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1 Introduction

Most global meteorological models are based on a regular latitude-longitude
configuration either explicitly, or implicitly, in the case of a spectral formula-
tion. There are, however, advantages in being able to use a grid having more
uniform resolution, for reasons of computational economy for a given accuracy
and for uniform applicability of physical parameterizations. With this in mind,
Sadourny (1972) proposed a grid derived from a gnomonic projection of the
cube onto the sphere and presented corresponding solutions of the shallow-water
equations. The projection produces six panels covering the sphere; Sadourny
(1972) experienced noise problems that he attributed to his low-order finite dif-
ferencing near the panel edges. McGregor (1997), denoted here by M97, adopted
the same grid and demonstrated that the semi-Lagrangian technique of McGre-
gor (1993) permits accurate and noise-free solutions for horizontal advection.
With this grid, although the projected grid lines on the cube are orthogonal,
the grid lines on the sphere are non-orthogonal. M97 also investigated stretched
grids having the same non-orthogonality properties, but producing greater uni-
formity on the sphere and even better advection results.

Figure 1: An example of a C20 conformal-cubic grid, as viewed from infinity.

The non-orthogonality of the M97 grid creates only slight inconvenience for
advection purposes, but the full primitive equations are significantly simpler
on an orthogonal grid. Rancic et al. (1996), denoted here by RPM, have for-
tunately found a solution to this problem. They employ the same Sadourny
(1972) projection from the panels of a cube onto the sphere. By means of a
conformal mapping with respect to a stereographic projection, they have de-
vised a set of grid lines on each panel of the sphere that are orthogonal to one
another except at the vertices where they intersect at 120°. The grid may be
described as a conformal-cubic (C-C) grid and is an example of a modified cubic
gnomonic projection The RPM paper is concerned with geometrical properties



of the grid; it also successfully provides Eulerian finite-difference solutions to
the shallow-water equations. This report provides details of the global climate
model developed at CSIRO known as the Conformal-Cubic Atmospheric Model
(C-CAM).

Sadourny (1972), M97 and McGregor (1996) produced grids on projections
of panels of a cube encompassing the sphere. RPM equivalently use a projection
from a cube contained within the sphere, referring to the grid as an “expanded
cube”. In this report, a C_ N grid will refer to a conformal cubic grid having
Nx N points on each panel. For example, Fig. 1 shows a view from infinity of a
C20 conformal-cubic grid, possessing 6x20x20 grid points. Figure 2 shows the
same conformal-cubic grid, but displayed on a longitude-latitude projection.
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Figure 2: The same C20 conformal-cubic grid as in Fig. 1, but displayed on a
longitude-latitude projection.

The development of C-CAM effectively began in 1994, with advection tests
on the gnomonic cubic grid, as documented later by M97. This work was de-
scribed at the André Robert Memorial Symposium, held in Montreal in October,
1994, at which the author learnt of the newly-devised C-C grid. This was soon
followed by semi-Lagrangian advection tests on the C-C grid, described by Mc-
Gregor (1996). A full primitive equations model was then developed, using
aspects of the two-time-level semi-Lagangian framework previously developed
for DARLAM, and also using its C-grid staggering for the winds; the first simu-
lations, including physics packages, were described by McGregor and Dix (1997,
1998). About this time, in-house weather forecasts commenced at CAR using
C-CAM (McGregor and Katzfey, 1998). This was followed by participation
in the COMPARE III tropical cyclone intercomparison project (McGregor and
Katzfey, 1999; Nagata et al., 2001). At about this time, the C-grid staggering
was replaced by the reversible staggering scheme, documented by McGregor
(2005). A description of the model as a general circulation model was pro-
vided by McGregor and Dix (2001). Consoldidation of the model dynamics and
physics has actively continued, and the range of modelling activities has been
extended to include trace gas modelling and a considerable number of regional
climate simulations.



2 Coordinates and coordinate transformations

The radius of the Earth is denoted by R. (X,Y, Z) denotes the “physical” 3D
Cartesian coordinates on the sphere, with Z pointing up through panel 1, normal
to the Earth’s surface. Each of (X,Y, Z) range between -R and R. In the case
of using a stretched grid, the highest resolution panel will be panel 1.

The equations of motion will be written in terms of the 2D panel coordinates
(z, y, p) where p is a panel number 0 < p < 5, and on each panel 0 < z < 7R/2.
For NxN points on each panel, the x and y values are equally spaced at the
average model grid resolution of

Az = Ay =27R/(4N); (1)

this value can be determined by noting that four contiguous panels will go right
around the globe. Values of z on each panel are given by z; = 7R/(4N),
z2 = 3wR/(4N), ..., zny = (2N — 1)wR/(4N), with corresponding values for y.
Each grid point in (z, y, p) space has an associated map factor, m, such that
the physical spacing between grid points is Az/m. The map factors vary from
point to point. In the original C-C grid of Rancic et al. (1996), the map factors
on any panel are equal to those in the corresponding position of any other panel;
this property does not occur when using a stretched grid, with m being large
on the finest-resolution panel and small on the coarsest resolution panel. Note
that the grid is equally-spaced in terms of (z, y) values, regardless of whether
or not the grid is stretched.

For performing the grid calculations, it is necessary to relate the (X,Y, Z)
grid values and map factors to those on the associated quasi-uniform 3D Carte-
sian (X', Y, Z") coordinates, also on the sphere. This is done by means of the
Schmidt transformation.

2.1 The Schmidt transformation

This transformation was devised by Schmidt (1977). It is used to transform any
orthogonal grid system on the sphere to a stretched version of the same grid,
whilst preserving orthogonality and isotropy (provided that is the case for the
original grid). The Schmidt magnification factor is here denoted by S; typical
values are S = 1 (non-stretched), S = 3 (higher resolution over panel 1). In the
C-CAM implementation of the Schmidt transformation, the (X,Y, Z) coordinate
system is centred on panel 1. At the centre of the panel, the Z coordinate is
directed upwards, while X and Y are directed south and east respectively. The
Schmidt transformation acts to transform these Cartesian coordinate values and
map factors as follows.
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where « is zero for a non-stretched grid (S = 1); in general it is defined by
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Note that the (z, y, p) values are unaffected by the Schmidt transformation,
although the associated map factors are altered according to
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Figure 3: An example of a C20 conformal-cubic grid centred over Australia,
with Schmidt magnification factor = 3.33.

At the centre of panel 1, where Z = Z' = R, (6) reduces to m = Sm/,
verifying that the grid resolution on the (X, Y, Z) coordinates is magnified
there by a factor S compared to the (X’, Y’, Z’) coordinates. The non-stretched
“equator” gets moved to Z = aR, with a radius (14+a)R/S. The transformations
from the “physical” (X,Y, Z) coordinates to the associated quasi- regular-panel
(X", Y', Z") are given by

r_ (l_a)
X' = 7(1_QZ/R)SX, (7)
r_ (l_a)
, _ (Z-aR)
2 = A=azjR) ©)

It can be seen from these equations that the “equator” in the stretched coordi-
nates (i.e. Z = 0) is located at Z' = —aR, where it has a radius (1 — a)SR.
Figure 3 shows an example of a stretched conformal-cubic grid.



2.2 Arrangement of the panels

A cube is constructed, encompassing the Earth and tangent to it for the as-
sociated (X',Y', Z") coordinates. Gnomonic projections (radially towards the
centre of the Earth) are performed between the surface of the Earth and the
surface of the cube. The following coordinates refer to the panels of the cube:

(A4, B, C): 3D Cartesian on the cube, with A, B and C pointing outwards
through panels 0, 2 and 1 respectively;

(a, b, p): 2D Cartesian on the panels of the cube.

Each of these coordinate values can range between -R and R , except that 0
< p < 5. Note that the (z, y) coordinates on the sphere are orthogonal on each
panel, although the projected (a, b) coordinate lines on the faces of the cube
are not orthogonal.
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Figure 4: Layout of the panels and their relative orientation for three alternative,
but equivalent, viewpoints.

The orientation of the panels and of the ¢ and b axes (or, with the same
orientations, the z and y axes) is given in Fig. 4. Each panel edge has N
segments and each panel contains Nx N quadrilateral elements. On each panel
therangeof a and bis-R < a < R, -R < b < R. The transformations between the
(X,Y,Z2), (A, B,C) and (a, b, p) representations are summarized in the following
subsections.

