

CSIRO

MSE modelling

Beth Fulton CSIRO Marine Research

www.csiro.au

Acknowledgements

InVitro MkII Randall Gray Roger Scott Fabio Boschetti InVitro Mk I Rich Little Brian Hatfield Keith Sainsbury Vince Lyne

- Legislation requires assessment of environmental impacts
- Sustainable management & use across sectors = multiple use management
- Multiple stakeholders = multiple diverging interests and conflicting management objectives
- Uncertainty about managed resources, environment and interaction of sectors (response to management strategies)

Management Strategy Evaluation

Handling Uncertainty

Building the Model

- Targeted agent-based behaviour model
 - mix of differential equations and decision trees

- Targeted agent-based behaviour model
 - mix of differential equations and decision trees

- Basic structure = behaviour / process decision tree
 - process based
 - alternate formulations dependent on resolution

Resolution

Capability

Dynamic vs Forced

Then vs Now

Lessons Learnt

Model Domain

Human Sectors

- Fisheries
 - commercial
 - recreational
 - surveys
- Ports
- Shipping
- Coastal development (and leaching)
- Plumes
- Oil and Gas
- Conservation

All together

Strategies

Status Quo: Continue as in 2000

- not much to recommend it (for most sectors)
- state declines, economics follows eventually
- possible for a single sector to overwhelm
- Enhanced: Best practice per sector
- Integrated: All sectors together

Strategies

- Status Quo: Continue as in 2000
- Enhanced: Best practice per sector
 - strong returns (especially short-medium & good conditions)
 - less variability
 - doesn't help regional state (juggling local recoveries)
 - can't help in poor conditions
 - management costs & tension
- Integrated: All sectors together

Strategies

- Status Quo: Continue as in 2000
- Enhanced: Best practice per sector
- Integrated: All sectors together
 - improved system state
 - higher rates, lower absolute yields
 - sensitive to how implemented (costs & objectives)
- Biggest differences under poor conditions
 - need to determine baseline productivity?

Historical Impacts & Context

- System still recovering from past events (60s-70s)
- Benthic habitat and trawling

Slow recovery

Regional rates very slow

Outfalls and Prawns

Potential cross-sector interactions

Monitoring Sites

Effective vs ineffective monitoring

Short vs Long-term Risk

Benefits (and tradeoffs) identified

Economics & Conservation

Integrated - Lutjanus sebae

Enhanced - Lutjanus sebae Integrated - Reef habitat

2000 2002 2004 2006 2008 2010 2012 2014 2016

Year

Enhanced - Reef habitat

Decisions have costs

Relative Ecological Indicators (Medium Specifications)

Thought leads to less cost

0.0

Assessment Checks

Verify assessment models

Pessimistic system state

Other Results

- Dominated by direct effects
- Naturally highly disturbed
- Human impacts limited (spatially constrained)
- Impacts grow dangerously if:
 - widespread growth
 - poor system state
 - development cycles coalesce

National and international adoption of NWSJEMS modelling approaches CSIRO **Arctic**

 Direct effects strongest on NWS, yet integrated still the best management approach

Quantitative MUMSE is possible
harder than anticipated for NWS, lessons learnt
NWS-InVitro proved concept
now modular with expanded capacity
'best practice' (but need link to management response)

How to

