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CSIRO, Division of Atmospheric Research
Private Bag 1, Mordialloc, Vic 3195, Australia

Abstract

This report describes a series of sensitivity studies carried out on a two-
dimensional atmospheric transport model. The model was used to deduce
sources of total carbon given surface observations of COz. It was found that
the deduced sources are very sensitive to the vertical resolution in the model
if the procedure used to specify the lower boundary condition and deduce the
tracer source is only accurate to first order in the vertical grid spacing. A num-
ber of improved formulations of this lower boundary condition are suggested
and tested.

1. Introduction

In a recent paper (Enting and Mansbridge, 1989, hereinafter called EM3) we at-
tempted to calculate the zonally averaged net source of total carbon for the atmo-
sphere. Figure 1 shows this deduced source as a function of time and latitude. (This
is the same as Figure 1 in EM3.)

The result was found by employing surface observations of carbon dioxide as the
lower boundary conditions of a global, two-dimensional transport model. The 2-d
model is fully described in Enting and Mansbridge, 1986 (hereinafter called EM1),
some preliminary studies with the model are described in Enting and Mansbridge,
1987 (hereinafter called EM2) and the surface observations are described in EM3.

In this paper we investigate the dependence of the deduced source upon indi-
vidual features of the source-deduction method. We consider the importance of

1) the horizontal and vertical resolution in the model,

2) the treatment of the lower boundary condition,

3) the size of the time step in the numerical integration,

4) uncertainties in the surface carbon dioxide observations,
B) uncertainties in the zonally averaged transport coefficients,

8) errors in the projection of the transport coefficients onto the time and space
grids.

Each of these features is studied by comparing the standard result in Figure 1
to the corresponding result from a perturbed integration.

The standard run has 8 vertical levels equally spaced in pressure and 10 equal
area horizontal zones. A time step of 0.001 years is used for the integration and this
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Figure 1: Deduced source of total carbon in the standard run as a function of
sine(latitude) and time. Units are Gigatonnes of carbon per year per unit area (the
total surface area of the earth taken as 1).

is close to the limit for numerical stability. The surface CO, observations are taken
as strictly periodic seasonal cycles at all latitudes superimposed on a fixed inter-
hemispheric gradient and a linear concentration increase of 1.5 ppmv yr~!that is the
same at all sites. The seasonal cycle and inter-hemispheric gradient are expressed
as a Fourier series in space and time, the coeflicients of which are given in Table
1 of EM3. That paper also describes the pseudo-Lagrangian transport fields that
are used in the model (originally derived from a 3-d General Circulation Model by
Plumb and Mahlman, 1987) .

It should be noted that the deduced source in each run was found by running the
2-d model in source-deduction mode for 3 years of model time starting from uniform
initial conditions. The deduced source in the figures actually refers to the source
in the third year. Integrations over a fourth vear have shown that the solution is
almost exactly periodic by this time.

2. Horizontal and vertical resolution

In Section 4 of EM2 it was shown that horizontal and vertical resolution have
only a small effect upon the mode] transport of a passive tracer (CCl3F). However,
the deduction of the carbon source, being an inverse problem (Newsam and Enting,
1988), would be expected to be more sensitive to any variation in the specification of
the integration. Accordingly, we carried out a number of runs varying the horizontal
and/or vertical resolution. (Of course it was also necessary to change the time step
in accordance with the stability criterion — see EM1.) Table 1 lists some statistics
which allow the comparison between the deduced source in these runs and the
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10 20 30

8 | (1.000, 0.00, 1.00) (0.995, 2.70, 1.01) (0.993, 3.13, 1.02)
16 | (0.994, 3.65, 0.89)  (0.992, 3.87, 0.90)

24 | (0.990, 5.23, 0.83)

Table 1: Statistics comparing CO2 sources determined from runs with NH horizon-
tal zones (listed across the top row) and NV vertical levels (listed down the first
column) to the standard run (with NH = 10 and NV = 8). In each triplet the first
number is the correlation coefficient, the second number is the root mean square
error (Gt/(E*yr)) and the third number is the regression coeflicient.

deduced source in the standard run.

