseas models
- PME precip forecasts on BoM WATL site
- GOCF forecasts used operationally in BoM public weather forecasts

Single-centre EPS systems – run by almost all major international Met Centres

Global:
- BoM: GASP-EPS (2002-present)

Australian Region:
- LAPS-EPS: research system (2002-2005)
- ACCESS-AGREPS: research system (in progress)

Multi-EPS systems – form ensemble from ensemble forecasts from multiple centres
- TIGGE – Thorpex Interactive Grand Global Ensemble (research)
- GIFS – Global Integrated Forecast System (research)
- NAEFS – North American Ensemble Forecast System (operational)
EPS systems typically run 10-50 ensemble members at about $\frac{1}{2}$ resolution of centre’s deterministic systems

Initial conditions perturbations

- **Singular Vectors** – EC / BoM (GASP) / JMA
- **Breeding / EKF / ETKF** – US-NCEP / KMA / UK
- **Ensemble DA** – CMC

 Research: BoM (LAPS), EC, Meteo-Fr

Model Perturbations

- **Stochastic physics schemes** – EC, BoM (LAPS), UK
- **Multiple physics schemes** – CMC, BoM (LAPS)
AGREPS – ACCESS Global and Regional Ensemble Prediction System
Ensemble teams

UK Met Office – MOGREPS

• Richard Swinbank – Research
 • Neill Bowler
 • Sarah Beare
 • Jonathan Flowerdew
 • Warren Tennant
 • Christine Johnson
 • Kelvyn Robertson
 • Simon Thomson

• Ken Mylne – Products and consulting
 • Caroline Woolcock
 • Piers Buchanan
 • Rob Neal
 • Lisa Murray
 • Martin Sharpe
 • Helen Titley (maternity leave)

• Dale Barker – Hybrid DA
 • Adam Selwood

CAWCR – AGREPS

• Michael Naughton (0.5)
• Beth Ebert
• Kamal Puri
• Terence O’Kane (2007-2009)
• David Smith (from May 2010)
• Asri Sulaiman (0.5)
• *business case proposal to increase effort*
MOGREPS – The Met Office short-range ensemble

24-member ensemble designed for short-range forecasting

- Regional ensemble over N. Atlantic and Europe (NAE) (24km resolution, 38 levels) to T+54
- Global ensemble (~90km resolution, 38 levels) to T+72
 - Also runs to 15 days at ECMWF for THORPEX
- ETKF for initial condition perturbations (global only)
- Stochastic model perturbations
- Global run at 0Z and 12Z. Regional run at 6Z & 18Z

Fully operational system since 2008
AGREPS – The ACCESS short-range ensemble

24-member ensemble designed for short-range forecasting

- Regional ensemble over Australian Region (24km resolution, 70 levels) to T+72
- Global ensemble (60km resolution, 70 levels) to T+120
- ETKF for initial condition perturbations (global only)
- Stochastic model perturbations
- Global run at 0Z and 12Z. Regional run at 6Z & 18Z

Currently running on NEC-SX6 at 37.5 & 80 km
Aiming for research system on Sun later in 2010
CAWCR Ensemble Development activities (proposed)

• **Scientific**
 - Getting appropriate ensemble spread: initial conditions, physics
 - Optimal NWP data assimilation
 - 4D variational + ensemble → hybrid approach
 - Calibration and verification

• **Forecast process**
 - Use of ensembles in NexGenFWS

• **Services**
 - Probabilistic forecasts available to the public and other users
 - User liaison required
Benefits for the Bureau

• **Uncertainty information** for forecasters
• **More reliable and accurate forecasts**
• **Hybrid data assimilation**
• **Probabilistic predictions** for a wide range of meteorological parameters
• Inclusion of uncertainty / probability information in automated forecasts enhances efficiency of end-to-end forecasting service
• Provision of ensemble-based uncertainty information to customers
• Extension to **downstream applications** such as flood forecasting, continuous streamflow, transport (dust, smoke, volcanic ash, etc.), fire spread, and storm surge
Ensemble Transform Kalman Filter (ETKF)

- Simplified version of EnKF
- Do not try to update ensemble mean, only to chose appropriate perturbations
- Accounts for the observations in choosing a method for re-scaling the perturbations
- New analysis perturbations are transformed as

\[X^a = X^f T \]

- Perturbations are applied to U, V, T, P, q (no perturbations to q_{cl}, q_{cf}, SST or land-surface)
Ensemble Transform Kalman Filter (ETKF)

• Calculate the matrix of forecast ensemble perturbations in normalised observation space
\[E = \left(R^{-1/2} H X^f \right) R^{-1/2} H X^f \]

• Find the eigenvectors and eigenvalues of this matrix (one will be zero).