Each C-CAM grid point is uniformly spaced in (z, y) space; it has an asso-
ciated (X,Y, Z) value and an associated (X', Y”, Z') value, and that projection
onto the cube has an associated (A, B, C) value, which corresponds simply to
(a,b,p) values. The (a,b,p) representation is essentially required to calculate
the grid indexing corresponding to values of (X,Y, Z).

2.2.1 Grid information supplied by the RPM routines

The RPM routines are used to produce (X',Y’, Z') at grid points on panel 0 of
the sphere. The corresponding (a, b) on panel 0 of the cube are then calculated.



Values for (a, b) on the other panels follow easily from symmetry; these (a, b)
are then projected back to give the remaining (X', Y’, Z') on the sphere.

Non-integral grid values are needed only for determining the quadruple reso-
lution grid used in the inverse index calculations described later. The quadruple
resolution grid (needed only for one panel) is provided by the RPM algorithms
using 4N points in each direction. Note that the grid points of the C_ N grid
align exactly with a subset of the higher-resolution (C_4N) grid.

2.2.2 Map factors, grid spacing and tangent vectors

The Rancic et al. (1996) routines are able to provide the m' map factors, which
can be transformed by (6) to the final m values. In practice, for stretched grids,
it has been found equally accurate (and possibly more self-consistent) to evaluate
m as in McGregor (1997) by finite differencing of the neighbouring gridpoint
Cartesian locations. Denoting the Cartesian position vector on the sphere by
r = (X,Y, Z), grid distances between adjacent grid points are calculated as

A.’L‘) |I‘i+1j — r’ij|2
2)  mlry gl (1 P malE) g
( m )it/ 24

with a similar expression for each (Ay/m); ;. /,- The multiplicative term is a
correction for the curvature of the Earth. The final map factors at each grid
point are evaluated by averaging the neighbour distances as follows

)G (), GO, (5

=) ={(= +({= +(= + (= :

m J;; m Ji 1/2,5 m Jiv1/2,5 m j;i—1/2 m /i i+1/2
(11)

remembering that Az and Ay are equal and satisfy (1).

For a C37 grid, the maximum grid length is midway along an edge and
perpendicular to it (0.0818 R), while the minimum occurs at vertices (0.0262
R). The ratio of maximum-to-minimum grid length is 3.1; the corresponding
ratio for the non-orthogonal McGregor (1997) grid is 2.1, whereas for a T42
Gaussian grid the ratio of maximum to minimum longitudinal grid increment is
26.8.

Unit tangential vectors aligned along the z and y axes are evaluated by finite
differencing whilst setting up the grid at the beginning of simulations. It was
considered worthwhile to make their determination as accurate as possible, as
they correspond to the directions of the model wind components. The deter-
mination is illustrated for a typical grid point (7, j) in the interior of a panel.
First-guess tangential vectors are calculated as

X710 = Tit1,j —Ti-1,5, YT0 = Tij+1 — Tij—1- (12)

From these, two unit vectors are formed, actually tangential to the sphere
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XT1 =
In order to obtain orthogonal tangent vectors, new vectors are formed involving
a small correction factor € (yet to be determined)

X = X71 + €911, YT = Y11 + €XT1- (14)

Specifying that the dot product x7 - yr should equal zero, readily yields

€= — XT1 Y711 ) (15)

1++/1— X1 -911)?

The final tangential vectors are

N XT ~ yr
Xr=1— YT = T——-
x| lyr|

(16)
2.3 Transformations between the alternative coordinate
representations

In the semi-Lagrangian solution of the primitive equations, it is necessary to
calculate grid locations for an arbitrary (X,Y, Z). For this purpose, it is neces-
sary to transform between the various coordinate representations on the sphere
and projected cube. The various transformation are defined in the following
subsections.

2.3.1 (X",Y',Z') on the sphere to (A, B, C) on the cube
(XY, Z')
max(| X[, [Y"],|Z"])

(4,B,C) = R. (17)

2.3.2 (A, B, C) on the cube to (X',Y’,Z') on the sphere
(4,B,0)

X\Y' 7" = . 18
( Y 7 ) (A2+B2+C2)1/2 ( )
2.3.3 (A, B, C) on the cube to (a, b, p) on the cube
This can be determined by the following six branching (“if”) tests
if A= R thenp=0,a= B, b=C; (19)
if A=—R thenp=3,a=-C, b= -B; (20)



if B=R thenp=2,a=—-C, b= —A; (21)

if B=—R thenp=5,a=A4,b=C, (22)
if C=R thenp=1,a=DB,b=—A; (23)
if C=—R thenp=4,a=A,b=—-B. (24)

It can be verified by inspection that the following alternative equations produce
equivalent results, but avoid the branching computations. The panel index, p,
is given by

p = max([Aint (3Aint — 3), Bint(7Bint — 3), Cint(5Cins — 3)]/2, (25)

where

. A . B . C
Aint = int (E) 5 Bz’nt = int (E) ; C’int = int (E) (26)

and “int” indicates the truncated integer value. Note that (26) can only be
used on computers where a floating point number divided by itself is exactly
1, i.e. where strict IEEE floating point behaviour is provided. The Cartesian
coordinate position (@, b, p) on a panel of the cube is then

a = EplA + EPQB + Ep3C (27)
b= Fp1A+szB+Fp3C, (28)

where the nonzero members of matrices E and F are given by
Eoy = B2 = —E»3 = —E33 = Eq1 = E51 = Fos

=—F1=—-Fy =—F3=—-F)p =F535=1.

2.3.4 (a, b, p) on the cube to (4, B, C) on the cube

A=R, B=a, C=b forp=0, (29)
A=-b, B=a, C=R forp=1, (30)
A=-b, B=R, C =—a forp=2, (31)
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A=R, B=-b, C =—a forp=3, (32)

A=a, B=-b, C=—R forp=4, (33)

A=a, B=-R, C=5b forp=>5. (34)

2.3.5 (X,Y,Z) on the sphere to/from longitude-latitude

Denote longitude by A and latitude by ¢ in polar coordinates. Denote unrotated
Cartesian coordinates by (X,Y,Z) with Z passing through the North pole and X
passing through the Equator at the Greenwich meridian. These can be converted
to and from polar coordinates by

X = Rcos Asing, (35)
Y = Rsin Asin g, (36)
Z = Rsin ©w, (37)
or, equivalently,
A = atan2(Y, X) with — 7 < XA <7, (38)
¢ = arcsin(Z/R), (39)

The C-CAM grid is set up so that the Cartesian grid is located at (Ao, o)
for (X,Y,Z) = (0,0,R). At (Ao, o) the X axis lies in a negative direction along
A = )¢ and the Y axis lies along ¢ = ¢g. The coordinate rotation corresponds to
rotating (X,Y,Z) by Ao and then by —yg. The rotated and unrotated Cartesian
coordinates may be related as follows

X = cosAgsinggX —sin A\gY + cos Ag cos o Z, (40)
Y = sin g sin X + cos A\gY + sin Ag cos g Z, (41)
Z = —cospoX +sinpyZ. (42)

The above equations thus provide a means to convert values of (X,Y,Z) to
corresponding values of (X,Y,Z) and thereby to values of (A, ), or vice versa.

2.3.6 Zonal and meridional wind components

These zonal and meridional wind components are not required within C-CAM
itself, but conversions to those components are required for post-processing dis-
play purposes, and also for conversion of initial data to the model grid points.
The conversions are most easily determined in terms of the model (rotated) 3D
Cartesian coordinates. The unit vector for the physical north pole is given by

11



k = (— cost, 0,sindy). (43)
The unit vector along the zonal components is
kxr (—sin Y, sin 99 X + cos¥gZ, — cos YY)

Nyon = = = _ . (44)
T kx| V/sin? 99 X2 + V2 + cos? ¥ Z2

The meridional unit vector is not explicitly needed. For completeness, it is

r XN, (—sindgY,sindgX + cosdgZ, —costhpY)

e (45)
r X D105 \/sin2 99 X2 4+ Y2 + cos2 9922

Ner =

Now let © denote the (anticlockwise) angle of X7 from fi,,,. X7 is the unit
vector along the model z coordinate, given by (16). © is given by

cos©® =1M,op - X7; SINO =Dy - YT (46)

Writing » and v as the wind components in the model coordinates, the final
transformations are thus given by

Uzon = UCOSO —vsin®, Vper = usin® + vcos O, (47)

or, conversely,

U= Uzop COSO + Vper SINO, ¥ = —U,op SINO + Vpyer cOS O. (48)

2.4 Procedure for setting up a C-CAM grid

The above equations provide the information needed to set up a stretched C-
CAM grid.