The table contains triplets of numbers relating to runs with various combinations
of NV, the number of levels in the vertical, and NH, the number of zones in the
horizontal. The first number of each triplet is the sample correlation coeflicient,
r, between the deduced source in the given run and the standard deduced source.
The correlation coefficient is defined, for example, by Hoel (1971) and is calculated
by summing over points in space-time. There are usually 10 grid points in the
horizontal and 100 points in time spaced 0.01 years apart. (In runs where NH = 20
or 30 then adjacent zones are combined to give 10 ‘equivalent’ zones.)

The second number in each triplet is the root mean square error, rmse, calculated
over the same points in space-time. The units are Gigatonnes of carbon per unit
area per year (Gt/(E*yr)), where the unit area has been normalized to the Earth’s
surface.

The third number is the coefficient @ which gives the least squares best fit to the
equation y = ax. Here x 1s the vector of source values for the standard run at the
1000 space-time points and y is the corresponding vector for the perturbed run,

Table 1 shows that as NH increases the correlation coefficient decreases, the root
mean square error increases and the regression coefficient increases slightly. Figure
2 shows the deduced source when NH = 30. The source is shown for each of the 30
zones and so has more sharply defined peaks than the standard source in Figure 1.
If neighbouring zones are combined to produce sources for the 10 standard zones
then the corresponding plot is very similar to the standard source in Figure 1. This
is to be expected since the regression coefficient changes only slightly with NH and
so indicates that increasing NH does not systematically change the deduced source
in the 10 standard zones.

In contrast, increasing NV significantly changes the deduced source. Figure 3,
in which NV = 24, shows much smaller peaks and troughs than the standard source
in Figure 1 although the two sources are very. similar in shape. This is borne out
by the correlation and regression coefficients in Table 1. These show that as NV
increases the correlation coeflicient decreases slightly but the regression coeflicient
decreases significantly.

This systematic behaviour occurs because the numerical scheme for combining
source-deduction and boundary value specification is only accurate to first order.
This is demonstrated in the next section where we also suggest improved methods
of specifying the boundary condition, and thereby deducing the source.
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Figure 2: As for Figure 1, but with 30 latitudinal zones (NH = 30) instead of 10
and DT = 0.0001 years to ensure stability.
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Figure 3: As for Figure 1, but with 24 vertical levels (NV = 24) instead of 8 and
DT = 0.000075 vears to ensure stability.
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3. The lower boundary condition

The strong dependence of the deduced source upon the vertical resolution may be
understood by studying a simplified version of the transport equations. Consider
the one-dimensional diffusion equation for the tracer concentration C(z,t)

acC é*C

where z is the vertical coordinate and ¢ is time. To simplify the analytical solution
the top of the atmosphere is at z = 0 and the surface is at z = 1. The boundary
conditions are

ac
5-; z=0 a 0 (20')
and
C(1,t) = R (C,e™?). (2b)

These boundary conditions enforce symmetry at one boundary (or, equivalently,
zero tracer flux) and a sinusoidal observed field at the other boundary.
Consistent with the diffusion equation the deduced surface source is given by

S(t)=K %g (3)

z=1

The above problem has the analytical solution

Clz,t) =R (Cw(z)e"""") , (4)
where
C,(z) = C, cosh(az)/ cosh(a) (5a)
and
w = Ko?. (5b)
The deduced source is then
S(t) =R (Sue™*), (6)
where
S. = KaC, tanh(a). (7)

The solution is then characterized by the ratio of the deduced source to the observed
surface concentration, namely,

S./Cs = Ko tanh{a). (8)

We now investigate how different methods of numerical solution to the above prob-
lem will depend differently upon the vertical resolution. Equation (1) is approxi-
mated by

0C; K

G = (a4 Gios = 26;), for j=2N -1, (9)
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where the vertical direction has been divided into N levels. Here A = 1/N and C;
refers to the concentration at the centre of the jth level, i.e., at z = (j — 0.5)/N.
This equation has the solution

