
Chapter 5

Kalman �lter double

deconvolution method

5.1 Introduction

The forward and single deconvolution calculations described in the previous chapter use

�13C for validation. In contrast, double deconvolution calculations use �13C much more

directly. Previous double deconvolutions (e.g., Joos and Bruno, 1998; Francey et al.,

1995b) have used the change in CO2 and �13C through time to solve for the budgets

of CO2 and 13CO2, requiring CO2 and �13C to be known at every time step. This is

well suited to studies over recent years, where direct measurements give good temporal

coverage. For longer time scales, smoothing spline �ts to ice core data are generally used,

however assumptions about the degree of smoothing on the splines can have important

implications for the inferred sources and their variability.

In this chapter, an alternative double deconvolution method will be developed and

applied to the Law Dome ice core record. The method, which uses the Kalman �lter,

incorporates statistical analysis into the carbon cycle modelling. The statistics are used

in parallel with the carbon cycle modelling, in contrast to the Bayesian calibration of the

BDM in Chapter 4 which implemented the statistical analysis as an external shell. An

important feature of the Kalman �lter inversion is that estimates of the uncertainties in the

deduced sources, as well as the sources themselves, are readily calculated. The concepts of

state space modelling and the application of Kalman �ltering to ice core records will �rst

be demonstrated using the Law Dome methane ice core record. This provides an example

that is easier to understand than the double deconvolution of CO2 and �
13C, yet has many
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of the same issues. The methane example is also interesting in its own right.

The outline of this chapter is as follows. The equations for the Kalman �lter and some

extensions (smoothing algorithms and the Extended Kalman �lter for nonlinear problems)

are explained, with a methane example used to illustrate the linear methods. A discussion

of some previous applications of Kalman �ltering to trace gas studies is then given, followed

by a discussion of the methane results. The next section is on testing the statistics in the

methane example, and raises some issues that will be important for the CO2 calculations.

The Kalman �lter is then applied to the Law Dome CO2 and �13C records. A simple

approach using the Kalman �lter with atmospheric pulse response functions is described

�rst. This approach has a number of limitations due to over-simpli�cation, but is quite

valuable to illustrate the methods. A more complete, nonlinear solution using mixed layer

pulse response functions is then applied to the double deconvolution of CO2 and �13C.

The results are compared to the traditional mass balance double deconvolution method.

A list of the notation used in this chapter is given in Appendix 5-1.

5.2 Methods

5.2.1 The Kalman �lter

Kalman �ltering is a recursive algorithm derived by Kalman (1960) for the discrete case and

Kalman and Bucy (1961) for the continuous case. The method aims to produce estimates

of the state of a system at each timestep using a state-space model. The concept of a

state is important here. Gabel and Roberts (1973) give the de�nition `The state of a

system at time t is that (minimal) set of variables needed at time t so that, given the

inputs to the system for � > t, one can exactly specify the future behaviour of the system

for � > t'. (It is sometimes desirable for the state to include more than the `minimal'

required set of variables, for example to include secondary variables for which estimates

are sought.) Basically, the Kalman �lter consists of predicting the state at each timestep

from the state at the previous timestep, with improvements to the estimates made using

(noisy) measurements. The error covariance of the state is also predicted and updated.

The Kalman �lter is called a �lter because it aims to reduce the inuence of noise in the

measurements (Mulquiney et al., 1993). A good description of Kalman �ltering is given

by Gelb (1974).
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The model underlying the Kalman �lter is given by two equations

xk = �k�1xk�1 +Gk�1uk�1 +wk�1 (5.1)

zk = Hkxk + vk (5.2)

Equation (5.1) describes the evolution of the state from one time to the next, where xk is

the state at time k, �k is the evolution (or transition) matrix and Gkuk is a deterministic

forcing term. wk is the stochastic forcing, which is assumed to be white noise with zero

mean and covariance Q. Equation (5.2) describes projection of the state onto observations,

where zk are observations at time k, and Hk is the projection (or measurement) matrix.

vk is measurement error, reecting the fact that the measurements are not perfect. It is

assumed to be uncorrelated white noise with zero mean and covariance R.

The aim of the Kalman �lter is to estimate the state, x, from the measurements, z.

The basic Kalman �lter method processes data sequentially, and consists of 2 steps. The

�rst step is the prediction step, which requires knowledge of the evolution of the state

(equation (5.1)). The second step uses data (if available) to improve the estimate of the

state, x and its covariance, P.

Step 1.

~xk = �k�1x̂k�1 +Gk�1uk�1 (5.3)

~Pk = �k�1Pk�1�
T
k�1 +Qk�1 (5.4)

Step 2.

x̂k = ~xk + Lk (zk �Hk~xk) (5.5)

Pk = (I� LkHk) ~Pk(I� LkHk)
T + LkRkL

T
k (5.6)

where

Lk = ~PkH
T
k (Hk

~PkH
T
k +Rk)

�1 (5.7)

~xk is the projection of the state forward from the previous timestep (with covariance ~Pk)

and x̂k is the state estimate updated using measurements (with covariance Pk). Lk is the
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Kalman gain matrix. It speci�es how much an observation is allowed to alter the state

estimate, and depends on the present uncertainty in the state versus the uncertainty in the

observation. The state estimates are optimal, in the sense that the state error covariance

is minimised, and the Kalman gain matrix is derived to give the optimal solution (Brown,

1983; Gelb, 1974). Equation (5.6) for update of the covariance matrix is valid for any

gain, suboptimal or otherwise, while there is a simpler expression

Pk = (I� LkHk) ~Pk (5.8)

which is valid only for the Kalman (optimal) gain. The Kalman �lter requires �, H, u,

Q and R to be known. These quantities can all vary with time. The initial state and

covariance are also required. The above equations describe the linear model; the nonlinear

case will be discussed later.

The Kalman �lter can be considered to be a form of Bayesian estimation, as at each

timestep the prediction from the previous timestep provides a prior estimate. This is

then improved using data (Young, 1984). The quantity zk � Hk~xk is often called the

innovation or mismatch. Note that this is di�erent to the residual, which is given by

zk � Hkx̂k i.e. using the state as estimated after the update step (Kailath, 1974). The

innovation covariance is given by

�k = Hk
~PkH

T
k +Rk (5.9)

The Kalman �lter, and its use in trace gas studies, is probably best illustrated by

discussion of a simple example. A minimal model for methane can be constructed with

just a source term and a single lifetime describing the sink of methane due to destruction

by reaction with OH (and other less important sinks). For this simplest case, the state

consists of 2 components: concentration (in Tg) and source (in Tg/yr),

x =

2
4 CH4

src

3
5 (5.10)

The evolution matrix, �, describing how the state changes from one timestep to the next

is

� =

2
4 e��t=� �te��t=2�

0 1

3
5 (5.11)
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The term �11 = e��t=� , where � is the lifetime of CH4 in the atmosphere, represents the

decay of CH4 due to destruction. �12 = �te��t=2� is the e�ect of the source on atmospheric

concentration, and would be equal to �t except that the amount of methane put into the

atmosphere from the source over the time interval �t has decayed (on average) for half the

time interval �t. The deterministic forcing term, uk, is the known forcing for the state,

for example if the fossil fuel source of methane to the atmosphere was known it could be

included here.

A random walk model (Mulquiney et al., 1995) is assumed for evolution of the source

in the ice core applications. The random walk model is very simple, assuming persistence

plus a random change with some speci�ed variance. It is implemented in the Kalman �lter

by having �22 = 1:0 in the evolution matrix and a component of stochastic forcing for the

source. The modelled concentration has no stochastic component, its variation being due

only to the source and decay. The covariance of stochastic forcing, Q, is then

Q =

2
4 0 0

0 qsrc
2

3
5 (5.12)

where qsrc controls how much the source can vary from one timestep to the next in the

random walk model, and will be discussed in some detail later. Q is sometimes referred

to as the covariance of the model error, as w represents the inability of the deterministic

part of the evolution model to fully describe variations in the state. The error statistics

(Q and R) are very important in these calculations, because the source estimates and

their uncertainties depend strongly on the underlying statistical model.

For methane observations in ppb and state variables as de�ned above, the projection

matrix is

H =
h
ppb/Tg 0

i
(5.13)

where ppb/Tg is a unit conversion from Tg CH4 to ppb (0.3533 ppb/Tg). For times

without data, H = [0 0]. The method is applied to CH4 data from Law Dome (Etheridge

et al., 1998) where uncertainties are estimated to be 5 ppb, so R =
�
52
�
. The Law Dome

measurements are averaged where there are multiple concentrations in one year to give a

single value. They are shifted so that they represent global mean rather than southern

hemisphere levels, using the global mean CH4 estimated by Etheridge et al. (1998) from
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Greenland and Law Dome measurements. The lifetime of CH4 in the atmosphere used

in the calculations is that used by Etheridge et al. (1998), 8.1 y for the pre-industrial

with a linear increase from 8.1 y in 1800 to 9 y in 1996. The CH4 lifetime is believed to

have increased due to a decrease in global mean OH concentration caused by increases in

tropospheric O3, NOx, CO and hydrocarbons (Wang and Jacob, 1998). Figures 5.1a and

5.1b show estimates of the state variables (concentration is shown in ppb rather than Tg

for comparison with the observations). A time step of 1 year is used and the model often

evolves for a number of time steps in a row without comparison with new data. The step

form of the curves and saw-tooth-like structure of the uncertainties show how the state

and covariance evolve by the evolution equation until a new observation becomes available.

The state is then `corrected' to give a better �t to the observation, with the size of the

correction depending on the mismatch, and on the uncertainty in both the predicted state

at the current time and the observation. The state uncertainty is lowest immediately after

an observation has been used to re�ne the estimate.

5.2.2 Smoothing

An important improvement to the Kalman �lter comes from considering a further step {

�xed interval smoothing. In the Kalman �lter, at each time, t, the estimate of the state

(and covariance) uses only data up to the current time, tk. (This is denoted by xkjk and

Pkjk in the conventional notation of xajb representing the estimate of the state at time ta

using data up to time tb). In �xed interval smoothing, a second pass is performed over the

interval [0,N] so that the estimates at each time depend on all of the data in the interval

(i.e. giving xkjN , PkjN ). Gelb (1974) introduces the smoother as a linear combination of

the forward �lter, x̂k, with covariance Pk that uses data before time tk, and a backward

�lter, x̂bk with covariance Pb
k that uses only data after tk (Fraser and Potter, 1969). This

optimal smoother is given by

xkjN = PkjN [Pk
�1x̂k +Pb

k
�1
x̂bk] (5.14)

PkjN = (Pk
�1 +Pb

k
�1
)�1 (5.15)

where xbk and Pb
k come from running the �lter backwards in time from tN to t0. This is

often referred to as the 2-�lter form of the smoother.
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Figure 5.1: Methane concentration and source over the last 1000 years determined with
the Kalman �lter. a) Methane concentration, where the symbols are Law Dome ice core
measurements (Etheridge et al., 1998) and the solid line is the projection of the con-
centration state variable from the forward pass. b) Estimated source with uncertainty
estimates from the forward pass of the Kalman �lter. c) Methane concentration from the
smoother pass of the Kalman �lter with the ice core measurements. d) Source estimates
and uncertainties from the Kalman smoother.

There are other computational forms of the smoother equations. A method known

as the RTS smoother was developed by Rauch, Tung and Striebel (1965) and is given in

Gelb (1974). It also requires a backward pass over the interval [0,N], but di�ers from the

two-pass �lter in that the backward pass does not involve processing of the observations.