1. Choose the location for the centre of the highest resolution panel 1, in
terms of longitude and latitude, (Ao, o)-

2. Choose the desired grid length for that panel.
3. Choose suitable values of N and S to provide that resolution.

4. Use the RPM routines to provide (X’, Y, Z’) for a C-CAM grid with panel
1 centred at (Mo, @o)-

5. Use the Schmidt transformation equations (2) to (6) to provide (X, Y, Z)
for the final grid system.

12



2.5 Inverse calculation of grid coordinates from (X,Y,7)

The semi-Lagrangian advection procedure to be described in Section 3 pro-
duces departure points on the sphere in terms of the 3D Cartesian coordinates
(X,Y, Z). Subsequent interpolations to obtain field values require those depar-
ture points to be expressed in terms of indices and panel numbers. This is most
readily determined by calculations projected onto the faces of the cube, where
the number of spatial dimensions has been reduced from three to two. Note that
indices and panel numbers on the sphere are identical to those of the projected
point on the cube.

The non-orthogonal grid used by M97 provides analytic expressions for the
grid indices given these (a,b) values on the cube. Such expressions are not
available in (a,b) space for the RPM grid; it appeared initially that this could
inhibit the use of semi-Lagrangian methods on this grid. However, as described
below, a technique has been devised whereby the indices are determined by
simple iterations (two iterations in practice) performed on the faces of the cube
using a quadruple-resolution grid. For this iterative calculation, the quadruple-
resolution grid performed more accurately than a double-resolution grid. An
eight-times resolution grid produced no extra benefits. Note that the compu-
tation time for this inverse calculation is independent of the resolution of the
iterative grid.

2.6 Inverse index determination on a panel

The description here is given in terms of the quadruple-resolution grid. Given
the projected values (a, b) on a known panel of the cube, we wish to find the
position on the panel in terms of index values (I, J) where I and J need not be
integers but satisfy 1 <I <4N+1and 1< J < 4N + 1. Note that when [ and
J both have integer values, the corresponding (a, b) coincides with a grid point.

An iterative grid point near (I, J) is denoted by (%, 7); the area surrounding it
is divided into four quadrants. In “northeast” quadrants (valid for the triangular
region 0 < T —i<1,0<J—j<I—1i)simple bilinear interpolation gives for
the a-component

a = aij+ (I =) (@it = aij) + (J = 5)(aij+1 — i) (49)
This formula can be generalized to cover all four quadrants
a=ai;+i(I—i)(a;y g aij) +J (J - j)(ai,j—f-j' - aij), (50)

where the desired quadrant is selected as described below by allocating particu-
lar values to the sign functions ¢ = +1,j = 1. The corresponding expression
for the b-component is

b=1bi; + i (- i)(bi+i' g bi,j) +jI(J - j)(bi,j+j' - bi,j)- (51)
The iterative solution proceeds in the following manner. A first guess is denoted
by (I, Jo) = (1 + 2N + 2Na/R, 1 + 2N + 2Nb/R). The quadrant is selected

from the previous guess (Io, Jo) with

i =sign(1,Io — i), j = sign(1,Jo — j), (52)

13



where
i = nint(ly), j = nint(Jp), (53)

and where “sign” and “nint” refer to the standard Fortran functions. Writing
baa =@,y ;— Gij; Ba=a,; i — aj, (54)
(5ab = bi+i' g bi’j; (5bb = bz’,j+j' - bi,j, (55)
the next iteration gives the following non-integer I and J values

(a —a;,;)05b — (b—b;;)daa

T=i
T (Gaadsh — bpadab)

(56)

and
(b—b)dpa — (a — a;;)dab

j' (Jaaébb - 5ba5ab)

T=j+ (57)

Equations (52) - (57) are repeated until convergence is achieved (two iterations
in practice).

The above equations refer to the quadruple-resolution grid. These I and J
are simply converted to regular grid values

I+3 J+3
Iregular = T; Jregular = T (58)

3 Horizontal advection and interpolation on the
conformal-cubic grid

Horizontal advection on the sphere of a scalar field £ may be written as

%:

7 0, (59)
where
d 0 0 0
p7ie §+mu8—x+mva—y (60)

and where u = m !(dz/dt) and v = m 1(dy/dt) are the physical velocity
components along the z and y coordinates. The two-time-level semi-Lagrangian
solution at a new time step is

e+ =g, (61)

where £7* is the value of £ evaluated by interpolation at the upstream
departure point at time 7.

14



3.1 Derivation of departure points - method 1

Following McGregor (1993) the departure points of the 3D grid point located
at r"t1 can be written in terms of the truncated Taylor series of the total
derivatives

3
—At n qr T+1
a4 Z% c;;f" , (62)
n=1 '

where

d'r(t) d [d"_lr(t)

dtr  dt | dint

The solution is second-order accurate in time provided that d/dt is evaluated
using (60) without the partial time derivative term, but with velocities cen-
tred at time 7+1/2. These velocities are usually determined by an extrapola-
tion formula with third-order accuracy in time, as suggested by Temperton and
Staniforth (1987),

] n=23 (63)

u™ /2 = (15u” — 10u” ! + 3u™2)/8. (64)

As in M97, the higher material derivatives in (62) are evaluated by application
of (60) with simple centred finite differences. For the first term of the Taylor
series in (62), the 3D Cartesian velocity components are used directly. This
produces greater accuracy for the C-CAM grid than using a finite difference
version of (60) to evaluate this term.

Equation (62) is applied separately to each Cartesian component in the form
(X, Y, Z) to give corresponding departure point values; the two-iteration inverse
procedure of section 2 then gives the equivalent departure points in terms of (4, j,
p) where i and j are non-integral grid indices. As in M97, the use of Cartesian
components allows the determination of departure points to pass over panel
boundaries in a transparent manner. Some extra economy in the computations
may be achieved by first normalizing the velocity components u and v to units
of grid point per time step. Further details of this approach are provided by
McGregor (1996).

3.2 Derivation of departure points - method 2
The following method is presently used. The velocity at the arrival point may
be written in Cartesian vector form as

u = uXr + vyT, (65)

where the unit tangent vectors are given by (16) and the velocities are centred
at time-level 7+ 1/2, as in the previous subsection. The departure point of the
3D grid point located at r™*! is given as first guess by

rf ="t —u(r)At (66)

The r] grid location is transformed by the methods described in Section 2 to
a value of (z,y,p); bi-cubic interpolation of u is then used on the panels (as
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described in the next subsection) to determine separately the three Cartesian
wind components, and thus u(r]). The second-guess departure point is then
defined as

ry=r"t - (u(rT'H) + u(r])) At/2. (67)

This procedure is repeated one more time to give u(r}), and the final departure
point is taken as

r’ =1t — (u(e™) + u(r])) At/2. (68)

3.3 Interpolation of field values

During an advective calculation, the values (%, j, p) are used to determine the
value of the advected ¢ field via quasi-bicubic interpolation centred on a 4x4
stencil. Quasi-cubic interpolation was suggested by Philippe Courtier; it is used
in the operational ECMWF model and is described by Ritchie et al. (1995).
During the first direction of interpolation, linear interpolations are performed
along the edges of the 4x4 stencil. This reduces the stencil to 12 points, but
maintains high accuracy.

During even time steps,  — y interpolation is performed (z interpolation
before y interpolation); during odd time steps y — « interpolation is performed.
Analogously to the splitting methods of Marchuk (1974), this alternation should
produce some reduction in truncation errors. The advection tests are found to
be quite insensitive to the starting order of the alternating interpolations; some
sensitivity is found if only non-alternating interpolation is used. Prior to per-
forming the interpolations, data is extended on each of the 6 panels by two
rows/columns in each direction. Near the vertices, the points used in the exten-
sion depend on whether the array is to be used for z — y or y — = interpolation.
The nature of the extension is illustrated for panel 0 (following the panel no-
tation of 4) of a Cb grid, shown for both types of interpolation in Figs. 5 and
6. It may be seen from these Figures that the interpolation stencil reduces to
either 9 or 11 independent points near the vertices.