• \(C \) is the \(k \times (k-1) \) matrix of non-zero eigenvectors, \(\Gamma \) is a \((k-1) \times (k-1) \) diagonal matrix with non-zero eigenvalues
\[T = C \left(\Gamma + I \right)^{1/2} C^T \]

• Transform matrix tells how to mix perturbations from different members – doesn’t directly hold any spatial information
Error breeding

\[\text{T+12 perturbed forecast} - \text{T+12 control forecast} \]

\[\text{Control analysis} + \text{Perturbed analysis} \]
Ensemble Transform Kalman Filter (ETKF)

\[X^a = X^f T \Pi_n \]

T+12 perturbed forecast T+12 ensemble mean forecast Transform matrix Inflation factor Control analysis Perturbed analysis
Local ETKF – why we have to localise

Neill Bowler

- Only have 23 perturbed members (would ideally want 10,000+)
- Small sample will have spurious long-range correlations
- Growth of spread in tropics is slow (since the perturbation methods are not producing the right structures)
- Continual re-scaling will mean that the IC spread is too small where growth is slow
Local ETKF

Calculate transform matrix using observations local to a limited set of points, approximately evenly distributed around globe

Interpolate transform matrix to intermediate grid points
Revised localisation – 5000km -> 2000km

Large localisation used when only radio-sonde observation errors known (caused problems in tropics)

Tighter localisation possible with sonde and ATOVS observations available
Spread and Error Variance at T+12h (measured against radiosondes)

With larger localisation radius spread still too small in tropics
With small localisation radius, spread in tropics much larger, and spread in extra-tropics smaller

Results normalised by observation error, so ideally error=spread+1
Pressure at Mean Sea-Level – Spread and Error

Spread with global ETKF too large

Spread with local ETKF (and SKEB) in good agreement with error

Observation errors have been accounted for in error of ensemble mean
Rationale for Stochastic Kinetic Energy Backscatter

• Models have an excessive dissipation of kinetic energy; due to
 • Interpolation in semi-Lagrangian advection scheme
 • Limitations in the parameterisation scheme (e.g. Kinetic energy detrainment)
• Stochastic Kinetic Energy Backscatter – scheme to replenish excessively dissipated energy
SKEB2 = Stochastic Kinetic Energy Backscatter version 2

A randomly initialised stream-function forcing field (Ψ) is created with specified spatial and temporal characteristics.

Calculate energy dissipation as a result of:
- Numerical schemes: Smagorinsky-Lilly
- Convection buoyancy: Mass-flux change * CAPE

Modulate the random Ψ-field with the energy dissipation.

Calculate wind components from the Ψ-field and add to other wind increments from model physics at each time-step.
AGREPS current status and near-term plans

- Initial AGREPS global and Australian regional systems at 80km & 37.5km have been implemented on NEC-SX-6
- AGREPS has been daily running in near-real-time since mid-2009, ceased now with changeover to Sun
- Porting to BoM Sun system now commencing, will allow more timely running and resolution increase
- GASP-EPS ensemble web displays have been enabled for AGREPS (and ECEPS)
- ECMWF Verify ensemble verification package has been installed, will be used for detailed quantitative probabilistic forecast validation
- Comparison of singular vector perturbations with ETKF perturbations in MOGREPS is being considered
- GOCF-type bias correction can be applied to AGREPS and ECEPS
- Investigation of approaches to combining deterministic and EPS forecasts in GOCF/GFE is planned
Obvious research collaboration potential for using EPS forecasts to drive downstream models for hydrological, oceanographic, severe weather impacts.
Tropical cyclone ensemble charts

- Tropical cyclones are identified and tracked using 850hPa relative vorticity maxima
- Identifies new storms out to T+144
- **Cyclone George**: Landfall near Port Headland, winds 195km/hr, 3 deaths

Mean reduction in forecast errors for ensemble mean compared to deterministic:
- Similar up to T+72
- 12% at T+96
- 23% at T+120

(7 months data)
Clicking on a feature brings up feature-specific tracks from each ensemble member and matching plumes of intensity measures to identify the potential for high-impact weather.

This storm tracked across Scotland, with gusts up to 100mph, leading to the high-profile cancellation of New Year’s Eve celebrations and loss of power to 1000s of homes.
- At longer lead times, the uncertainty in tracking individual features increases (they may well not exist in the initial analysis).
- The strike probability plots give a broader indication of risk of storms, based on cyclone database data.
- Plots show number of MOGREPS-15 ensemble members with potential for surface gusts > 60 kt in each 24-hour period.
Combined high-impact weather risk map

MOGREPS-15 Probability map for 2m temp <5/>95th percentile, 12hr precip > 10mm, and 10m wind speed > 28kn
DT: DOZ Fri 21/09/2007 VT: 12Z Tue 25/09/2007 lead time 108h
(Ensemble mean PMSL overlain in contours)
Example of experimental AGREPS run
Questions & answers