The equations for the RTS smoother are

x̂kjN = x̂k +Ak[x̂k+1jN � ~xk+1] (5.16)

PkjN = Pk +Ak[Pk+1jN � ~Pk+1]A
T
k (5.17)
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where

Ak = Pk�
T
k
~P�1
k+1 (5.18)

x̂N jN = x̂N (5.19)

PN jN = PN (5.20)

In both the 2-�lter and RTS smoother methods, the covariance matrix needs to be

inverted on the backward pass. In some cases, including the CO2 and �13C application to

be considered here, this can be a problem. Bryson and Frazier (1962) gave a third method

for smoothing (often referred to as the Bryson-Frazier smoother) which does not require

inversion of the covariance matrix. They were in fact the �rst to present a method for

�xed-interval smoothing. Bryson and Frazier formulated the problem for the continuous

case as a two point boundary value problem using calculus of variations. Cox (1964)

gave the discrete analogue. Derivation of the Bryson-Frazier smoother equations for the

discrete case, and how they relate to the RTS smoother, was also given by Bryson and Ho

(1975), and is briey described here.

The problem of smoothing for a single timestep over the time interval [t0; t1] is formu-

lated as one of minimising the quadratic

J =
1

2
(x0 � x̂0)TP�1

0 (x0 � x̂0) +
1

2
(w0 � �w0)

TQ�1
0 (w0 � �w0)

+
1

2
(z1 �H1x1)

TR�1
1 (z1 �H1x1) (5.21)

subject to the constraint

x1 = �0x0 +w0 (5.22)

The form of equation (5.21) is quite common, and gives the weighted-least-squares estimate

of the state, x, taking into account the statistics of the stochastic forcing, w and the

measurement, z. The weighting matrices are the inverse covariance matrices, i.e. P�1,

Q�1 and R�1. The minimum for J is found by writing equations (5.21) and (5.22) in

terms of di�erential changes, eliminating dx1 and setting dJ = 0. After manipulations

using the forward �lter equations, x0j1 and P0j1 can be written as

x̂0j1 = x̂0 �P0�
T
0
~P�1
1 (~x1 � x̂1) (5.23)
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P0j1 = P0 �P0�
T
0
~P�1
1 ( ~P1 �P1)[P0�

T
0
~P�1
1 ]T (5.24)

which are the RTS equations.

By de�ning �0 and �0 as

�0 � ~P�1
1 (~x1 � x̂1) = �HT

1 (H
T
1
~P1H1 +R1)

�1(z1 �H1~x1) (5.25)

�0 � ~P�1
1 ( ~P1 �P1) = HT

1 (H1
~P1H

T
1 +R1)

�1H1 (5.26)

which use the Kalman �lter equations ((5.5), (5.7) and (5.8)), equations (5.23) and (5.24)

can be written as

x̂0j1 = x̂0 �P0�
T
0 �0 (5.27)

P0j1 = P0 �P0�
T
0 �0�0P0 (5.28)

� and � have the same dimensions as the state vector and state covariance, respectively.

Sequential application of these equations backwards in time gives the smoother for multiple

timesteps. A forward sweep using the observations is needed to estimate x̂k and Pk. Then,

with x̂N jN = x̂N and P̂N jN = P̂N the following equations are solved recursively for the

smoother solution

x̂kjN = x̂k �Pk�
T
k �k (5.29)

�k�1 = (I�PkSk)
T [�T

k �k �HT
kR

�1
k (zk �Hk~xk)]; �N = 0 (5.30)

PkjN = Pk �Pk�
T
k�k�kPk (5.31)

�k�1 = (I�PkSk)
T�T

k�k�k(I�PkSk) + Sk(I�PkSk); �N = 0 (5.32)

where

Sk = HT
kR

�1
k Hk (5.33)

Although the Bryson-Frazier smoother has the advantage of avoiding matrix inversion, a

disadvantage of the method is that it involves taking di�erences of matrices that may be

large (Bryson and Ho, 1975).
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� is an auxiliary variable for the calculation. The smoother avoids inverting the co-

variance matrix by instead propagating � backwards in time, where � has the following

mathematical interpretation

�k = P�1
k+1jk(x̂k+1jN � x̂k+1jk) (5.34)

(Meditch, 1973). This smoother has some similarities to the adjoint method, which also

propagates information backwards in time. The physics of the adjoint model are repre-

sented by �T (Wunsch, 1996, p130; Errico, 1997), and give the sensitivity of model output

to input (e.g. sensitivity of concentrations to sources for the trace gas problem (Kamin-

ski et al., 1999)). In fact, the Kalman �lter/smoother and the adjoint method produce

identical results for linear models (Wunsch, 1996, p380).

When the value of a constant is estimated with the Kalman �lter and smoother, (i.e.

where the evolution of a state variable has only a 1.0 on the diagonal and the relevant

term in Q is zero), the smoother doesn't change the value from the �lter estimate at the

�nal time, as the �lter has already used all data (i.e. x̂kjN = x̂N jN ). Such models are

termed `non-smoothable'.

Figures 5.1c and 5.1d show estimates from the smoother pass for the methane ice core

case. The step-like structure of the forward pass is no longer apparent, and estimates

of the time variation of the sources look more realistic. The uncertainty on the source

estimate is greatest midway between data points, as would be expected.

5.2.3 Extended Kalman �lter

The Kalman �lter and smoother equations given above apply for linear models, but the

equations that will be developed for CO2 and �13C are nonlinear. The Extended Kalman

�lter (Young, 1984, Sec. 9.2; Gelb, 1974, Sec. 6.1; Jazwinski, 1970, Sec. 8.3) is an algorithm

for nonlinear systems that is developed by linearising the model equations and is very

similar in application to the linear Kalman �lter. The nonlinear model is de�ned by

dxk
dt

= f(xk;uk; k) +wk (5.35)

zk = h(xk; k) + vk (5.36)

where f and h are known functions. For n state variables and m observations, f has n

equations, each one giving the evolution equation of one state variable as a function of
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all state variables, and h has m equations, each one giving the projection of all state

variables onto each observation. The Extended Kalman �lter is derived by linearising

equations (5.35) and (5.36) about the calculated Kalman �lter trajectory, i.e. the current

state estimate at each time. The state is propagated in time using the nonlinear equa-

tion (5.35), and the innovations in equation (5.5) are calculated by �k = zk � h(xk; k).

Partial derivative matrices (Jacobians) are constructed to give the following evolution and

projection matrices

� =

2
6666666664

@f1
@x1

@f1
@x2

: : :

@f2
@x1

@f2
@x2

: : :

:

:

:

3
7777777775

H =

2
6666666664

@h1
@x1

@h1
@x2

: : :

@h2
@x1

@h2
@x2

: : :

:

:

:

3
7777777775

(5.37)

where @fi=@xj is the derivative of the evolution equation for xi with respect to xj and

@hi=@xj the derivative of the projection equation for observation i with respect to xj.

These matrices are used in the linear Kalman �lter equations ((5.4), (5.6) and (5.7))

and change with time as the state changes. The covariance of the deviation of the state

from a reference trajectory is approximately equal to the covariance of the state, provided

the state deviations are small (Jazwinski, 1970). The Linearised Kalman �lter is essen-

tially the same as the Extended Kalman �lter, except that the linearisation is about a

pre-computed trajectory. It would depend on the application whether the Linearised or

Extended Kalman �lter would be best suited.

The smoother equations described in the previous section were all for the linear case.

Extension of these smoothers to the nonlinear case needs to be addressed for the nonlinear

CO2 and �
13C case. Gelb (1974) describes application of the two-�lter and RTS smoothers

to nonlinear problems. Cox (1964) gave a linearised version of the Bryson-Frazier smoother

equations that closely resemble the equations for the linear case. The linearised Bryson-

Frazier smoother involves solving the same equations as for the linear case, but with �

and H given by equation (5.37) and with equation (5.30) replaced by

�k�1 = (I�PkSk)
T [�T

k �k �HT
kR

�1
k (zk � h(~xk; k))]: (5.38)

This method will be used for the nonlinear CO2 and �13C calculation.
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There are many more variations to the Kalman �lter than those mentioned here, and

the best one for a particular application will depend on its constraints. For example,

some applications are run in real-time, so that each state estimate is calculated before

observations at later times become available. In the case of ice core analysis, all of the

observations are available before processing begins, so it makes sense to use all observations

for state estimates at all times via the smoothing techniques. Other applications are run

in `real time', such as controlling the ight of an aeroplane, where fast, e�cient algorithms

are essential. Fast processing is not a particular requirement for the analysis of the ice

core data.

5.3 Previous applications of Kalman �ltering to trace gas

studies

The Kalman �lter has been applied to a wide range of problems in science and engineering,

including some applications to trace gas studies. Surendran and Mulholland (1986; 1987)

analysed variations in the Mauna Loa CO2 record using the Kalman �lter. In Surendran

and Mulholland (1986) they modelled concentrations as an exponential increase with a

sinusoidal oscillation for the annual cycle, and tried to estimate atmospheric CO2 concen-

tration and the airborne fraction. They used adaptive �ltering (adaptive �ltering involves

using the statistics of the innovations to test for optimality and estimate Q and R if

these are unknown; see Section 5.4) to estimate Q, where the stochastic noise term rep-

resented inaccuracies in modelling Mauna Loa CO2 by the evolution equation. Surendran

and Mulholland (1987) used adaptive �ltering to estimate the precision and accuracy of

CO2 measurements (i.e. they estimated the measurement noise covariance, R), where CO2

variation was modelled as an exponential increase with periodic components for the sea-

sonal cycle and an autoregressive model of order 2 for quasiperiodic behaviour. Enting

(1989a) also modelled Mauna Loa CO2, with two di�erent models (a constant airborne

fraction and a mean lifetime for fossil CO2), but without a stochastic forcing component

(i.e. Q = 0).

Enting (1989b) applied the Kalman �lter to the deconvolution of CO2 since 1800 using

measurements from Mauna Loa and the Siple ice core record. Ocean uptake was modelled

in terms of a response function with a single lifetime, and the net biotic ux was estimated

158



from the CO2 data. The state had 2 components { the biotic ux and the perturbation to

CO2 concentration from pre-industrial levels. wk acted as the stochastic forcing for the

biospheric ux, giving a random walk model for ux evolution as in the methane example

already described. The Kalman �ltering analysis of ice core measurements in this chapter

builds on this work by Enting (1989b).

Mulquiney et al. (1995) investigated the use of the Kalman �lter with a random walk

model for deducing uxes of greenhouse gases with ux evolution modelled as

xk = xk�1 +wk (5.39)

They concluded that the random walk model is able to handle typical features of actual

ux evolution, and that used with the Kalman �lter had reasonable prospect of success,

as long as the dynamical relation between uxes and measured concentrations could be

adequately modelled.

The Kalman �lter has been used in a number of studies to predict the atmospheric

lifetime or sources of CFCs. One such early study was Cunnold et al. (1983). More

recently, Hartley and Prinn (1993) looked at using the Kalman �lter to deduce the spatial

distribution of sources from concentration measurements. They used CFC-11 (CFCl3)

because the sources are relatively well known. Their state vector contained emissions from

5 source regions, and they used observations of concentrations at 5 sampling sites. A 3-d

chemical transport model was used to relate concentrations and emissions. Their method

consisted of running the transport model for one month with the current source estimate,

comparing calculated concentrations with observations, and updating the emissions using

the mismatch in concentrations in the Kalman �lter equations. Rather than putting the

full 3-d model equations into the Kalman �lter, a Jacobian (a partial derivative matrix,

containing the response at each observation site to the source in each source region) was

generated by the 3-d model and used in the Kalman �lter. This is, in e�ect, how the

Extended Kalman �lter is implemented. The calculation was �rst run with pseudo-data

(model generated data, so that it could be assumed that the transport was perfectly

represented by the transport model), then with real data. They had no stochastic forcing

term, i.e. Q = 0, so the method estimated constant sources.