4bs 121 | 221 | 32, | 421 | 521 || 125
545 | 555 || 11, | 211 | 31y | 41; | 51, || 112 | 2o
455 | 555 || 150 | 250 | 350 | 450 | 550 || 112 | 125
445 | 545 || 149 | 240 | 340 | 449 | 540 || 212 | 225
435 | 535 || 130 | 230 | 330 | 430 | 530 || 312 | 32>
425 | 525 || 120 | 220 | 320 | 420 | 520 || 412 | 42,
415 | 515 || 110 | 210 | 310 | 41 | 5o || 512 | 529
525 | 515 || 564 | 544 | 534 | 524 | 51a || 512 | 415
A5 || 454 | 444 | 434 | 424 | 414 || 525

Figure 5: Illustration of extension of C5 array for z-y interpolation on panel 0.
Grid points are indicated by %j,, where n denotes the panel number.

It should be mentioned that the interpolations on the non-orthogonal grids
of M97 were performed wholly within panels and thus near the panel edges the
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interpolations were not centred on the 4x4 stencils. It was noted in that paper
that the uncentred locations might occasionally lead to weak instabilities near
the panel edges in a full primitive equations model. The present scheme always
uses centred stencils, avoiding such an eventuality.

21, [[ 12, | 221 | 321 | 42 | 52, || 41,
121 | 11 || 111 | 21; | 31y | 411 | 51; || 51y | 521
455 | 555 || 150 | 250 | 350 | 450 | 550 || 112 | 125
445 | 545 || 149 | 240 | 340 | 449 | 540 || 212 | 22,
435 | 535 || 130 | 230 | 330 | 430 | 530 || 312 | 32>
425 | 525 || 120 | 220 | 320 | 420 | 520 || 412 | 42,
415 | 515 || 110 | 210 | 310 | 41 | 5o || 512 | 529
45, | 554 || 554 | 544 | 534 | 524 | 51y || 5lg | 414
544 || 454 | 444 | 434 | 424 | 414 || 524

Figure 6: Illustration of extension of C5 array for y-z interpolation on panel 0.

3.4 Some comments on geometric and horizontal advec-
tion aspects

A semi-Lagrangian advection scheme has been here described for the conformal-
cubic grid of Rancic et al. (1996). The grid has quasi-uniform resolution, al-
though it is not as uniform as the non-orthogonal cubic grids studied by M97.
In advection tests shown by McGregor (1996), the conformal grid performed
most accurately overall, being superior to the M97 scheme, and better still than
tests on the Gaussian longitude-latitude grid. Tests with a coarser conformal-
cubic grid produced similar or better accuracy than semi-Lagrangian tests on a
reduced Gaussian grid having a similar number of grid points.

The conformal scheme is slightly more expensive than the non-orthogonal
M97 scheme; instead of an analytic formula, it requires two iterations to deter-
mine the departure points in terms of panel indices. However, the conformal
scheme has the advantage of always being able to use a centred interpolation
stencil. It is also well suited to quasi-cubic interpolation. The semi-Lagrangian
advection schemes on the cubic grids are efficient and run only 10%-20% slower
than on a Gaussian grid having a similar number of points. The reduced Gaus-
sian grid requires extra interpolations and runs at a quite similar speed to the
cubic grids.

Although the vertices of the grid represent singularities (meeting at 120°
instead of being orthogonal), they are easily handled in the finite-difference
scheme. No disruption was found for patterns being advected over the vertices,
quite unlike the situation for advection over the poles of a Gaussian grid.
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4 Reversible staggering of the winds

In meteorological modeling, there are several common grid arrangements for hor-
izontally staggering the wind components relative to the mass variables. The
various grids produce different behavior for geostrophic adjustment, as first clar-
ified by Winninghoff (1968). A summary of his work, as well as a nomenclature
for these common meteorological grids, was provided by Arakawa and Lamb
(1977). The staggered C grid is rather popular for atmospheric models. The
main reason for its popularity is that it has good dispersion behavior for large
Rossby radius of deformation (defined relative to the grid spacing).

However, for small radius of deformation the C grid has poor dispersion be-
havior, which has resulted in greater popularity of the B grid for ocean models
(e.g. Randall, 1994). Randall (1994) went on to advocate the Z grid where
divergence and vorticity are the primary variables, both stored on an unstag-
gered grid. He showed that this arrangement has superior dispersion properties
for both large and small Rossby radii of deformation. The reversible staggering
arrangement proposed in this paper is denoted as the R grid; it is based on
the wind components, but produces dispersion behavior that is generally very
similar to that of the Z grid.

Unstaggered grids are appealing in that they allow the various physical pa-
rameterizations to be carried out at coincident points. An additional appeal for
semi-Lagrangian models is that one set of trajectories can be used to provide
common departure points for all variables. Unfortunately, the simple unstag-
gered A grid has quite poor dispersion properties. It also decouples into four
separate families of solutions for the gravity waves (e.g. McGregor and Leslie,
1977) and therefore usually requires horizontal filtering of the solutions. This
decoupling problem does not occur with the staggered C grid, but it does occur
to a lesser extent for the B grid. The R grid does not experience this decoupling
of solutions.

Consider now a formulation of the primitive equations where all primary
variables are stored on the A grid, with all physical processes and advection
calculated on the A grid, but with a transformation made to the C grid for
calculation of the gravity wave terms. If this staggering is done by a simple
linear averaging of the wind components, the overall scheme still has the same
dispersion behavior as the usual A grid scheme. On the other hand, the re-
versible staggering procedure presented here as the R grid scheme maintains
the convenience of the A grid during most calculations, but produces superior
gravity wave dispersion characteristics.

Tin—2 Tm—1 ZTm Tm41
Figure 7: Relative location of unstaggered (|) and staggered (x) grid points,
and “pivot” points ().

The new reversible interpolation schemes is derived by considering interpo-
lation to the “pivot” points illustrated in Fig. 7. The unstaggered x velocity
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components are denoted by Uy, and the staggered components by u,, 41 Equat-
ing the representations of U and u at the “pivot” point z,, +2 gives for the “left”
transformation to u (or the “right” transformation back to U) the following spa-
tially implicit “compact” 3-point formula for the common interpolated velocity
component at Z,,  s:

um—% + 10um+% + 5um+% _ 5Um + 10Um+1 + Um+2
16 16

This new interpolation formulae has been derived by the generalized Vander-
monde method. The author is grateful to Jim Purser for suggesting use of the
Vandermonde method, which is more accurate than an earlier implementation
derived from Lagrange interpolation. As may be verified by substitution, (69) is
designed to produce a common value at the pivot points for polynomials up to
order 4, although the common value only exactly fits a first-order polynomial.
Using symmetry, one can easily write analogous formulae for the alternative
“right” transformation, based on the “pivot” point z,, 41

(69)

Figure 8: View of the C-CAM grid showing the winds in their staggered loca-
tions, illustrated for a C9 grid.

Although it is intended that the staggering interpolation formula (69) will
be used for real variables in meteorological applications, it can also be applied
to complex variables. It is instructive to consider the case of a unit amplitude
Fourier component with U = e®?/4 where d denotes the grid spacing, the
wavelength is Md, and 0 = 27 /M. If the unstaggered grid points are located at
x = md, then U,, = e"™?. Tt can be verified by substitution into (69) that the
corresponding staggered variables satisfy

(e + 10 + 5e~%)
(e + 10 + 5ei?)

i(m+1)0 = ei(m+3)0,is(9) say. (70)

Uyl =€
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Because the denominator of (70) is the complex conjugate of the numerator,

Uy q 1 MUSH also have unit magnitude. This establishes the important property
that the Fourier components are transformed unchanged in amplitude, under-
going only a phase shift. The expression ¢(6) in (70) gives the phase shift of
each Fourier component. For the “left” transformation scheme (69), ¢ is always
positive, corresponding to a (usually small) left-ward displacement.

The relative locations of the staggered wind components on the C-CAM
grid are illustrated in Fig. 8. Details of the dispersion properties of the re-
versible staggering procedure are provided by McGregor (2005), as well as some
alternative versions of the scheme.