Cj =R (Cuje™?), (10)
where ' '
Cuj =7 (' +a77), (11a)
and a is found from the equation
A2
a? — [”“’KA +2]a,+1=0. (11b)

Note that, according to eq. 1la, C, -1 = Cy,+1 and so the symmetry boundary
condition (eq. 2a) is satisfied. The variable v is found, in principle, by applying the
second boundary condition, (eq. 2b). First, observe that the rate of change of the
tracer concentration in the Nth layer is given by the sum of the flux through the
lower boundary (the source) and the flux through the top of that layer. Thus

Cy K
A—a-t’l =5 (Cv-1+Cn) + 5(2). (12)

Using eqs. 10 and 11a we may be rewrite eq. 12 as

AC, n = S., (13)
where W
A:iwA—{-E{l — R) (14a)
and a1 4 gi-N
R = e (145)

The finite difference problem may now be solved after defining the source-
deduction method. In the standard source-deduction method used in the 2-d trans-
port model (and in EM3 in particular) the tracer concentration in the bottom layer,
Cu,N, is simply replaced by observed surface concentration, C,. Thus, eq. 13 gives

5./C, = A. (15)

This value of the ratio of deduced source to surface concentration should be com-
pared to the corresponding ratio for the solution to the original partial differential
equation (given by eq. 8). The absolute value of the relative difference between the
two estimates of the ratio is given by

(relative error); = ‘1 — % tanh o

. (16)

The solid curve in Figure 4 shows this relative error as a function of N, the
number of grid points. The diffusion coefficient K = 0.3045. This is the lower
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Figure 4: Relative error in the ratio of deduced source to surface tracer value for
K = 0.3045 in the one-dimensional diffusion system, given as a function of the
number of grid points. The solid curve refers to the standard source-deduction
method, the broken curve refers to the linear approximation to the tracer gradient
and the dashed curve refers to the quadratic approximation to the tracer gradient.

limit of the non-dimensionalized vertical diffusion coefficient which was used in the
standard run of the 2-d model. It is appropriate to use this lower limit (which
corresponds to 0.5 metre? sec™! ) because the vertical eddy diffusion coefficient
takes this value on the lower boundary of the 2-d model. The frequency is w = 27
because the annual cycle is the strongest cycle in the real atmosphere.

The relative error is approximately 32% when there are 8 levels in the vertical
and has only dropped to 10% for the 24 level model. (Note the logarithmic scale.)
Choosing the minimum possible value of the diffusion coeflicient probably overesti-
mates the relative error in the standard run of the 2-d model, however the relative
error decreases only slowly as a function of K. The solid curve in Figure 5 shows
how the relative error depends on K. Even for a non-dimensional value of 3.0 (5.1
metre? sec™! ) the relative error is still greater than 8%. It appears that these er-
rors are large enough to explain the strong dependence of the deduced source upon
vertical resolution in the 2-d model (see, for example, Table 1).

This resolution dependence is clearly undesirable and so a number of other
source-deduction methods were examined. Recalling eq. 3, the tracer gradient at
the surface may be approximated by the gradient between the centre of the box and
the surface. Thus

2K
A

Sw = Cs - CU,N) (17)
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Figure 5: Relative error in the ratio of deduced source to surface tracer value as a
function of the diffusion coefficient when there are 8 grid points. The solid curve
refers to the standard source-deduction method, the broken curve refers to the linear
approximation to the tracer gradient and the dashed curve refers to the quadratic
approximation to the tracer gradient.

may be used to eliminate C, ,, in eq. 13 to give

Sw a

C. 14 A4A2K° (18)
The relative error for this method is plotted on Figures 4 and 5 as the broken curves.
Even for a few as 8 levels the relative error is only 4% for K = 0.3045.

The third source-deduction method to be examined attempts to find the tracer
gradient at the surface by fitting a parabola between Cn,Cn_1 and C;. (The second
method fitted a straight line between Cy and C, .) This gives

Su
& =7 (8C./3~3Cy + Cy_1/3), (19)
and thus g 84
C, 3MA/K+9-R #0)

The relative error resulting from this approximation is shown as the dashed
curves in Figures 4 and 5. The method has the smallest errors of all with a relative
error of only 1% for the 8 level model at K = 0.3045.