Haas-Laursen et al. (1996) extended the work of Hartley and Prinn (1993) to test

deduction of time-varying sources. They had no stochastic forcing, but used an adaptive
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�lter, where the covariance matrix was reset to its initial value when the calculated mix-

ing ratio began to diverge from the observations. They also used an adaptive-iterative

method, where the adaptive �ltering method was iterated until the change in emissions

from one timestep to the next was su�ciently small. Mulquiney and Norton (1998) and

Mulquiney et al. (1998) also looked at deducing time-varying sources of CFC-11, but used

the random walk model for source evolution. Like Hartley and Prinn, they �rst tested

their model on pseudo-data, then applied it to real observations. The values they used

in R were signi�cantly greater than the actual noise in the measurements because they

wanted to reduce the variability in the emission estimates. Their Q had nonzero values

for both source and concentration components, with smaller values for the sources than

concentrations, again to ensure smoothness of the estimated sources.

As well as global source distributions, the Kalman �lter has been applied to deducing

regional (limited area) source distributions. Mulholland and Seinfeld (1995) applied the

Kalman �lter to estimation of carbon monoxide emissions for the Los Angeles Basin.

Stijnen et al. (1997) estimated methane emissions over Europe. There are a number

of complications associated with atmospheric transport that are important for spatial

inversions but are (fortunately) not relevant to the ice core analysis. Examples of these

include the time delay for a source component to reach an observation location, and the

fact that the concentration is a�ected by sources on a wide range of spatial and temporal

scales.

5.4 Choosing Q for ice core analysis

The Kalman �lter results depend quite heavily on the covariance of the stochastic forcing,

Q, so the choice of suitable values is very important. The form of Q has already been

de�ned for the ice core applications to give random walk variation for the source com-

ponent, however it is not obvious what the magnitude of this variation (speci�ed by the

elements of Q) should be. Choice of Q will be guided by both the physics of the system

(using estimates of how much the source varies from year to year, with some account made

for the smoothing of the atmospheric record by the �rn and ice core processes) and the

statistics (by ensuring that the Kalman �lter assumptions are satis�ed). If Q is too small

then the state variables can't vary enough to adequately match the time variations in the
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data, and if it is too big then the state varies too much and the Kalman �lter may track

noisy data too closely. The measurement noise covariance, R, also speci�es how closely

the �lter �ts the observations. The quantity Q=R is actually what is important, more

than the values of either Q or R individually.

It is worth pointing out that, in a way, the interpretation of Q (and w) used here

di�ers slightly from that in most applications of the Kalman �lter. Many applications

use Q for model error, for example in numerical weather prediction the model error is

the error in the predicted state due to the model not perfectly representing the real world

(Dee, 1995). The interpretation used here is that Q describes source variability. Whether

the interpretation of Q is source variability or model error, it still describes the inability

of the deterministic model to predict into the future. In the source case, we don't even

try to model the source variation in the deterministic part of the model. Probably the

main di�erence between the two interpretations is that in the source case we are actually

very interested in the variation described by Q, while in most other applications it is

treated more as a nuisance, i.e. the prior model is purely `stochastic', not `deterministic

with stochastic errors'.

The simple CH4 example shown in Figure 5.1 uses no deterministic forcing, and

qsrc = 20 Tg yr�1 in equation (5.12) to give

Q =

2
4 0 0

0 400

3
5 (5.40)

qsrc needs to account for variation in the source from one timestep to the next. qsrc =

20 Tg yr�1 was chosen to allow the source to change by about 200 Tg over 150 years, by

a sequence of 150 independent annual changes of rms value qsrc, where qsrc
p
150 = 200,

giving a value for qsrc of around 20 Tg yr�1. This gives quite large uncertainties on the

predicted pre-industrial source, because the year-to-year variation required to model the

anthropogenic source in the random walk model is much greater than would be expected

for natural variation in the sources.

The sequence of innovations (�k = zk�Hk~xk) can tell us a lot about the statistics of the

Kalman �lter and whether its assumptions are being satis�ed. The innovation sequence can

also be used to estimate the appropriateQ and R using an adaptive Kalman �lter (Mehra,

1970). For an optimal �lter, the innovation sequence is a realisation of a Gaussian white
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Figure 5.2: Sequence of innovations for the methane calculation. a) qsrc = 20, (correspond-
ing to Q= 400 (Tg yr�1)2), no deterministic forcing, b) qsrc = 20 Tg yr�1, deterministic
forcing, c) qsrc = 7 Tg yr�1, no deterministic forcing, d) qsrc = 7 Tg yr�1, deterministic
forcing.

noise sequence and therefore has zero mean (Mehra, 1970). The innovation covariance

is given by equation (5.9). The optimality of a Kalman �lter can be tested using the

statistics of the innovations. Figure 5.2a shows the innovations for the CH4 example with

qsrc = 20 Tg yr�1. As the source has quite di�erent characteristics in the pre-industrial

and industrial periods, these 2 periods will be considered separately, with the boundary

taken to be 1750. The solid lines in Figure 5.2a show the average of the innovations for

the two periods. The mean for the pre-industrial is close to zero. For the industrial period

the mean is slightly positive (5.4 ppb) due to the continually increasing source.

The Kalman �lter may perform better if the anthropogenic source of CH4 is speci�ed as

a deterministic forcing. This should reduce the size of the steps needed by the random walk

model and therefore reduce the uncertainties on the calculated sources, as well as shifting
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the mean of the innovations closer to zero. The deterministic forcing is unfortunately

not well known for CH4, but the general form of the source increase can be seen from

the previous calculation. It is due to a number of anthropogenic activities, including rice

production, livestock, land�ll, biomass burning and coal mining. The methane calculation

is repeated with a deterministic source component set proportional to estimated global

population, with

uk = 400� P (tk)� P (1750)

P (1990) � P (1750)
(5.41)

where the source changes by about 400 Tg yr�1 from 1750 to 1990 and P (tk) is the

population at time tk. A simple curve from Demeny (1990) is used for the population,

and the long term increase of the anthropogenic source is actually captured quite well in

this way. The innovations for the calculation with the deterministic source proportional

to population (and qsrc = 20 Tg yr�1) are shown in Figure 5.2b. The innovation mean

for the industrial period is closer to zero (�0:9 ppb) with the deterministic forcing than

without, although for this value of qsrc the model is alright without deterministic forcing.

Another important test of the Kalman �lter can be performed by looking at the co-

variance of the innovations. One way to test this is using the �2 (chi-squared) test, where

�2
k = (zk �Hk~xk)

T
�
Hk

~PkH
T
k +Rk

��1
(zk �Hk~xk) (5.42a)

= �Tk �
�1
k �k (5.42b)

is calculated for each observation. The calculated �2 is compared with the �2 statistical

distribution to see whether the measured (zk) and predicted (Hk~xk) concentrations have

the same statistical distributions. With one degree of freedom, the mean of the calculated

�2 should be 1 (Tarantola, 1987, p211), although as there are only a relatively small num-

ber of observations, the mean is not expected to be exactly 1. Figure 5.3 shows �2 for the

CH4 calculation with deterministic forcing and 4 di�erent values of qsrc. With qsrc = 7 Tg

yr�1 the mean �2 is very close to 1 for the industrial period. Figure 5.2c and 5.2d show the

innovations for qsrc = 7 Tg yr�1 with and without deterministic forcing. The innovation

mean is further from zero (7.3 ppb) with this value of qsrc and no deterministic forcing than

in the original calculation. Based on the means of �2 and the innovations, qsrc = 7 Tg yr�1

is chosen for the methane calculation over the industrial period. Further analysis should
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Figure 5.3: Sequence of chi-squared for the methane calculation for di�erent values of Q.
A deterministic input proportional to population is used in these calculations.

be done to ensure that the value of Q suggested by the statistics is physically reasonable.

This will not be done for methane, but will be investigated in detail for CO2 and �13C.

The value of �2 at di�erent times through a calculation can hold information about

di�erent aspects of the Kalman �lter. According to R. M�enard (pers. comm., 1998), if

�2 is far from 1 initially, then the initial state covariance is probably wrong. If �2 is

translated relative to 1 then the data error (R) is probably wrong and if �2 varies linearly

with time then the model error (Q) is probably wrong. This type of analysis of �2 is

useful for applications with a large number of observations at each timestep. The CH4 ice

core example is quite di�erent, having only 84 measurements spread over 1000 years. A

translation in �2 has been interpreted here in terms of Q, rather than R as suggested by

R. M�enard (pers. comm., 1998). For trace gas studies it is often fairly easy to estimate the

uncertainty in the concentration measurement, and it is the ratio of Q to R that controls

the smoothing in the Kalman �lter, more than either Q or R on their own.
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There are other ways of testing the innovations that are essentially equivalent to the

�2 test. For example, the `Jazwinski �lter' (Jazwinski, 1969; 1970) is an adaptive �lter

that estimates Q as the calculation proceeds using feedback from the innovations. With

Qk = qkI, qk is estimated by

q̂k =

8<
:

�2
k+1

�(H~PHT+R)

HHT if positive

0 otherwise
(5.43)

Comparison of �2� (H~PHT +R) with zero is equivalent to comparing �2 to 1 in the chi-

squared test. When this quantity is negative, the innovations are within their standard

deviation and the �lter is acceptable. When it is positive, the �lter is diverging and the

state covariance needs to be increased (via Q) so that it is open to new observations.

Estimation of Q with equation (5.43) requires a large number of observations at each

timestep for good statistics, and is therefore not suitable for the ice core application. The

adaptive �lter used by Haas-Laursen et al. (1996) to deduce CFC-11 sources operates in

a roughly similar way to the Jazwinski �lter. They reset the covariance to its initial value

when an inconsistency is detected, rather than estimating the Q that needs to be added to

the covariance. The random walk model for source variation with �2 used to help choose

Q, as described above, seems like a better approach for source deduction problems than

the adaptive �ltering method for tracers like CH4 or CO2 whose sources are continually

varying due to anthropogenic inputs and climate variation.

Choice of Q requires consideration of the source variation for the relevant time scale

(e.g. annual, decadal or century). An important aspect of the ice core data is that there

are large gaps in the record. Taking account of the smoothing due to �rn processes, the ice

core measurements would be capable of giving information about the source on decadal

time scales if they were sampled regularly enough throughout the record. However, with a

data density of roughly one observation every 50 years through the pre-industrial period,

decadal variations are obviously not resolvable. The best that can be hoped for is to resolve

century time scale source variations. �2 over the pre-industrial period has values that are

much closer to zero than 1 for the values of Q shown in Figure 5.3. In the forward pass of

the Kalman �lter, the source uncertainty at the end of a large data gap is large, and the

observation uncertainty small, so it is easy for the Kalman �lter to �t the model to the

observation, and �2 is consequently small. For qsrc = 1 Tg yr�1, the mean �2 for the pre-
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industrial is 0.72 and the uncertainty on the source is fairly small. The reduced uncertainty

reects the fact that century time scale variations can be determined more accurately than

decadal variations with this data density (see Figure 5.4 in the next section). Knowledge

of the amount of variation that occurs in the source on annual, decadal and century time

scales is very important. Between 1000 and 1700 AD, the methane source varies by only

a small amount away from equilibrium, and the annual, decadal and century variations

are probably fairly similar. In a sense, the value of Q chooses the time scale that will be

resolved by the model. A small Q won't allow the model source to vary enough to give

the short time scale variations. For example, qsrc = 1 Tg yr�1 would allow the source to

vary on the order of 10 Tg yr�1 over 100 years, but only around 3 Tg yr�1 in 10 years.

The uncertainties on the uxes are smaller for longer time scales.

The methane model described here, with a single source component, tries to model

source variation on a range of time scales with a single value of Q. Other variations for

the source model are possible. For example, the source could be split into 2 components

(state variables), with one slowly-varying source component that can be estimated quite

accurately (say, century time scale variations), and a rapidly-varying component that is

not resolvable and is treated as a nuisance variable (e.g. decadal variations, which are

not resolvable in the pre-industrial period due to the low data density). Each source

component could have a di�erent Q, and di�erent values in the evolution matrix (the

rapidly varying component might have a value less than 1.0 in the evolution matrix, so

variations in this component decay away between data points). This, or any other source

model con�guration, should be tested by considering the innovations and the physics.