4.1 Numerical evaluation of the staggering transforma-
tions

The staggering-unstaggering equation (69) forms a linear system that may be
solved as a matrix inversion problem. The dominant terms (for a periodic
domain) are

Uppp 1 = 0.08Um_1 + 026U, + 0.93U 41 — 0.25Um 42

+0.04U 43 — 0.01U 44, (71)

While this series expression is useful for illustrating the nature of the solutions,
it converges too slowly to be recommended. Accurate and efficient evaluation
may be obtained by use of a tridiagonal solver. The periodic nature of the
conformal-cubic grid requires a cyclic tridiagonal solver, such as described by
Temperton (1975).

Alternatively, it is straightforward to devise an efficient iterative solution
o (69). First, the equation is combined with itself to bring out a diagonal
dominance; multiplying (69) by 32 and subtracting 16 times (69) evaluated for
m-+1 gives

iy 1 + 19Uy 1 — Sty g = 10U + 15Umss — 8Upmsz — Umys.  (72)

Given values for the unstaggered U, (72) suggests the following iterative
solution

First guess:

Upry1/2 = (10U + 15U q1 — 8Umt2 — Umys) /19; (73)

Later iterations:

2un—1 5 n—1
n _ .0 m—1/2 m+5/2
Umt1/2 = Ymt1/2 — 19 + 19 (74)

Four iterations are found to give good convergence. The corresponding formulae
for unstaggering may be written in the obvious manner.

20



5 Vertical advection

5.1 Choice of sigma levels

Two families of vertical sigma levels are available, both being extensions of the
early cubic formula given by Smagorinsky et al. (1965), providing symmetric
definitions above and below ox= 0.5 (i.e. 1= 1 -0k, and so on). For each
family, the number of vertical levels, K, is specified in advance.

Family A1l

This family is compatible with the levels used in the CSIRO Mk2 and Mk3
models; those models are described respectively by McGregor et al. (1993) and
Gordon et al. (2002). This family locates the full-levels midway between the half-
levels (the Mk2 and Mk3 models have this requirement for energy conservation
reasons that do not apply to C-CAM). The simple version of this specification
is

opry = 1= k/K)*(1+2k/K) fork =0,1,2,., K (75)

with averaging to give full-level values as

ok =(0p_3 +0,11)/2 fork=1,2,.. K (76)

Family A2

This is a modification of family A2, also compatible with the Mk2 and Mk3
levels, but with the uppermost sigma level, ok, also specified. A quantity & is
calculated

[1—4og — (1 -2/K)?]
[1-2/K-(1-2/K)%’

Q= (77)

providing the following values,

2015 =1+a(l —2k/K)+ (1 -a&)(1 —2k/K)? fork =0,1,2,.,K. (78)

The full-level values again satisfy (76).

Family B

This is a formula which is valid for both full- and half-levels, and thus provides a
smoother transition between full- and half-level values. Essentially the formula
is a linear combination of the original formula of Smagorinsky et al. (1965) and
an equally-spaced specification of the levels. To determine the linear weighting,
the uppermost sigma level, ok, is again specified. A suitable weight is now
given by

2K2(20k — 1)

(K? 1) (79)

a =
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so that

11,22 K

Oprs = (1 —k/K)*(1+ 2k/K) + (1 - &)(1 — k/K) fork =0, 5
(80)

[\V]

5.2 The TVD vertical advection scheme

C-CAM uses the total variation diminishing (TVD) method for vertical advec-
tion, as advocated by Thuburn (1993). Treating the vertical advection equation
in split form, it may be written as

dq .0q 0q Odq 0c

o %80 = at " o0 ‘o0
using water vapour mixing ratio, ¢, as an example here. Following Thuburn
(1993), this equation is further split, into the following two sequentially-solved
equations

=0, (81)

dq  Ooq
and
0q do

Equation (82) is solved using the flux-based TVD scheme. Low- and high-
order fluxes are defined at the half-levels as follows. Noting that & is positive
downwards, the low-order flux is the first-order upstream expression

Okt1/2
FI£+1/2 = / (qk + qr+1) —

[6k11/2] (
2
The following high-order flux is used, based on the Lax-Wendroff method

Qe — Qr+1)- (84)

) -9
pH _ Tkt1/2 (Ok+1aK + OkGr+1) _ 0k+1/2At (gk+1 — qr) _ (85)
k172 2 (Ok+1 + o) 2 (Ok+1 —on)

This expression corresponds to a weighted average at the half-level, but modified
by a half timestep’s worth of advection. In the TVD method, these fluxes are
combined using a flux-limiter, C, such that the net flux F is given by

Fk+1/2=FkL+1/2+Ck+1/2 (Fkl—:ri-l/2_FkL+1/2) (86)
The C-CAM code provides options for three alternative flux limiters:

a) the original Van Leer (1974) flux-limiter

Try1/2 + [Try1/2]
L+ [Prg1/2]

Cry1y2 = (87)
b) the “MC” (monotonized centred) flux-limiter of Van Leer (1977)
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1+7r
Ck+1/2 = max |:0, min <2Tk+1/2, %1/2, 2):| , (88)

¢) the “superbee” flux limiter of Roe (1985)

Ciy1/2 = max [O, min (1, 2rk+1/2) ,min (2,rk+1/2)] . (89)

In each of these formulae, the smoothness variable ry 1/ is given by

dk — dk-1 .
'f'k+1/2 = m foro < 0, (90)
k+2 — dk+1 .
T'k+1/2 = (1—]:_’_17—% foro > 0, (91)

it represents the ratio of the slope of the solution upstream of k + 1/2 to the
slope of the solution across the interface at k + 1/2 itself; r is approximately
unity where the numerical solution is smooth (Durran, 1999), so the flux will
then be weighted towards the higher-order expression; r negative when there is
a local maximum or minimum immediately upstream of k + 1/2, in which case
Ci+1/2 becomes zero and the low-order flux is used. The behaviour of the TVD
scheme is described by Durran (1999) and the various flux-limiters compared;
he indicates a preference for the “MC” limiter. In C-CAM, the “superbee” flux
limiter is usually used, although the other forms are found to give fairly similar
results. The final solution to (82) is given by

T+ gr Fyv1/2 = Fi—1)2

4y, (92)

Ok+1/2 — Ok—1/2 ’
where values at the current time step are denoted by superscript 7 and those at
the subsequent time step by 7+ 1

After solving (82) by TVD methods, (83) is solved using simple explicit
(forward-in-time) differencing; an alternative implicit treatment is available for
(83), but little sensitivity is found to the method of solution of this equation.

In the C-CAM model, vertical advection is performed both before and after
the “dynamics”, each time for a time increment of At/2, in order to reduce time
truncation errors related to time-splitting. To guard against the possibility
of computational instability during vertical advection, the maximum Courant
number for vertical advection is calculated each time step, and if it ever exceeds
1, then the vertical advection is multiply performed with a suitably subdivided
time increment for that time step.
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6 The primitive equations in continuous form

The 2D material time derivative is defined as

dg 0 0 0

— = & tmu— +mu— 93
dt ot Oz oy’ (93)
where m denotes the map factor of the conformal projection. Where p; is the
surface pressure, the primitive equations for terrain-following o coordinates,

(¢ = p/ps), may then be written in the following form:

Horizontal momentum

dru O, Olnp, du

s +m o + mRyT, e + 0o, = (f + fm)v + Ny (94)
dgv 0, Olnp, . Ov N
e —a a_ = m v

p +m8y +mR4T, By +060 (f+ fm)u+ N (95)

where ¢, is the geopotential (including virtual temperature contributions) and
f is the Coriolis parameter; Ry is the gas constant for dry air. T, is the virtual
temperature defined by

Tva[1+<§_§_1> q] (96)

where T is temperature and R, is the gas constant for water vapour; ¢ is the
mixing ratio of water vapour. The various N terms denote possible contributions
from physical parameterizations. The extra map projection terms f,, are rather
small and are given by

om om
=U—— —V—— 97
fm =u T (97)
Temperature
dgT d(‘)T B R,T w Ny (98)

dt 0o cpo ps

where ¢, is the specific heat of water vapour at constant pressure and w is the
pressure vertical velocity.

Moisture
duq .0q -
— — = N,.
dt + o ! (99)
Continuity
dp In py o6
——— 4+ D+ —= 100
@ Pt =0 (100)
where the divergence D is given by
d(u/m)  O(v/m)
D =m? : 101
m { Oz + Oy (101)
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Hydrostatic equation
99, _ _RaT,

% p (102)
6.1 Continuity equation and diagnostic equations for ver-
tical velocity

For a K-level model, the above continuity equation (100) consists of K equa-
tions. It provides the time variation of p; and diagnoses the (K-1) half-level
values of the staggered vertical velocity variable. It is convenient to rewrite
(100) as

dlnp, a6
gtp +D+ 5 =Ny, (103)

where N,,, denoting the advective time rate of change of In py, is formally
defined by

Jlnp, Olnp,

Np, = —u-Vinp, = —mu el By (104)
When (103) is integrated vertically, it gives
dlnp _ .
——= =-D'4+N! 105
> +NL, (105)

using the following vertical integral notation

_ o
0 = / () do. (106)
0
Substituting (105) into (103) and integrating vertically from 0 to o, yields
6=0D' —D’ - (oN}, — N3). (107)
The pressure vertical velocity, w, is defined by

w 1 @—d dg Inps

e e 108
P ps di T at (108)
Noting that
dglnp —1
dt ==-D +N,, - Ny, (109)
it follows that
w —=0 o
o =-D + N, —0N,. (110)

Np, is only required for diagnostic calculation of ¢ and w for the first time step,
for which it is calculated using simple centred finite differencing. In C-CAM, a
semi-Lagrangian evaluation of N, is used for later time steps, as described in
subsection 7.2.
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6.2 Hydrostatic equation

The hydrostatic equation (102) may be integrated assuming a simple average
layer virtual temperature between levels, to give

Ry

¢’Uk = ¢’Uk_1 - 7 (7—“!))c + T’Uk_l) ln b1

fork=2,3,.., K. (111)

For the lowest level, a standard temperature lapse from the surface of 6.5°
km1 gives

—0.0065R R4T,
o = 95 = {Ul h- 1} 0.0065" (112)
where g is the gravity constant. Thus the geopotential may be expressed
linearly in terms of temperature in the form

Doy, = Pop_y + B Top_y + Bi Ty, fork=1,2,., K (113)

where ¢,, is understood to equal ¢, the surface geopotential, i.e. gz,, where
zsis the surface elevation. The final expression for the geopotential is thus of
the form

K
$u. = s+ D BTy, fork=1,2,. K. (114)

j=1

7 Semi-Lagrangian discretization

The primitive equations are now solved by two-time-level semi-Lagrangian dis-
cretization. Values at the current time level are denoted with superscript 7,
those at the subsequent time level by 7 + 1, and those at the departure points
at time 7 (having arrival positions at the 7 + 1 grid points) by 7.. The depar-
ture points are efficiently calculated as described in Section 3. Bicubic spatial
interpolation is then used to evaluate all quantities with superscript 7, as also
described in Section 3.

To avoid mountain resonances, Rivest et al. (1994) advocated off-centring of
the time-averaged terms. This is included in the mass and thermodynamic equa-
tions below in terms of €4, a small constant having a typical value of 0.1; similar
off-centring is included in the momentum equations in terms of €, presently set
to be identical to £,. The various equations will be discussed separately in the
following subsections.

7.1 Semi-Lagrangian surface pressure equation

Evaluating the above primitive equations at the mid-points of the fluid trajec-
tories, (100) becomes

At as\ 1™
{lnps +(1 +sa)7 (D+ %)}

26



At oo\ ™ At
= {lnps —(1- Ea)7 (D + %)} = 7Mps say. (115)

Note that a special treatment for advection of surface pressure is usually used,
as described in Section 8, to provide greater accuracy near steep terrain.

7.2 Semi-Lagrangian derivation of & and w/p;

It is important to note that once the right-hand-side departure values of the
continuity equation have been determined, the 7+ 1 values of ¢ and w/ps may
be derived. Integrating (115) vertically throughout the depth of the atmosphere
provides

At At
{mps +(1 +ea)7D1} = 7Mps1 = X,,, say. (116)

Similarly to the derivation of (100), further integration of (107) yields

GTH = (a51 - EU)TH + (aMpsl . M—,,S") /(1 +€a). (117)

Substituting (100) into (108) also yields

=

W TH T+1 ——0
(p—) =- (D7) + (0, —oM,,) /(1 +e), (118)
s
where now D, ¢ and w/p; are all consistently valid at 7+ 1. Noticeably inferior

performance was produced in an early version of the model, when M, was
approximated by Np, of (103) .

7.3 Semi-Lagrangian temperature equation

Equation (98) is first rearranged in terms of a reference temperature T to give

dHT _ RdTi

£ =N 119
dt Cp0 Ds T (119)
where
- Ry(T-T
Np = Ny T =D (120)
Cpo0  Ds

In C-CAM, T is prescribed each time step; it is allowed to vary horizontally,
but not vertically. The vertical advection term has been omitted from (119),
as it is calculated separately (as described in Section 5) by a split procedure at
the beginning and end of the semi-Lagrangian “dynamics” calculations. Semi-
Lagrangian discretization of (119) then gives
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At RdT w TH At RdT wl™ =
T-(1 — — =T 1-— — — AtN7T.
{ (1+2a) 2 cpo ps} +( €a) 2 cpo ps + T

= Ay say. (121)

Here the superscript 7 represents an average along a trajectory between the 7,
and 7 + 1 values of the bracketed quantities. The 7 + 1 component of these
terms is a little problematic; a time extrapolated value could be used, but
usually in C-CAM it is assumed that these terms change slowly in time and can
be adequately approximated by 7 values at the appropriate spatial locations.
Durran and Reinecke (2004) have suggested that these terms be treated by an
Adams-Bashforth procedure; this has been implemented as an option in C-CAM,
but no benefit has been observed from its use.

Equations (117) and (118) provide a separation of w/ps into further “linear”
and “nonlinear” components (with respect to divergence, D). Substituting (118)
into (121) gives the final semi-Lagrangian version of the temperature equation,

At RyT

=A
T 2 cpo

At RiT—"""
{T+(1+6a)—Rd D }

M"-M):X .

(122)
Note that a special treatment for advection of the temperature variable in (121)
is usually used, as described in Section 8, to provide greater accuracy near steep
terrain.

7.4 Semi-Lagrangian momentum equations

Define an augmented geopotential

P, = ¢, + RyT, Inp, (123)

and also a linearized augmented geopotential

P=¢+ R;Tnps, (124)

where ¢ is calculated using temperature rather than virtual temperature, and
where the surface pressure term is multiplied by the reference temperature T'
(as defined in the previous section) rather than T,. Equations (94) and (95)
may be rearranged as

diu OP, _ - oT,
dgv oP, ~ oT,
at +m oy =—(f+ fm)u+ Ny, + mR;Inp, oy (126)

For the semi-implicit solution, it is advantageous to write the left-hand-side in
terms of P rather than P,, whence
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dru oP . aT, d(P - P,)
7 +m8az =(f + fm)v + Ny +de1np8—8m +m76$ , (127)
dgv opP . oT, d(P - P,)
T a. - m N'u l CAr - a >
7 +may (f+ fm)u+ Ny + mRgInp 3y +m a (128)

where, as for temperature, the vertical advection terms are omitted because they
are determined in a separate split calculation. Semi-Lagrangian discretization
then produces

{u-i— (1 +sb)% (mz—i - fv> }T+1 = {“ - _5”)% (mg_la: - fv) }T*

+AtN] = A, say, (129)
At (9P TH At (9P ™
{U+(1+Eb)7 (ma—y+fu)} —{v—(l—sb)7 (ma—y-i-fu)}
+AtN] = A, say, (130)
where now
N, ZNu+fmv+delnps% +mw, (131)
Oz Oz
N, =N, — fmu+mRy lnps% + mw. (132)
dy dy