5.5 Discussion of methane results

Etheridge et al. (1998) gave a detailed discussion of the interpretation of the Law Dome

methane ice core record. Only a very brief discussion of the modelling results is given here,

as the main focus is on CO2 rather than CH4. Methane has been used to demonstrate

use of the Kalman �lter for interpreting ice core measurements, and in particular the

importance of Q.

The calculation assumes that the atmospheric lifetime of methane varies as described

in Section 5.2.1. Estimates of the lifetime vary quite considerably, and Etheridge et al.
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Figure 5.4: Methane concentration and source over the pre-industrial from the Kalman
�lter for a) and b) qsrc = 7 Tg yr�1 and c) and d) qsrc = 1 Tg yr�1. Uncertainties on the
source estimates and concentration measurements are shown.

(1998) show the sensitivity of the calculated source to assumed lifetime. The calculated

methane source also includes a soil sink of perhaps 10 Tg yr�1 (Etheridge et al., 1998).

Figure 5.4 shows the calculated methane concentration and source between 1000 and 1800

for qsrc = 7 Tg yr�1 and qsrc = 1 Tg yr�1. Uncertainties are plotted for the concentration

measurements. The source is low during the Little Ice Age, roughly 1550{1750, as well as

between about 1250{1450. The two calculations have very similar variations on century-

time scales, but the qsrc = 1 Tg yr�1 case smoothes more than the qsrc = 7 Tg yr�1 case,

and has smaller source uncertainties.

Figure 5.5 shows the results for 1800-1996. Uncertainties in concentration measure-

ments (5 ppb) are shown, but are smaller than the plotting symbols. Estimates of methane

sources are very similar to those calculated by Etheridge et al. (1998) from a spline �t

to the measurements, as expected because the same variation in atmospheric lifetime is

used. A major feature of CH4 in recent years has been the decrease in the growth rate of
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Figure 5.5: Methane concentration and source since 1800 from the Kalman �lter. Uncer-
tainties on the concentrations are shown. The calculation uses qsrc = 7 Tg yr�1.

atmospheric concentration (Steele et al., 1992). The source calculated with the Kalman

�lter is roughly constant from 1985-96, rather than increasing with time as it has done

since about 1850. Francey et al. (1999b) used �13CH4 since 1978 from the DE08-2 �rn

and the Cape Grim Air Archive to look at the methane growth rate decrease with a 4 box

model. They concluded that both CH4 and �13CH4 are consistent with constant sources

since 1978, and that methane is coming to a new equilibrium.

The methane calculations presented here have been valuable for demonstrating and

testing application of the Kalman �lter technique to ice core records, but they stop short

of really adding much to the understanding of the methane budget. Further understanding

of methane should come from interpreting the variation of �13CH4 and CO as well as CH4

over this century, for example using measurements from the DSSW20K �rn, and perhaps

treating the northern and southern hemispheres separately. Based on the results so far,

the Kalman �lter would probably be a suitable modelling framework to do this, perhaps

with both stochastic and deterministic forcing.
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5.6 CO2 and �
13C: atmospheric pulse response functions

5.6.1 Model formulation

Application of Kalman �ltering to CO2 and �13C requires equations for the evolution of

the state. Taking CO2 �rst, uptake by the ocean can be written using a response function,

R(t), that is the sum of exponentials (Enting and Mansbridge, 1987; Maier-Reimer and

Hasselman, 1987; Enting et al., 1994). For a time-varying source, S(t), that is zero for

t < 0, the concentration C(t) is given by

C(t) = C(0) +

Z t

0
R(t� t0)S(t0)dt0 (5.44)

where the response function, R(t�t0), describes how a pulse of CO2 is taken up by exchange

with the ocean. The BDM (with the parameters calibrated for the single deconvolution

in Chapter 4) gives a CO2 pulse response, shown in Figure 5.6a, that can be written as

R(t) = 0:128 + 0:3398e�t=2:315 + 0:2372e�t=25:23 + 0:295e�t=199:4 (5.45)

Enting (1989b) applied the Kalman �lter to CO2 using a single exponential. An important

advantage of specifying the response function as a sum of exponentials is that the model

can be put into a simple autoregressive (AR1) form by considering a number of atmospheric

carbon `pools' with di�erent `lifetimes' (Wigley, 1991). For R(t) given by equation (5.45),

a source of carbon to the atmosphere would be distributed amongst the 4 `pools' using

the coe�cients 0.1280, 0.3398, 0.2372 and 0.2950, and the pools would have lifetimes of

1, 2.315, 25.23 and 199.4 years, respectively. For the Kalman �lter implementation, the

state variables correspond to the amount of carbon in each of the `pools'.

For extension to �13C, a simplistic approach of using the BDM to calculate a response

function for �13C in ‰ due to a pulse of CO2 will be used. Characterising the behaviour

of �13C in the atmosphere in this way is certainly not guaranteed to work very well,

particularly because atmospheric �13C in ‰ is not a conserved quantity. In fact, expressing

CO2 in terms of atmospheric response functions is also not perfect, because the response

functions depend weakly on the level of CO2 in the atmosphere (Joos et al., 1996). This

simple model will, however, be shown to be quite valuable. Figure 5.6b shows atmospheric

pulse responses for �13C from the BDM corresponding to a pulse of 1 GtC of biotic and
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Figure 5.6: Pulse responses from the box di�usion model for a) CO2 and b) �13C. The
response functions are calculated with the model parameters used in Section 4.4 by putting
1 GtC into the atmosphere.

oceanic CO2. The response function for �13C due to CO2 from the biosphere is

Rb(t) = �0:00072 � 0:03938
h
0:7575e�t=2:236 + 0:2153e�t=22:18 + 0:0272e�t=5681

i
(5.46)

and from the ocean

Ro(t) = �0:00028 � 0:00352
h
0:7341e�t=2:236 + 0:1854e�t=22:18 + 0:0805e�t=5681

i
(5.47)

The two �13C response functions have the same set of `lifetimes', but di�erent coe�cients,

so that �13C from either the biosphere or the ocean can be added to the same `pools', in

di�erent proportions depending on its origin. The decay is much faster for �13C than for

CO2, as has been discussed in Section 2.5. The aim of using �13C as well as CO2 is to

partition uptake into oceanic and biotic components.

The equations for this model will be described with 2 state variables each for CO2

and �13C, although the calculations will have 4. There is one state variable for the net

biospheric ux, and one for the net oceanic ux. The state is de�ned as

x =

2
6666666666664

C1

C2

�1

�2

ocn

bio

3
7777777777775

(5.48)
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The evolution matrix is

� =

2
6666666666664

e��t=�1 0 0 0 �t a1e
��t=2�1 �t a1e

��t=2�1

0 e��t=�2 0 0 �t a2e
��t=2�2 �t a2e

��t=2�2

0 0 e��t=�3 0 �t b1e
��t=2�3 �t c1e

��t=2�3

0 0 0 e��t=�4 �t b2e
��t=2�4 �t c2e

��t=2�4

0 0 0 0 1 0

0 0 0 0 0 1

3
7777777777775

(5.49)

where �1 and �2 are the CO2 `lifetimes', �3 and �4 are the �13C `lifetimes', and the ai, bi

and ci are the coe�cients for CO2, biospheric �
13C and oceanic �13C, respectively. (For

example, b1 = �0:03938 � 0:7575.)

Deterministic forcing, u, has one component, corresponding to the fossil fuel source.

This gives

u = [foss] (5.50)

and

G =

2
6666666666664

�t a1e
��t=2�1

�t a2e
��t=2�2

�t d1e
��t=2�3

�t d2e
��t=2�4

0

0

3
7777777777775

(5.51)

where the di are the �13C response function coe�cients for a pulse of fossil fuel CO2.

The source due to land-use change could also have been included as a component of the

deterministic forcing.

The projection matrix for CO2 and �13C observations is

H =

2
4 1 1 0 0 0 0

0 0 1 1 0 0

3
5 (5.52)

Part of the ocean uptake of CO2 and �13C is modelled by the response functions, so

the source state variables give the remaining net ocean and biospheric uxes required to

match CO2 and �13C.
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5.6.2 Q based on �rn smoothing

The values of the stochastic forcing covariance (Q) for this calculation can be chosen based

on a �rn model calculation to quantify the CO2 variations that survive smoothing due to

the �rn di�usion and trapping. A CO2 record with typical annual variations was created

using annual mean CO2 concentrations from Mauna Loa between 1959 and 1995 (Keeling

and Whorf, 1998). This 37 years of data, with the mean trend taken out, was added to

the long term CO2 increase from Law Dome between 1900 and 1995, with the Mauna Loa

record repeated until the 95 years were covered (solid line in Figure 5.7a). The �rn model

was run for DE08 with this CO2 record, giving the dashed line in Figure 5.7a. The year-

to-year changes in concentration (in ppm) for the original and �rn-modelled records are

shown in Figure 5.7b. The year-to-year concentration changes at Mauna Loa are assumed

to be of similar magnitude to the annual variations in global CO2. The calculation was

also run for the Mauna Loa variability without the Law Dome record (Figure 5.7c and

5.7d) to separate this from the variation due to the long term change. The year-to-year

variations in the �rn-smoothed concentrations are, as expected, much smaller than the

variations in the original record. The maximum change in the �rn-smoothed record is

about 0.45 ppm over 10 years (around 1960 in Figure 5.7d). With 1 GtC = 0.47 ppm,

this implies qsrc = 0:45=0:47=
p
10 = 0:3 GtC yr�1 in a random walk model. Other

parts of the record give values for qsrc up to about this value. Based on this, a value of

Q = 0:1 (GtC yr�1)2, corresponding to qsrc =
p
0:1 = 0:316 GtC yr�1, seems reasonable.

This quanti�es the variation that remains in the CO2 record after smoothing due to the

�rn processes.

A similar calculation for �13C also supports the use of 0.1 (GtC yr�1)2 for the biospheric

ux. A consistent CO2 and �
13C record was created by running the annual CO2 deviations

shown by the solid line in Figure 5.7d (converted to GtC) as the land-use change ux (i.e.

to/from the long-lived biospheric box) in a forward calculation of the BDM. The fossil fuel

source was also used. The calculated CO2 and �13C were then run in the �rn model. The

solid line in Figure 5.7e shows the �13C input to the �rn model, and the short-dashed line

shows the output �13C calculated with the 12C di�usion coe�cient, D12, used for both

the 13C and 12C tracers (OUTPUT1). This shows the smoothing without the e�ect of

the di�erent di�usion rates of 12C and 13C. �13C was also calculated with D13 used for
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Figure 5.7: a) CO2 record created by adding deviations of annual mean CO2 concentrations
from a linear increase at Mauna Loa to the Law Dome ice core record (solid line). The
dashed line shows this record as it would be trapped in ice, determined with a �rn model
calculation for DE08. b) Year-to-year di�erences in CO2 concentration (in ppm) for the 2
curves shown in a). c) Same as in a), but with just the Mauna Loa deviations from linear
(i.e. without the Law Dome record). d) Year-to-year di�erences for curves in c). e) �13C
atmospheric and �rn-smoothed records. f) Year-to-year �13C di�erences. Dashed lines in
e) and f) show the �rn model output calculated when the solid line is used as input.

the 13C tracer (OUTPUT2), and then corrected for di�usion with a di�usion correction

calculated with OUTPUT2 and �rn-smoothed CO2 used in the �rn model. The corrected

record is shown by the long-dashed line in Figure 5.7e. (The di�erence between OUTPUT1

and the corrected OUTPUT2 occurs because the di�usion correction was calculated with

smoothed CO2 instead of the `real' atmospheric CO2 history. This is how the correction
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is applied in reality (see Section 3.7.2) and the di�erence it makes is quite small.) The

year-to-year di�erences for the 3 �13C curves are shown in Figure 5.7f. The maximum

changes in the �rn-smoothed records are about 0.004 ‰ yr�1 over 6 years or 0.017 ‰

yr�1 over 15 years. With 1 GtC = 0.47 ppm and assuming 1 ppm = 0.05 ‰ for biospheric

exchange (see Section 2.5), the annual changes required in a random walk model would

be 0:004=0:05=0:47=
p
6 = 0:0695 =

p
0:005 GtC yr�1 for the change over 6 years and

0:017=0:05=0:47=
p
15 = 0:187 =

p
0:035 GtC yr�1 for the change over 15 years. Based

on these calculations, qsrc =
p
0:1 GtC yr�1 (Q = 0:1 (GtC yr�1)2) will be used for

both the oceanic and biospheric source components in the Kalman �lter. Of course the

rate of change of CO2 and �13C in the �rn-smoothed record depends very much on the

input record, but the intention with these calculations was to use inputs that reect real

atmospheric variations.