7.4.1 Treatment of pressure gradient terms

There are important subtleties in the finite-differencing treatment of the above
pressure gradient terms, as a result of the availability of reversible staggering.
Note first that the eventual semi-implicit solver will be using staggered values of
u”*! and v™*t1. To provide eventual consistency between the pressure gradient
terms (in particular for any situation in which there has been no change at a grid
point due to advection), all terms involving horizontal derivatives on the right-
hand-sides of (129) to (132) are first evaluated at the staggered locations, then
transformed reversibly to unstaggered positions for use in the right-hand-sides
of (129) to (132). This procedure is necessary to gain the excellent dispersion
characteristics outlined by McGregor (2005). It is a key ingredient in the ex-
cellent performance achieved by C-CAM. It is a technique that is not readily
available to spectral models, or models formulated on other grids.
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7.4.2 Re-organization of the momentum equations

Solving the simultaneous equations (129) and (130) in terms of u™*! and v7*!
yields

{u(1+F2) +(1 +5b)%m (6_13 +F6P>}T+1

oz ' 9y
= A, +FA, =X, say, (133)
{v(l +F) +(1+ sb)%m (68—]; — F%) }T+1
=A,—-FA, =X, say, (134)
where
F = (1+e)fAt)2. (135)

Note that the reversible staggering procedure has avoided the averaging trun-
cation errors of the Coriolis terms normally associated with a C-grid. Division
of each of (133) and (134) by m(1 + F?) gives

u At [OP op\1™ aX,
{a +5e (5 + Fa—y>} = it ey (136)
v At [(OP opP\1™ aX,
{W?“ (aj‘%?)} = mte) (137)
where
a=(1+e)/(1+ F?). (138)

It is possible to further reorganize these equations to ensure that the final
Helmholtz equation can consistently use a 5-point stencil. This is achieved
by rewriting (136) and (137) as

u At (0aP OaFP T aX
oy = =2 . P _ v
{m+ 2 (am Ty T )} mite)y Y
v At (OaP OaFP T aX
o 0 == — asP _ v
{m T3 ( Oy Oz u >} m(1+ep)’ (140)
where
da  OaF
a3 = % + 6—y, (141)
Oda OaF

are evaluated by first-order finite differencing at the staggered u and v positions
respectively.
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7.5 The semi-implicit solution procedure

Substituting (114), using T rather than T, into the definition (124) for the
linearized augmented height P7+! gives

K
Pt =, + > By T7 ™ + RyTInpl*. (143)
j=1

Then substituting for 77+ and p7*! from (122) and (116) yields

At RT B
PIH = gy - (L+e) 5 ZU’”D“”%ZBM (X1);
Poj=1 7Y Jj=1
_ At——
+R,T (X,,s —(1+ sa)TDT“l) . (144)

Collecting the divergence terms, the equation may be rewritten in terms of
D7'-|—17

PI 4+ (1+e,) ZC DTt = (145)
where
K
Xp=¢s+ » Bij(Xr); + RiTX,,. (146)
j=1

The matrix C has constant coefficients which are a function of the reference
temperature, the choice of o levels, and the choice of discretization for vertical
integration. For simple trapezoidal vertical integration,

R,T
ij = RdT(O'J 1/2 — O'J_H/g + L ZBI"] s (147)

On

where

Atox =ok; A+aj =0 —0jq1 forl <j< K. (148)

The system of equations (139), (140) and (145) may be decoupled in the vertical
by determining the eigenvalues A of C and the corresponding eigenvector matrix
E, to satisfy

K
> CkjEjn = EgnAn. (149)
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Now w7+, o7, D71 p7+l X, X, and Xp are expanded in terms of their
vertical modes U, V, D, P, X,, Xyand Xp; for example

K
UZ-H = ZEijj. (150)
j=1

It was noted earlier that T is allowed to vary horizontally in C-CAM, the only
requirement being that it does not change during a time step. To simplify the
calculation of eigenvectors, they are pre-calculated with respect to a reference
temperature of 300 K, from the equation

K
300
Z (Tckj) Ejn = EgnAnsoo- (151)

7j=1
It is clear from the above that the eigenvectors of (149) and (151) are identical,
and that the eigenvalues are related to the pre-calculated values by
T
An = ﬁ)\nﬁﬂo forn = 1to K. (152)

It may also be noted that this more general definition of T’ succeeds because the
subsequent equations do not involve any horizontal derivatives of A (and thus
T).

The equations in eigenvector space corresponding to (139), (140) and (145)
become

U At (0aP  OaFP aXy
Z .= ATt A = 1
m + 2 ( oz + 3y 04377) m(l+e)’ (153)
VYV At (aP  OaFP akX,
== - = 154
m 2 ( Oy Oz a4P> m(l+¢ep)’ (154)
At
Pi+ (1+¢€a) 5 MD; = Xp. (155)

The divergence is given by (101), so (153) and (154) can be combined by hori-
zontal differentiation to yield the divergence in the form

At
D= —m27V§P + Xp (156)

where

m? d(aX,/m) O(aX,/m)
o= 157
P= M +e) { Oz + Oy } (157)
and the 5-point Laplacian operator is defined by
(Az)’VoP = air1Piv1j + @im1,Pic1j + ijia Pijar + ij1 P
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Az
—dai;Pij+ — {as,_ s, (Pic1j +Pij) — sy, (Piga; + Pij)}

Az
t {ou; ;_ s (Pijor + Pij) — o, 1y 5s(Pijia + Pij) } (158)

where only the horizontal (i, j) indexing is shown, and use has been made of the
equivalence of Az and Ay. Note that the arrangement of terms in (153) and
(154) avoids the appearance of cross-derivative terms in (158) involving aF'P.

A simple rearrangement of (158) gives

(Az)’VAP = (aiy1j— sy ;) Piv1 + (@ic1j +as,_ 5 ;)Pic
i i1 — a; ;o 5)Pijrr + (i1 + o, ;- 5)Pij—1

+(a3i—.5,j — Q3,45 + Qg ;5 — O4; 545 — 4041',]')731',]' (159)

This equation is of the form
2 2 _ 17 ! 1 7
(Az)*VLP = ai+1,jpi+1,j + ai—1,jpi—1,j + ai,j+1pi,j+1 + az‘,j—lpi,j—l

~day P; (160)

where each «' is approximately equal to 1. Substituting (156) into (155) yields
the Helmholtz equation for P

A

P—-m )

At
(14e)MV2iP = Xp — 7(1 + €)M XD (161)

7.6 Solution of the Helmholtz equation
The Helmholtz equation (161) is an equation of the form

AP — Az*V2P = B. (162)

This Helmholtz equation (162) is solved by successive over-relaxation (SOR) for
each of the levels in vertical eigenvector space, giving an updated value each
iteration as

i

1 !
@iq1,;Piv1,; + g jPio1,
17
Ai,j -+ 4ai,j

17 1

@; i1 Pij+1 + 04 1 Pij1+ Bij P

+w A+ 4o =P
i, Q; ;
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where w denotes an acceleration factor, which is expected to lie between 1
and 2. The values of w depend on the number of grid points N, the Schmidt
magnification factor S, and the eigenvalues. It was not possible to derive an
analytic expression for the optimum acceleration factor. Optimum values were
determined experimentally for a wide range of values and interpolation used be-
tween these values (courtesy of Martin Dix). An alternative conjugate-gradient
solution is also available, implemented and tested by Martin Dix.

It was shown by Young (1971) that two-dimensional Poisson or Helmholtz
equations may be solved with SOR using a red-black (or checkerboard) config-
uration arrangement, with the same convergence rates as for the standard SOR
scheme. For the conformal-cubic geometry, this translates to a three-colour ar-
rangement, as illustrated in Fig. 9. The big advantage of checkerboard schemes
is that they permit easy vectorization. The procedure is that (163) is used dur-
ing each iteration to first update all the red points, then all the green points,
then all the blue points. Note that during a single-colour update, none of the
other-coloured points are being altered, and so each single-colour update can be
done as a single vector sweep.

Figure 9: Diagram showing the 3-colour scheme used for the solution of the
Helmholtz equation, illustrated on a C5 grid.

7.7 Inversion to physical space

Having obtained values for P, the eigenvectors may be used to give P"t! from
(150). The velocity equations (139) and (140) then give 4" t! and v™+! at their
staggered locations. Calculation of the corresponding divergences from (101)
then provides pI ! from (116) and 77! from (122). Finally, "+ and v"+! are
transformed to their unstaggered locations.
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8 Horizontal advection near orography

The innovations of this section significantly avoid problems of advective over-
shooting of surface pressure and temperature near steep terrain. These innova-
tions avoid any necessity to introduce “hybrid” vertical coordinates.