5.6.3 Results

Figure 5.8 shows the Kalman �lter results for this model con�guration (with the 4-term

response functions). The net ocean ux is the sum of the oceanic ux state variable and the

uptake given by the response functions. The biospheric ux is the total net ux between

the atmosphere and the biosphere (i.e. including land-use change, fertilisation, variations

due to climate and anything else). The Kalman �lter result can be tested relative to the

BDM which was used to generate the pulse response functions by running the deduced

sources in the BDM. This tests how well the pulse response functions represent the carbon

cycle, and is particularly important for �13C. Comparison of the CO2 and �13C from the

BDM and the Kalman �lter output is shown in Figure 5.9. Over the industrial period there

is a gradual divergence of the Kalman �lter output from the BDM output, ending up with

a di�erence of 1.3 ppm and 0.03 ‰ by 1990 (each around 2% of the total anthropogenic

change). This will cause small errors in the partitioning of uptake over long time scales

with the Kalman �lter. On shorter time scales (e.g. multi-decadal) the Kalman �lter

model captures the variability almost exactly as in the BDM. This is very encouraging,

and perhaps even a bit surprising for �13C.

The innovations and �2 forQ = 0:1 (GtC yr�1)2 are shown in Figure 5.10. Figures 5.10a

and 5.10b show the innovations for CO2 and �13C, with the dashed lines indicating the

data uncertainties given by Etheridge et al. (1996) and Francey et al. (1999a). The solid
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Figure 5.8: CO2 concentration, �13C and deduced sources from the Kalman �lter run
with atmospheric pulse response functions. The uncertainties used were those given by
Etheridge et al. (1996) for CO2 and by Francey et al. (1999a) for �13C. The ice core data
were averaged where there were multiple concentrations in one year.
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Figure 5.9: Comparison of the Kalman �lter output (solid line) and the BDM run with
the sources deduced by the Kalman �lter (dashed line). The Kalman �lter calculation
used the atmospheric pulse response functions.

lines show the average innovations over the pre-industrial and industrial periods. In the

industrial period, the CO2 innovations are generally around or less than the magnitude

of the CO2 data uncertainties, while the �
13C innovations are often greater than the �13C

uncertainties. �2 is plotted for both CO2 and �13C together (5.10c) and separately (5.10d

and 5.10e). (The �2 for CO2 and �13C together, shown in Figure 5.10c, was calculated as

described in equation (5.42) then normalised by the number of degrees of freedom, which

is the number of data items at that timestep, i.e. 2 when there is both CO2 and �13C

data and 1 when there is just CO2 or �
13C.) In the pre-industrial period, �2 in each case

is very close to zero. This is similar to the methane calculation, and occurs because the

state covariance increases in the long data gaps. In the industrial period, the mean �2 for

CO2 is 0.45 and for �13C is 0.71. Q was chosen based on the �rn model calculations and

R used the published measurement uncertainties. Further tuning of these inputs using �2

will be described in Section 5.7.

5.6.4 Source uncertainties

An important feature of the Kalman �lter calculation is that it estimates source uncertain-

ties. The double deconvolution has two deduced source components, i.e. net uxes with

both the ocean and biosphere. As quite di�erent processes control each of these uxes,

they may have di�erent levels of variability as a function of frequency, for example the

biospheric ux may be more variable than the oceanic ux on the interannual time scale

176



1200 1400 1600 1800 2000
Year

-20

-10

0

10

20

in
no

va
tio

n

CO2 innovations

a)

1200 1400 1600 1800 2000
Year

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

in
no

va
tio

n

δ13C innovations

b)

1200 1400 1600 1800 2000
Year

-1

0

1

2

3

4

ch
i-

sq
ua

re
d

chi-squared
c)

1200 1400 1600 1800 2000
Year

-1

0

1

2

3

4

ch
i-

sq
ua

re
d

chi-squared for CO2 
d)

1200 1400 1600 1800 2000
Year

-1

0

1

2

3

4

ch
i-

sq
ua

re
d

chi-squared for δ13C 
e)

Figure 5.10: Innovations and �2 for CO2 and �13C double deconvolution with atmospheric
pulse response functions. Q is 0.1 for both net uxes. a) Innovations for CO2, b) innova-
tions for �13C, c) �2 for both CO2 and �13C, d) �2 for CO2 and e) �2 for �13C.
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(see Section 4.4.3). In addition, even if the level of variability is similar, with the informa-

tion contained in the CO2 and �13C ice core records it may be possible to reconstruct the

variation in one source better than in the other. This is, in fact, fairly likely to be the case,

for the following reason. Broadly speaking, changes in CO2 give the total net ux (ocean

+ biosphere) while �13C gives the biospheric ux. As �13C responds more to short term

changes (e.g. decadal) than CO2 (see Section 4.3.3), it may be that decadal variations in

the biospheric ux are better reconstructed than the total ux or the oceanic ux. On

longer time scales (centuries) the situation is probably the opposite with the total ux

known better than the partition because CO2 is better than �13C at reecting long term

changes (the pulse response functions in Figure 5.6 help illustrate that �13C responds to

short time scales, and CO2 more to long time scales). As for methane, the uncertainties

for long term averages will be di�erent from the uncertainties on short term variations,

but in this case there may also be di�erences between uncertainties in the oceanic and

biospheric components over the di�erent time scales.

The square root of the calculated error variances of the state variables are shown in

Figure 5.11, both over the full time range (left) and after 1850 (right). These standard

deviations give the uncertainties on the state variables, so their evolution through the cal-

culation tells us how well we know the calculated sources (and CO2 and �13C) at di�erent

times. As usual, uncertainties are generally lower near data points and higher between

them. The uncertainty of the total ux (ocean + biosphere) is also calculated, and may

be greater than or less than the ocean and biospheric uxes individually, depending on

whether the error correlation between ocean and biospheric uxes is positive or negative

(as indicated by the o�-diagonal elements of the covariance matrix). The plot of ux un-

certainties from 1850 onwards (Figure 5.11f) shows that (after 1850) the biospheric ux is

known better than the oceanic ux or total ux. The oceanic ux uncertainty is smoother

than the biospheric ux uncertainty, which is low very close to a �13C measurement, but

increases rapidly between measurements. This reects how, for the given Q and R, �13C

constrains the partition better than CO2 constrains the total source at a data point, but

due to the rapid decay of the �13C pulse, the �13C information doesn't extend very far in

time. Similarly, the �13C uncertainty after 1850 (Figure 5.10d) appears more `peaky' than

the CO2 uncertainty (Figure 5.10b). This is not due simply to di�erences in data density,
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Figure 5.11: Calculated uncertainties for CO2, �
13C and the net uxes from the Kalman

�lter double deconvolution with atmospheric pulse response functions.

as it is still seen in a calculation where both CO2 and �
13C have the same data density. The

�13C record has two long gaps of more than 100 years where there are CO2 measurements

but no �13C (1388{1526 and 1571{1691). The plot of ux uncertainties (Figure 5.11e)

shows that the total ux is known better than either the biospheric or oceanic ux in

these long �13C data gaps. On the century time scale, �13C is not as useful at partitioning

as CO2 is at determining the total ux away from measurements. These characteristics

of the error variances are as expected, and quantify the utility of CO2 and �13C data in

the calculation. The ability to perform this kind of analysis on the uncertainties is one

of the important advantages of the Kalman �lter deconvolution over the traditional mass

balance deconvolution.

The ux uncertainties for the last year of the calculation are signi�cantly higher than

in the few years prior to the last year. This can be explained by considering what infor-
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mation constrains the source estimates. Because the source is not `observed', it must be

estimated from changes in the concentrations that are observed. The source in year j is

best determined by comparing concentrations in years j + 1 and j. In this calculation,

however, the source in the last year, j = N , is not able to use the concentration from the

year N + 1. In fact, in the whole forward pass of the Kalman �lter, the source at each

timestep is estimated without the most important piece of information { the concentration

at the next timestep. Use of the Kalman smoother solves this problem, but not for the

source at the last timestep, hence the large uncertainty. The source uncertainty at the �nal

point (and for the whole forward pass) is determined by Q. Without concentration data

at time j + 1, the best estimate of the source at time j will be by evolution of the source

from the previous time, and this adds Q to the source variance. In Rayner et al. (2000,

Section 4.3.1.1), we described a Kalman �lter exercise with annual methyl chloroform data

and a random walk evolution for the source. In this example, even with essentially per-

fectly known data (very small values in R) the uncertainty on the source estimates from

the forward pass are always greater than Q. This illustrates the importance of the Kalman

smoother for applications that estimate sources from concentrations.

The errors on the individual ice core measurements were given by Etheridge et al.

(1996) as 1.2 ppm for CO2 and by Francey et al. (1999a) as 0.025 ‰ for most of the �13C,

with slightly higher values for the remaining points (see Section 3.7.2). The calculations

already described have used these values, and 0.3 ppm for CO2 and 0.02 ‰ for �13C after

1980. The behaviour of the state variable uncertainties for di�erent values of the data

uncertainties will be explored in the next section. Estimates of the deduced sources are

shown with uncertainties in Figure 5.12. Discussion of the sources and their uncertainties

will also be given in the next section, along with the e�ect of the di�erent values of Q.

The main limitation of this model is the incorrect partitioning of uptake of anthro-

pogenic CO2 on the century time scale due to neglected nonlinearities. On time scales

up to about a century the behaviour of the model is (perhaps surprisingly) remarkably

good. Particular advantages of the model are that the equations are linear, and because

the model is relatively simple, the results are easy to understand. Since the partitioning

of uptake on the long time scale is important, a more complete approach will be developed

in the next section.
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Figure 5.12: Deduced sources with uncertainties from the Kalman �lter run with atmo-
spheric pulse response functions and Q = 0:1 (GtC yr�1)2, shown over the full time range
as well as just after 1850.

5.7 CO2 and �
13C: mixed layer pulse response functions

5.7.1 Model formulation

In this section, the double deconvolution calculations described in the previous section are

repeated with a better model of the carbon cycle. There are two main problems with the

model described in the previous section. Firstly, the atmospheric pulse response functions

change as CO2 increases in the atmosphere due to the nonlinearity of carbon chemistry

when CO2 exchanges between the atmosphere and the surface of the ocean. This will

be addressed by using mixed layer pulse response functions (Joos et al., 1996) instead

of atmospheric pulse functions, and modelling the exchange between the atmosphere and

mixed layer explicitly. Joos et al. (1996) gives equations for the decay of a pulse of tracer

in the mixed layer as it mixes into the deep ocean, calculated using a number of ocean

models ranging from a box di�usion model to a 3-d ocean model. These equations can also

apply for the isotopes of carbon, provided the isotopes are expressed in terms of conserved

quantities. The other problem with the previous method is that �13C is modelled in permil,
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which is not a conserved quantity. Instead, �13C will be modelled as an isotopic anomaly,

X = C� �13C (5.53)

in units of GtC ‰. This isotopic anomaly is a conserved quantity (Tans, 1980), and is

approximately 13C concentration. The equations for the evolution of the state are based

on the CO2 and 13CO2 budget equations developed by Tans et al. (1993) and described

in Section 2.5.

As in the deterministic form of the double deconvolution, 13C is modelled in the bio-

sphere and mixed layer only to provide estimates of the isotopic disequilibrium uxes

needed for the 13C budget. The mixed layer response functions from Joos et al. (1996) are

given as sums of exponentials, so are easily used in the autoregressive format described

in the previous section, but now with `pools' of CO2 and the anomaly, X, in the mixed

layer. The biosphere will be modelled essentially as it is in the BDM, with 2 boxes having

the same sizes and gross uxes as those used in Chapter 4. The size of the biospheric

boxes (i.e. the amount of carbon) is kept constant in this calculation, in contrast to the

BDM calculations where net uxes of carbon alter the box sizes. This makes a very small

di�erence to the calculated isouxes (less than 1.5 GtC ‰ y�1 in 1990, compared to an

overall change of about 90 GtC ‰ y�1) but simpli�es the equations considerably.

The state is de�ned as

x =

2
66666666666666666664

Ca

Xa

Xb1

Xb2

Cs1;n

Xs1;n

Bi

Oc

3
77777777777777777775

(5.54)

where Ca is the atmospheric CO2 content in GtC, Xa is the isotopic anomaly in the

atmosphere in GtC ‰, Xb1 and Xb2 are the isotopic anomalies in the short- and long-

lived biospheric boxes in GtC ‰, and Bi and Oc are the net uxes in GtC yr�1. Csi and

Xsi are CO2 and isotopic anomaly components in the mixed layer (in GtC and GtC ‰,
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respectively), and Cs1;n = (Cs1, Cs2, ...., Csn), Xs1;n = (Xs1, Xs2, ...., Xsn) and n is the

number of components (each corresponding to an exponential in the response function).

Equations for the evolution of the state, with state variables shown in bold, are given in

Table 5.1. A description of the constants in the equations, with units and values, is given in

Table 5.2. Isotopic anomalies are all modelled relative to the pre-industrial atmospheric

�13C level, �ainit. Isotopic ratios for the atmosphere, mixed layer and biospheric boxes

relate to the state variables as follows:

�a =
Xa

Ca+Cainit
+ �ainit (5.55a)

�s =

P
kXskP

jCsj +Csinit
+ �sinit (5.55b)

�b1 =
Xb1+Xb1init

Cb1
+ �ainit + "ab (5.55c)

�b2 =
Xb2+Xb2init

Cb2
+ �ainit (5.55d)

The initial �13C in the mixed layer determined by the BDM to be in equilibrium with the

atmospheric value of �ainit = �6:3611 ‰ is �sinit = 2:459 ‰. The di�erence �ainit��sinit =

�8:82 ‰ is close to, but not equal to, the di�erence between the fractionation factors,

"oa � "ao = �8:78 ‰. The Tans et al. (1993) equations suggest that they should be

equal, but these equations specifying the fractionation factors as additive are only an

approximation. The equations in the BDM expressing the fractionations as multiplicative

are more exact, therefore the BDM �sinit value will be used.

The system of equations in Table 5.1 is nonlinear in the state variables. This com-

plicates the situation, and requires use of the Extended Kalman �lter (described in Sec-

tion 5.2.3). Fortunately, though, the equations are not very nonlinear, as variations in the

linearised evolution matrix with time are small and predictable. The number of terms in

the mixed layer response functions given by Joos et al. (1996) is 7 for the box di�usion

model and 6 for the other models. (The equations for the response functions in Joos et al.

are given over 2 time ranges, and the longer one is used in these calculations). Joos et al.

gave the response functions with a large number of terms to ensure that they are accurate

for future projections of CO2, and can handle the substantial increases in CO2 that are

expected in the future. This application doesn't need as many terms as given, because

calculations are only run up to present day CO2 levels. The expressions given by Joos et

al. can be rewritten as 5 term expressions. The advantage of this is to reduce the size of
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Table 5.1: Evolution equations for the double deconvolution with mixed layer response
functions.

value units description

Cainit 283.9 � 2.1276 GtC initial atmospheric CO2 content
Xb1init -18 � 140 GtC ‰ initial anomaly in biospheric box 1
Xb2init -18 � 1400 GtC ‰ initial anomaly in biospheric box 2
Csinit 679 GtC initial mixed layer CO2 content
Xsinit 8.82 � 679 GtC ‰ initial mixed layer anomaly
�B1 76.67 GtC yr�1 gross ux from biosphere box 1 to atmosphere
�B2 23.33 GtC yr�1 gross ux from biosphere box 2 to atmosphere
�BT �B1 + �B2 GtC yr�1 gross ux from atmosphere to biosphere box 1
"ao -2.05 ‰ air-sea fractionation
"oa -10.83 ‰ sea-air fractionation
"ab -18.0 ‰ air-biosphere fractionation
�i Joos et al. yr lifetimes from mixed layer response functions
ai Joos et al. { coe�cients from m. l. response functions
kg Joos et al. yr�1 gas exchange coe�cient
fossil 0.0 { 6.1 GtC yr�1 timeseries of the source due to fossil fuel
�� 24.1 { 28.2 ‰ timeseries of fossil fuel �13C
�ainit -6.3611 ‰ initial atmospheric �13C

Table 5.2: Description and values of many of the constants in the equations in Table 5.1.
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the covariance matrix, P, in the calculation, and the di�erence this makes to the results

of the model is negligible. Even with the smaller number of terms this still gives 16 state

variables. The backward pass of the 2-pass and RTS smoothers require the covariance

matrix from the forward pass (a 16� 16 matrix) to be inverted. The condition number of

the covariance matrix from the forward pass is often larger than 1011, indicating problems

for calculating the inverse. This is mainly due to the size of the matrix, as there are now

many state variables, but is worst at the end of a big gap in the observations, when the

uncertainty on the state estimates (and therefore the elements in P) are greatest. The

Bryson-Frazier smoother equations (Section 5.2.2), which don't involve inversion of the

covariance matrix, are therefore required.

This application of the Kalman �lter uses the �13C data (and their uncertainties)

expressed as isotopic anomalies. The Kalman �lter could also have been set up to include

the �13C data in permil. As �13C in permil is a nonlinear function of the state variables C

and X, the projection equation (equation (5.36)) would need to be linearised as described

in Section 5.2.3. If there were any �13C data without corresponding CO2 it would be

necessary to formulate the model in this way. However, since the ice core record has CO2

wherever �13C is measured, �13C data are used as anomalies.

In a small number of cases there are more than one CO2 or �13C measurement for a

single year. These measurements have been averaged and used in the Kalman �lter with

the original uncertainty. Instead of averaging, all of the measurements could have been

included as data in the Kalman �lter, by altering the projection matrix to allow more

than one measurement of the concentration or �13C for a single time. This would improve

the statistics, and also give a feel for how scattered measurements can be for a single

year. However, since only a small number of times are involved (less than 16 %) this was

not done. If data are averaged, the data uncertainty should be reduced compared with

the original uncertainty (by dividing by the square root of the number of measurements

averaged). The data uncertainties will be altered in Section 5.7.3 to explore di�erent cases,

and this would complicate the calculations so is not done.

The isotopic anomaly in the mixed layer is modelled in order to calculate the isoux,

and as part of that, carbon in the mixed layer (Ca) is calculated. In theory, an estimate

of the air-sea exchange, Fas, could be calculated from the modelled air-sea partial pressure
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di�erence as

Fas = kgCa�
�kgCainit
Csinit

X
k

Csk (5.56)

(where � is the bu�er factor and kg the gas exchange coe�cient) and the state variable,

Oc, would be the additional ocean source required to match the ice core records. The

calculation was initially formulated in this way, but then changed for the following reason,

so that Oc is the total ocean ux. In the end we want to determine the total ocean ux,

whether this is Oc on its own or Oc+ Fas, however the two cases do di�er. The ice core

record is characterised by long gaps in the data. In these gaps the forward pass of the

Kalman �lter proceeds using the evolution equation. If Fas is not calculated, the total

air-sea ux (Oc) does not change until a new data point is reached, often causing the

amount of CO2 in the atmosphere and mixed layer to diverge. If Fas is calculated, it can

respond to changes in the atmospheric and mixed layer CO2, but Oc still cannot. This

results in Fas roughly mirroring Oc in the evolution step because Ca and
P

kCsk depend

on Fas +Oc, and Fas depends on Ca and
P

kCsk. This leads to a strong anticorrelation

between Oc and Fas on the forward pass. The smoother probably doesn't see a problem

with the anticorrelation on the backward pass, so doesn't change it much. Neither case

is perfect, but the case without Fas is simpler to implement and understand and there

appears to be no advantage in calculating Fas. The mixed layer is modelled only for

the isouxes, which are not very sensitive to which case is used. The atmospheric pulse

response function calculation of the previous section is more like the `no Fas' case, as the

total ocean ux stays constant without new data.

The Kalman �lter results can be checked relative to the model used to create the

pulse response functions by using mixed layer pulse response functions from the BDM in

the Kalman �lter, then running the estimated sources in the BDM. This will check the

whole system (including the mixed layer response functions). The Extended Kalman �lter

and the Bryson-Frazier smoother can be checked by running a forward calculation with

the estimated sources and the mixed layer response functions. Both tests give excellent

agreement, con�rming that the Extended Kalman �lter and the Bryson-Frazier smoother

are behaving as required for this (weakly nonlinear) application.
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5.7.2 Results

Figure 5.13 shows the double deconvolution results for the Kalman �lter calculation using

mixed layer response functions. The uxes shown areOc andBi, which are the total uxes

between the atmosphere and the oceans and terrestrial biosphere (the response functions

in this case model mixing from the mixed layer to the deep ocean). The case shown has

Q = 0:1 (GtC yr�1)2, data uncertainties given by Etheridge et al. (1996) and Francey et

al. (1999a) and the mixed layer response functions for the BDM described in Chapter 4.

The results for the mixed layer response function (MLRF) double deconvolution look

quite similar to the atmospheric response function (ARF) double deconvolution. They

di�er mainly on the long time scale because the response functions give di�erent overall

partitioning of CO2 uptake. Both calculations have a rather unbelievable anticorrelated

peak in the biospheric and oceanic uxes just after 1800. This is around the beginning of

the DE08 and DE08-2 records, and will be discussed in Chapter 6.

Figure 5.14a shows the time evolution of CO2 in the atmosphere and mixed layer for the

MLRF calculation. Recall that the di�erence between these quantities (i.e. �pCO2) is not

used to calculate air-sea exchange, and the di�erence will not necessarily be consistent with

the deduced ux. (This is also the case in the mass balance double deconvolutions by Joos

and Bruno (1998)). The ocean and biosphere are modelled only for the isouxes, which

are shown in Figure 5.14b. Sensitivity of the isouxes to di�erent ocean and biospheric

models will be discussed in Chapter 6. Figure 5.14c shows the variation of �13C in the

atmosphere and mixed layer.

In the forward pass of the Kalman �lter, the CO2 and �13C can wander o� track in the

long data gaps. As the model is slightly nonlinear, the evolution matrix depends on these

values of CO2 and �13C. To avoid this introducing errors, the Kalman �lter and smoother

combination is run twice for each calculation, the �rst time linearising about the current

trajectory and the second time linearising about the previous smoother solution. The

di�erence this makes turns out to be very small.