8.1 Horizontal advection of surface pressure

In (115) it is required to find a departure-point value of a function similar to
Inp,, for advection along a o-surface. For simplicity, the present discussion
is given in terms of lnpg, although in practice the combined right-hand-side
variable is used. To reduce truncation errors near steep orography, an associated
variable In p, is also advected. We define

Zsg

lnu.g:ln S+——7 164
P Pt e (164)

where T, is some reference temperature, presently set to 300 K. The transformed
variable has much less orographic variation than In p;, as use has been made of an
approximate reduction to mean sea-level pressure via the hydrostatic equation
(102). Formally,

* _ oo\ %sg
(np) = gy - (22-) (163
The right-hand-side terms are evaluated, respectively, by cubic interpolation
and bi-linear interpolation. The assumption is made everywhere within C-CAM,
without loss of generality, that the orography data set exactly satisfies a bi-linear
relationship. The upstream orographic determination can thus be considered
“exact”, which leads to enhanced accuracy from the usage of (165).

8.2 Horizontal advection of temperature

In (121) it is required to find a departure-point value for the right-hand-side
function derived from T', for advection along a o-surface. As for surface pres-
sure, a simpler discussion is given here for 7', omitting the extra terms for this
discussion. To reduce truncation errors near steep orography, an associated
variable T is set up. We define

Ty = Ty, + 0.0065v42s, (166)
where
v =0 forop <0.2, (167)
vk =50 — 1 for0.2 < oy, < 0.4, (168)
v, =1 for0.4 < oy. (169)

This transformed temperature variable has rather less orographic variation than
T, having made use of a standard lapse rate, and thus leads to smaller interpo-
lation errors during advective calculations. Simulation results seem to be not
particularly sensitive to the precise form of ;. As for surface pressure, formally
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(1) = (Tr)" — (0.00657:2,)" (170)

and, again, the right-hand-side terms are evaluated, respectively, by cubic in-
terpolation and bi-linear interpolation.

9 Mass and moisture conservation

During each time step it is required that the global averages of mass and mois-
ture do not change as a result of advective and other “dynamics” processes.

Mass conservation

First, the method will be described for mass conservation. The following mea-
sure of the globally integrated mass before the “dynamics” is calculated,

6N pe
M* = Z o (171)

m#.
ij=1 "1

where one-dimensional indexing of the form ij has been adopted. The uncor-
rected value of p,,; after the “dynamics” is denoted by p’;ij and its increment is
written as

Aps,, =P}, — 15, (172)

Now denote the globally-integrated positive increment by

0, Ap,..
AMt =3 7max(m2' Ps;) (173)
ij—1 ij

and the integrated negative increment by

6N2 .
B min(0, Aps, ;)
AM™ =y —— e, (174)

ij=1 ij

A factor a, is next defined as

(175)

The expression used for the final corrected value, D5, 18
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I .
pg,’j = p?,’j + ap maX(O, Apsij) + Oé_ min (03 ApSij) * (176)
P

It can then be verified by substitution that the integrated value of (176) satisfies

6N2 6N2 g

> pg;{ =y p—2 (177)

ij=1" "4 ig=1 "%

The motivation for (176) is that the correction for values of surface pressure
should be directly proportional to its “dynamics” increment AM;;, but the sign
of the correction should depend on the sign of the increment.

B

Moisture conservation

A related, but slightly more complicated, method will now be given for conserv-
ing the integrated water vapour mixing ratio, ¢. The same technique applies for
the other water components and for other trace gases. The following measure
of the globally integrated water vapour before the “dynamics” is used,

K 6N? |Ao |

—a &

Q=22 o (178)
k=1 ij=1 ij

The uncorrected value of ¢ after the “dynamics” is denoted by qi?j’k and an
effective mass-weighted increment is written as

AQijk = P, max(q} 1, Gmin) — P, @i k> (179)

where ¢, denotes the minimum physically permitted value of g, typically
chosen as 107%, a little less than the lowest value observed by McCormick et al.
(1993). Next, denote the integrated positive increment by

K 6N?
AQY = AQy )12 1
Qt =) > max(0,AQu) " (180)
k=1ij=1 ij
and the integrated negative increment by
K 6N?
AQ = in(0, AQs; ) 2% 181
Q=2 min(0,AQix) 5" (181)
k=1ij=1 j
A factor a4 is next defined as
. AQ~ AQ-
aq—m1n<—AQ+, _AQ+)' (182)
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The expression used for the final corrected value, 4 k> 18

min (0, AQij,k)

max(1, o) (183)

D, Qijk = Ps, Qi + g max(0, AQij k) +

It can then be verified by substitution that the integrated value of (183) is
equal to the left-hand-side of (178), i. e.,

K 6N? K 6N?

c ¢ |Aak| _ o _a |Aak| 184
DD P =D D P (184)
k=11j=1 2] k=1 ij=1 wJ

The formula also produces gj; , > gmin at each grid point. As for mass correc-
tion, the motivation for (183) is that the correction for each moisture concen-
tration should be directly proportional to its “dynamics” increment AQ;j,x, but
the sign of the correction should depend on the sign of the increment.

10 Some time stepping considerations

10.1 The first two time steps

Being a two-time-level model, extra care is taken at the beginning of each sim-
ulation to provide suitably accurate advective velocities. For the first two time
steps, (64) can not be used to provide velocities at the half-time levels. The
following procedure is used to get around this difficulty.

First (trial) half time step (1 =1/2)

The dynamics (only) is integrated for half a time step, using as a trial advective
velocity u®. This produces a prognostic value for u'/2.

First time step (1 =1)

The model integration starts afresh, using u'/2as the advective velocity.

Second time step (T =2)

The integration continues, using (3u' —u®)/2 as u'*'/2, the advective velocity.

10.2 Procedure for calling dynamics and physics

C-CAM has been organized so that the “dynamics” and “physics” are performed
sequentially in “split” mode, as first advocated by Marchuk (1974). Whilst this
provides numerical stability, and assists code modularity, it can lead to some
time truncation errors when using large time steps. The following procedure
has been adopted in C-CAM, and found to be both robust and beneficial. The
description is given just in terms of u, but all model variables are similarly
involved. The intermediate model values after “dynamics” and “physics”’ are
denoted respectively by uq and u,. The nonlinear term N, refers to the term
appearing in (94).
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First time step

Set N1=0.
Dynamics and physics produce u} and ..
Define N2 = (ul — u})/At.

Set u! = ul.

Later time step T

Use N7 from preceding time step.
Dynamics and physics produce uj and uj,.
Define NJ*! = (u] — uj)/At.

Set u” = u].

Writing model output

Whenever model output is written at the end of a time step, the uj, values are
written so as to incorporate the full updating effect of the physics.

11 Nudging options for stretched simulations

For some C-CAM applications, a nudging tendency may be applied at the end
of a time step to selected variables. For example, for the u component, the
nudging tendency equation, in split form, is
ou urs-—u
— == 185
ot Tefold (185)
If the value of u before the nudging correction is denoted by u', the analytic
solution of (185) is

t ) (W' — urs). (186)

uT = upg +exp (
Tefold

From (186), it can be seen that if the nudging is applied for a time interval
equal to Tefolq, then the difference of u from wrg will be reduced during that
time interval by a factor exp(1). In practice, the following simple finite difference
solution to (185) is used

u = 4+ At(ups —u'). (187)

Currently, with C-CAM, options exist for nudging the wind components
above about 800 m. For some applications, it is desired to minimize chaotic
climate effects such that the large-scale systems approximately follow a specified
set, of synoptic systems, say from reanalyses or from a coupled GCM. For such
applications, the winds are weakly nudged at every grid point with an e-folding
time of around 48 h.

A number of long climate downscaling runs have been performed with mod-
erate stretching of S = 3.33. For these runs, far-field wind nudging has been
used to assure reasonable climatology in the coarsest parts of the domain. For
such applications, there is no nudging on the central panel, or on the inner
half of each of the adjacent four panels. On the furthest panel 7¢1q= 24 h is
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usually used, with its inverse value linearly decreasing to zero at the half-panel
boundaries. An example of the nudging weights is shown in Fig. 10.

Figure 10: An example of nudging weights, the inverse of Tego1q (h‘l), as used
in 60 km resolution simulations centred over Asia with a C63 grid.
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