The source uncertainties calculated by the Kalman �lter are due to data error (R)

and source evolution error (Q). Not included is the carbon-cycle-model error, i.e. how

concentrations and sources are related, and how concentrations (and isotopes) evolve in

time. The carbon cycle model is basically the same model that has been used in many
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Figure 5.13: CO2 concentration, �13C and deduced sources from the Kalman �lter run
with mixed layer pulse response functions. The data uncertainties used were those given
by Etheridge et al. (1996) for CO2 and by Francey et al. (1999a) for �13C, and Q = 0:1
(GtC yr�1)2 for both source components.
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Figure 5.14: a) CO2 in the atmosphere and pCO2 in the mixed layer relative to initial levels
from the standard MLRF double deconvolution calculation. b) Isotopic disequilibrium
uxes (isouxes) from this calculation. c) �13C of the atmosphere and mixed layer in
permil, plotted as a deviation from initial values.

deconvolution-type studies, and discussed in the previous chapter. The carbon-cycle-

model errors are mainly relevant to the isouxes (as they are the reason why the ocean

and biospheric models are used), and these are discussed in other chapters. The source

uncertainty due to systematic errors in the ice core data, e.g. the pre-industrial{modern

di�erence, has not been included in the Kalman �lter, but can be tested separately and is

also discussed in other chapters. The part of the calculation that needs most validation is

the statistics that go into the Kalman �lter (i.e. Q and R), and how these a�ect variability

of CO2, �
13C and the uxes. This can be dealt with to a fair degree by looking at the

innovations and �2.
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Figure 5.15: Chi-squared for CO2 and the anomaly X from the double deconvolution with
mixed layer pulse response functions.

5.7.3 Statistics

The statistics of the calculation over the industrial period will be examined in this section.

Figure 5.15 shows chi-squared for the CO2 and anomaly, X, both together and separately.

The average of the �2 over the industrial period for CO2 is 0.45 (the same as for the

ARF calculation) and for X is 0.81. Another way to test the statistics of the calculation

is to look at the distribution of the normalised residuals, i.e. the mismatch between the

smoother solution and the data, normalised by the data uncertainty. Figure 5.16a and

5.16b show the distribution of normalised residuals for CO2 and X, respectively, for data

after 1800. The normalised residuals before 1800 are mostly very close to zero, and cause a

large peak around zero if included in the distribution. The cumulative normalised residuals

for CO2 and X, along with the cumulative normal distribution (dashed line) are shown in

Figure 5.16c and 5.16d.

Ideally, we want the mean �2 close to 1.0 and the normalised residuals to follow a
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Figure 5.16: Distribution of normalised residuals for a) CO2 and b) X. Cumulative nor-
malised residuals for c) CO2 and d) X. The dashed line shows the cumulative normal
distribution.

Gaussian distribution for the Kalman �lter to behave at its best. Due to the small num-

ber of data points, we can't expect the model to satisfy these constraints exactly. The

normalised residuals for X are similar to the Gaussian distribution, but the residuals for

CO2 are all between -1.2 and 1.2, and therefore narrower. The mean �2 for CO2 is also

a fair way from 1.0. Based on these observations, and characteristics of the ice core mea-

surements and their uncertainties, a case can be made for reducing the uncertainties on

the CO2 measurements. The CO2 uncertainties of 1.2 ppm are quite conservative, and

reect the variation of CO2 in multiple measurements sampled from one annual layer of

ice (Etheridge et al., 1996). The uncertainty is much greater than the measurement pre-

cision for CO2. The �
13C uncertainties are closer to the measurement precision for �13C.

With the published uncertainties, the Kalman �lter �ts the decadal time scale features in

�13C over the industrial period (Figure 5.13d) but not those in CO2 (Figure 5.13b). The

191



CO2 features are much smaller (relative to the industrial change) than the �13C features,

which is expected to some extent. Q is large enough that the model can easily �t the

CO2 variations, but the data uncertainties are big enough that it doesn't need to. An

important point is that features should be de�ned by more than one or two measurements

for it to be desirable that the model �t them.

The Kalman �lter run with the same �13C data uncertainties andQ as used previously,

but with CO2 uncertainties of 0.6 ppm (half of that given by Etheridge et al. (1996)) gives

an average �2 over the industrial period of 1.03 for CO2 and 0.83 for �13C, with 0.99 for

both together. The normalised residuals for CO2 are also more widely spread than before,

and closer to the Gaussian distribution. The CO2, �
13C and uxes for these inputs are

shown in Figure 5.17a, 5.17b and 5.17c. The model now tracks the CO2 more closely. The

�t to the �13C is similar to before. The main di�erence in the uxes is that the variations

in the ocean ux are now larger. This case will be treated as a standard case, known as

DD1 and discussed in detail in the next chapter. It should be viewed as an example that

pushes the ice core data to its limits. The data uncertainties suggest that the decadal

features in the CO2 and �13C records are real, and the model inverts them for the net

uxes. Further ice core measurements over this period are needed to con�rm these features

in both CO2 and �13C.

The more conservative approach of improving the model statistics by increasing the

�13C uncertainties, rather than decreasing the CO2 uncertainties, will also be investigated.

The �13C uncertainties given by Francey et al. (1999a) may, in fact, have been too op-

timistic. If these �13C uncertainties are doubled (giving 0.05 ‰ for much of the data)

and with Q = 0:1, the model gives an average �2 of 0.42 for CO2 and 0.29 for �13C. The

normalised residuals are generally between �1 and 1 for both CO2 and �13C, i.e. narrower

than the Gaussian distribution. The CO2, �
13C and uxes for this case are shown in

Figure 5.17d, 5.17e and 5.17f. The �2 means are lower than we would like. Decreasing

Q would increase the smoothing and have the e�ect of increasing the average �2 and

widening the normalised residual distribution. However it was found that Q needs to be

decreased to a very small value to give an average �2 near 1.0 for the larger data uncer-

tainties. The small Q value required means that decadal features are not resolved and

that the model essentially �ts longer time scale variations. The Q of 0.1 is the magnitude

192



1850 1900 1950 2000
280

300

320

340

360

C
O

2 
 (

pp
m

)

a)

DD1

1850 1900 1950 2000
-8.0

-7.5

-7.0

-6.5

-6.0

δ13
C

  (
pe

rm
il)

b)

1850 1900 1950 2000
Year

-3

-2

-1

0

1

So
ur

ce
  (

G
t C

/y
r)

c)

Deduced sources

ocean
biosphere

1850 1900 1950 2000
280

300

320

340

360

C
O

2 
 (

pp
m

)

d)

DD2

1850 1900 1950 2000
-8.0

-7.5

-7.0

-6.5

-6.0

δ13
C

  (
pe

rm
il)

e)

1850 1900 1950 2000
Year

-3

-2

-1

0

1

So
ur

ce
  (

G
t C

/y
r)

f)

Deduced sources

ocean
biosphere

Figure 5.17: CO2 concentration, �13C and deduced sources from the Kalman �lter run
with mixed layer pulse response functions. a), b) and c) are for DD1, the calculation with
CO2 data uncertainties of 0.6 ppm (half the published value from Etheridge et al. (1996)),
and the �13C data uncertainties published by Francey et al. (1999a). d), e) and f) are
for DD2, with the published CO2 uncertainties and twice the Francey et al. (1999a) �13C
uncertainties. Both calculations use Q = 0:1 (GtC yr�1)2 for both source components.
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of the variations that survive �rn smoothing, but the model suggests that with the larger,

more conservative data uncertainties, they are not well resolved.

Even though the average values of �2 are not close to 1.0 for the calculation with

larger data uncertainties and Q = 0.1, the calculation is still acceptable. A large value

of �2 is a sign of a more serious problem than a small �2. If �2 is greater than 1.0, the

�lter has a discrepancy between the uncertainty on the state and the uncertainty on a

new measurement, believing that the state uncertainty is too small to accommodate the

new measurement. If �2 is signi�cantly less than 1.0, the state uncertainty is large enough

to easily accommodate new measurements. The Jazwinski �lter (Section 5.4) increases

the state uncertainty if (e�ectively) �2 is greater than 1.0 but leaves it if �2 is less than

1.0. Whereas large �2 is a sign that the model is inconsistent, small �2 is a sign that it

is perhaps too conservative, and that the data are not good enough (too sparse or too

uncertain) to estimate the state as well as might otherwise be possible. The calculation

with the published CO2 uncertainties, doubled �13C uncertainties and Q = 0:1 will be

treated as a second standard case, referred to as DD2, and described in the next chapter.

The mean �2 is higher for CO2 than for �13C in DD2. If the �13C uncertainties are

increased by 50 % instead of doubled, then the average �2 is 0.43 and 0.45 for CO2 and X,

respectively. Such a calculation would have the advantage of similar average �2 for CO2

and X, but di�ers less from DD1, so was not chosen as a standard calculation. The results

are similar to DD2, but with larger amplitudes on the decadal variations.

The two cases, DD1 and DD2, are preferred to the case with the published uncertainties

because they both have similar average �2 values and normalised residual distributions

for CO2 and �13C, indicating that they draw information fairly equally from both types

of measurement. An important justi�cation for using di�erent measurement uncertainties

to those published is that the published CO2 and �13C uncertainties were determined

by di�erent authors, and reect di�erent levels of con�dence in the measurements. The

temporal patterns of source variation in the two calculations are quite similar, it is mainly

the magnitudes that vary. There is more suggestion of anticorrelation of the oceanic and

biospheric uxes in DD1.

If the uncertainties used in the DD1 calculation reect the real uncertainties in the

measurements, then this calculation is quite important. The average �2 is very close
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to 1.0, and roughly the right proportion of normalised residuals are outside 1�. Thus

the innovations and normalised residuals are behaving exactly as we would like. This is

consistent with there being variations in the CO2 and �13C measurements that the �rn

model suggests should be seen in a �rn-smoothed ice core record. If the uncertainties

used in the DD1 calculation reect the real uncertainties in the measurements, then the

Kalman �lter is behaving optimally. If the uncertainties used in DD1 are too optimistic for

the present measurements, then this calculation shows what is possible (i.e. how precisely

sources can be estimated) with those data uncertainties. In fact, even more than that, it

shows what data uncertainties are required (with the given data density) for the double

deconvolution to resolve features that the �rn model believes may exist in the ice core

record. The physics of the problem and the statistics of the Kalman �lter are giving a

consistent picture.

A third standard calculation, DD3, is designed to give century scale variations by using

a smallQ. Figure 5.18 shows a calculation with published CO2 uncertainties, doubled �
13C

uncertainties and qsrc =
p
0:001 = 0:032 GtC yr�1. The results of this calculation, as well

as DD1 and DD2, will be described in the next chapter.

5.7.4 Source uncertainties

Flux uncertainties from the original MLRF calculation using the published data uncertain-

ties andQ = 0:1 (GtC yr�1)2 are shown in Figures 5.19a and 5.19b. The ux uncertainties

for the MLRF and ARF calculations are very similar, except for the biospheric ux uncer-

tainty before about 1400. The MLRF calculation, which suggests that the biospheric ux

is known better than the total ux for the given parameters, is probably more reliable than

the ARF calculation because of the better treatment of �13C in the MLRF model. The

biospheric ux uncertainty is still higher than the total ux uncertainty in the two long

�13C data gaps mentioned in the previous section. Figures 5.19c and 5.19d show the ux

variances for the DD1 calculation, and Figures 5.19e and 5.19f show those for DD2. The

three cases are very similar before 1800, where the inuence of the long data gaps domi-

nates. After 1800 the uncertainty in the total ux is lower for smaller CO2 uncertainties

and the uncertainty in the biospheric ux is higher for larger �13C uncertainties, as would

be expected. This type of calculation gives an indication of how precise the measurements

need to be to constrain the sources to a particular level of uncertainty.
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Figure 5.18: CO2 concentration, �13C and deduced sources from the Kalman �lter run
with mixed layer pulse response functions, with Q = 0.001 for both source components
and published CO2 uncertainties and doubled �13C uncertainties. This calculation is
referred to as DD3.

Smoothing on ice core air due to the �rn processes is about 18{20 years for DSS

(Section 3.7.1) but the sampling density is quite a lot less than this in the pre-industrial

part of the record. It is proposed that in the future, more measurements will be made

to increase the sampling density for the Law Dome ice cores. A feature of the Kalman

�lter (as well as other linear least squares-like estimation problems) is that estimates of

the state covariance do not depend on the data values, only on prior error covariances

(Gelb, 1974, p110; Wunsch, 1996, p381). This means that the KFDD can be run with

dummy CO2 and �13C data at increased density to estimate the source uncertainties that

could be expected for such a data density. Although this application is slightly non-linear,

the use of dummy CO2 and �13C measurements from spline �ts to the ice core records

should mean that the results of this test are realistic. Figure 5.20a shows the ux error

variances for a data spacing of 10 years through the entire record and the published data
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Figure 5.19: Source uncertainties (GtC yr�1) from the MLRF double deconvolution. a)
and b) show the results using the published data uncertainties from Etheridge et al. (1996)
and Francey et al. (1999a). c) and d) show the uncertainties for DD1 (which uses reduced
CO2 uncertainties and published �13C uncertainties) and e) and f) are for DD2 (published
CO2 uncertainties and increased �13C). All three cases use Q = 0:1 (GtC yr�1)2.

uncertainties of 1.2 ppm and 0.025 ‰ for CO2 and �13C respectively. Figure 5.20b shows

the ux uncertainties for the same data uncertainties but with data spacing of 1 year. The

biospheric ux is still known better than the total ux for these data uncertainties for both

data densities. Figure 5.20c shows ux uncertainties for a CO2 uncertainty of 0.6 ppm,

�13C uncertainty of 0.025 ‰ and data spacing of 1 year. For a �13C data uncertainty of

0.025 ‰, the CO2 uncertainty needs to be below 0.3 ppm for the total source to be known

as well as the biospheric source (with Q = 0:1 (GtC yr�1)2 and data spacing of 1 year).
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Figure 5.20: a) Source uncertainties (GtC yr�1) for the MLRFDD with data spacing of
10 years throughout the entire record and CO2 and �13C uncertainties of 1.2 ppm and
0.025 ‰, respectively. b) Source uncertainties for the same data uncertainties and 1 year
data spacing. c) Source uncertainties for 1 year data spacing, CO2 and �13C uncertainties
of 0.6 ppm and 0.025 ‰, respectively.

5.8 Comparison between the Kalman �lter double deconvo-

lution and the mass balance method

The mass balance double deconvolution method (described in Section 2.10) estimates net

biospheric and oceanic uxes from the derivatives of curves �tted to CO2 and �13C obser-

vations using mass balance. The calculation is very sensitive to the amount of smoothing

chosen for these curves, as this determines the derivative and therefore the calculated

uxes. Most applications of this method (e.g. Francey et al., 1995b; Joos and Bruno,

1998) have used the budget equations derived by Tans et al. (1993) for Ca and Ca�a

(equations (2.11) and (2.13)). The double deconvolution by Keeling et al. (1989a) di�ers

in its implementation from the other studies (they used iterative methods rather than the

solution of 2 simultaneous equations), however the two methods are e�ectively equivalent

since they both require CO2 and �13C to be known at every timestep. There are advan-

tages and disadvantages of both the Kalman �lter double deconvolution and the mass

balance method, as well as some similar problems. The two methods are compared in this
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section, with particular reference to the results from Joos et al. (1999) who applied the

mass balance method described by Joos and Bruno (1998) to the Law Dome CO2 and

�13C ice core record.

Double deconvolution methods have been applied to direct measurements of CO2 and

�13C (Francey et al., 1995b; Keeling et al., 1989a) as well as to ice core measurements

(Joos and Bruno, 1998; Joos et al., 1999). The two cases have somewhat di�erent charac-

teristics { direct measurements generally have good temporal resolution while the ice core

measurements are smoothed due to the trapping processes and often have quite sparse

temporal coverage. The focus here will be on double deconvolutions for inverting ice core

data.

Choice of the degree of smoothing on the CO2 and �13C splines is important for the

mass balance double deconvolution (MBDD). In a similar way, the Kalman �lter double

deconvolution (KFDD) needs the stochastic forcing Q to be speci�ed. In a sense, the

smoothing on the splines dictates how much CO2 concentration and �13C vary with time,

whereas specifying the values ofQ in the random walk part of the Kalman �lter controls the

variation of sources with time. Although the two are closely related, there are advantages

to specifying variation of the source rather than that of CO2 and �13C. At �rst thought it

probably seems that it would be better to estimate variability of concentrations rather than

sources, because CO2 and �13C are actually measured, and the sources are not. However,

the MBDD may have a problem if the degree of smoothing for CO2 is not consistent

with the smoothing for �13C. The units for �13C are quite di�erent to those for CO2, and

as already discussed, the atmospheric levels of each quantity respond rather di�erently

to the uptake and release of biospheric and oceanic CO2. In the mass balance method,

splines are generally �tted separately to the CO2 and �13C, without consideration of how

a particular ux inuences both CO2 and �13C. The smoothing constraints for the MBDD

and KFDD are also di�erent types of constraint. The constraint on the spline controls

the 2nd derivative of the spline whereas the Kalman �lter constrains the annual step in

the random walk model. The uncertainties in the observations are used directly in the

Kalman �lter (i.e. matrix R). In the mass balance method, they can be used to give a

weighted spline or more qualitatively to help determine smoothing of the splines.

The Kalman �lter allows a more rigorous analysis of the statistics, and the relationship
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between CO2, �
13C and the two net uxes. Because the Kalman �lter includes the statis-

tics in the calculation, rather than as a pre-processing stage, it can help to ensure that

variations in CO2, �
13C and the uxes are consistent. Specifying Q sets the maximum

amount the source can vary, whereas the spline gives how much the CO2 and �13C do

vary. Specifying a larger value of Q will allow, but not force, the source to vary by a

larger amount from one year to the next. If, for example, it was believed that the bio-

spheric ux was more variable than the oceanic ux, the KFDD could model this with a

larger element of Q for the biospheric than oceanic ux. The KFDD would then assign

appropriate uncertainties to the deduced uxes. Modelling this with the MBDD would

be di�cult. A closer �t to �13C measurements with the MBDD wouldn't achieve this,

as it could cause anticorrelated uxes. Joos et al. (1999) used Monte Carlo simulations

to estimate uncertainties on the net uxes due to uncertainties in the ice core data. The

ux uncertainties estimated with the MBDD by Joos et al. (1999) are the same for the

biospheric and oceanic uxes (Joos and Bruno, 1998). The di�erent uncertainties on the

ocean, biospheric and total uxes in the Kalman �lter have already been demonstrated.

Missing data is not a problem for the Kalman �lter, as the correction step is only

performed when observations are available. The fact that interpolation is not required

in the Kalman �lter is a particular advantage for the ice core application. Even though

the state will not be well constrained when there are gaps in the data, the best estimate

should come from the state space model. Interpolation of concentration prior to �ltering

would impose a solution that may not be correct. In data gaps, the uncertainties increase

as evolution continues without comparison with data. The Kalman smoother will improve

the state estimates near the end of a large data gap compared with the forward pass.

Perhaps the most striking advantage of not having to interpolate is when there is a

CO2 measurement but no corresponding �13C measurement (or vice versa). The Kalman

�lter is able to use the CO2 measurement but make no assumption about the �13C at this

time, letting it continue to evolve until there is data available. The spline method will �t

a smooth curve through the data gap, making assumptions about �13C at the time of the

missing point which are not necessarily consistent. This can be seen around 1600, where

there is a CO2 measurement but no �13C. The CO2 value is the lowest for the entire Law

Dome record, and without a corresponding �13C measurement it is di�cult to attribute
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a cause. The Monte Carlo analysis as described by Bruno and Joos (1997) performed by

perturbing existing data points is unlikely to give the real range of �13C values that may

have occurred at this time, so the uncertainties estimated by the MBDD may not reect

the actual uncertainties. The KFDD has a fairly small uncertainty on the total source

around 1600 but large uncertainty on the biospheric and oceanic uxes separately. Joos

et al. (1999) �ts quite a smooth spline to the pre-industrial data (spline cuto� of about

300 years) so the low 1604 CO2 value is not closely �tted. Their �13C spline through this

period is very smoothed compared to the �13C from the Kalman �lter. The characteristic

of the KF uncertainties being maximum in the middle of long data gaps is probably not

shared by the MB calculation.

Both methods can get spurious anticorrelated uxes if something is wrong. The KFDD

may get anticorrelated sources if the data, uncertainties or assumptions are wrong, al-

though there are checks that can be made on the statistics (e.g. �2, normalised residuals).

The MBDD may get anticorrelated uxes if the CO2 and �13C splines are not consistent.

The MBDD calculation by Joos et al. (1999) and KFDD calculation use similar un-

derlying carbon cycle models. Joos et al. (1999) use a 4-box biosphere and the HILDA

ocean model (mixed layer response function form) for calculating the isouxes. Sensitiv-

ity studies for the isouxes are relevant to both calculations. In both calculations, the

deduced oceanic ux is not necessarily consistent with the modelled �pCO2 (Joos and

Bruno, 1998).

It would be possible in the KFDD to include a range of additional information. For

example, information on climate variations could be included using `observations' of the

sources, perhaps with large uncertainties. Measurements of mixed layer �13C, such as from

the sponge records of B�ohm et al. (1996; 2000) could be used. It is harder to see how this

could be done with the MBDD.

5.9 Concluding remarks

In this chapter, a method for performing a double deconvolution calculation on ice core

data has been developed. The calculation incorporates statistical analysis with a standard

carbon cycle model using a statistical technique known as the Kalman �lter. Application

of the Kalman �lter to ice core measurements was demonstrated for methane with a sim-
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ple model. Then two di�erent Kalman �lter double deconvolution methods for CO2 and

�13C were developed. The �rst method, using atmospheric pulse response functions, was a

simple model, and as such su�ered from small inaccuracies due to the simple approxima-

tions. Nevertheless, it proved to be a useful demonstration of the calculation. The second

model, using mixed layer pulse response functions, was more complicated and physically

correct. The Kalman �lter double deconvolution calculation estimates the net biospheric

and oceanic uxes of CO2 and their uncertainties. A key input to the calculation is the

parameter Q, that controls the maximum variation of the sources with time.

Three standard double deconvolution calculations were identi�ed, DD1, DD2 and DD3.

DD1 and DD2 both used the value of Q suggested by the �rn model for CO2 variations

that survive �rn smoothing and bubble trapping. DD1 used data uncertainties that could

be described as optimistic and pushing the data to its limits. DD2 used more conservative

data uncertainties. DD3 captures century time scale variations with a small Q and the

conservative data uncertainties.

The Kalman �lter double deconvolution method has been compared with the tradi-

tional double deconvolution method that involves �tting smoothing splines to the CO2

and �13C data and estimating sources by mass balance. The KFDD has a number of ad-

vantages over the mass balance method. As the method combines statistical and physical

models, it allows investigation of many of the statistical properties directly relating to

physical quantities. The uncertainty analysis in the Kalman �lter method is far superior

to that generally used in the mass balance method. The Kalman �lter method has better

treatment of missing data than the mass balance method. It also has the ability to be

extended to include a range of di�erent types of data. The ux uncertainties are di�erent

for the oceanic, biospheric and total uxes, reecting variations in data density and the

information about net uxes contained in the CO2 and �13C measurements. The results

of the Kalman �lter double deconvolution calculations will be discussed in some detail in

the next chapter, in conjunction with the techniques from the previous chapters.
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Appendix 5-1 : Kalman �ltering notation

Hk projection of state onto observations (m� n).

Lk Kalman gain matrix.

Pk state covariance matrix at time tk (n� n).

Qk covariance of stochastic forcing, wk.

Rk covariance of measurement noise, vk.

uk deterministic forcing.

vk measurement noise.

wk stochastic forcing (model noise).

xk state at time tk (n� 1).

�xk state estimate at k projected from x̂k�1.

x̂k state estimate at k projected and corrected with data.

x̂kjN state estimate from smoother (i.e. at time tk using data up to time tN ).

zk observation at time tk.

�k innovation (zk �Hk~xk).

�k state evolution matrix .

�k auxiliary variable used in Bryson-Frazier smoother.

�k covariance of �k.

�k innovation covariance.

�2 (chi-squared) statistic.
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