This last approximation has been tested in some preliminary runs of the 2-d
model and has been found to be stable. These experiments have also indicated
that the above calculations are broadly applicable to the 2-d model. When the
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Figure 6: Amplitude (solid curve) and phase (broken curve) in the ratio of deduced
source to surface tracer value as a function of the diffusion coeﬁ‘ricrient.r

third source deduction method is used the sources are not as strongly dependent on
vertical resolution as are the sources using the standard deduction method. Also,
when the new method is employed the deduced sources for NV = 8 and 24 more
closely resemble the sources found by the standard method’s NV = 24 version than
its NV = 8 version. Given these observations it is useful to consider briefly the
physical interpretation of the different source-deduction methods.

The standard source-deduction method is strongly dependent on the vertical
resolution because the tracer concentration in the lowest level is set equal to the
observed surface concentration. This would not cause a very large error if the
transport fields used in the 2-d model were consistent with a well mixed boundary

layer of depth > A. This boundary layer depth will be O (\/K/w) = 0.05 in

non-dimensional height for K = 0.3045 and w = 27. Thus, as can also be seen
from Figure 4, more than 20 vertical levels are required before the approximation
produces acceptably small errors.

However, even much higher vertical resolutions will not necessarily produce an
acceptable solution. Consider Figure 6 which shows how the function S, /C, de-
pends on K. For large values of K, |5, /C,| asymptotes to 27 but for small values
it changes rapidly. If K = 0.3045 then % |S.,/C,| = 2.21. Thus, for a given set of
observations, doubling K will quadruple the magnitude of the deduced source. Even
if K = 3.0 then -d—d;(- [Sw/Cs| = 0.62. For the standard source-deduction method the
value of K is taken simply as the value at the top of the layer closest to the surface
and this will reach the lower bound of K for a sufficiently great vertical resolution.

Rather than use such an ad hoc method to characterize the flux through the
surface boundary layer it seems preferable to use a direct model such as one of the
alternatives already discussed. This need to accurately parameterize the boundary
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Figure 7: As for Figure 1, but with DT = 0.0011 years instead of 0.001 to give
numerical instability.

layer of the real atmosphere is a severe limitation on the modelling of the atmo-
spheric transport.

4. Time step dependence

The stability of the time stepping scheme used in the numerical integration is dis-
cussed in detail in Section 5 of EM1. Equation 5.12 in that paper states the effective
upper bound of time step DT. In the standard integration we use DT = 0.001 years.
This is very close to producing an unstable integration for, as Figure 7 shows, set-
ting DT = 0.0011 years results in a spurious source/sink term after the middle of
the year.

Nevertheless, this solution is very similar to the standard solution before the
instability appears. The two integrations can be compared in a number of ways.
The pattern correlation coefficient 7, is 0.999996 for the first half of the year (only
the first 50 time points are used for the correlation). Also the rmse is only 0.06352
Gt/(E*yr)for the first half of the year.

The insensitivity of the deduced source to the time step is further illustrated by
carrying out an integration with DT = 0.0005 years. The time-latitude plot of the
deduced source is not shown here because it is indistinguishable from that of the
standard case shown in Figure 1. For the full year the pattern correlation coefficient
is 7 = 0.999999 and the root mean square error is rmse = 0.01718 Gt/(E*yr).

Thus, we conclude that the integration is unaffected by the size of the time step
provided that the time step satisfies the stability criteria. It therefore seems un-
necessary to use more sophisticated, but computationally expensive, time-stepping
schemes such as the one employed by Tans et al. (1989).
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Figure 8: As for Figure 1, but the surface concentrations are solely a trend of 1.5

ppmv yri.

5. Variation in the surface observations

Because we are dealing with an inverse problem we would expect the deduced surface
source to be strongly influenced by errors in the observed surface concentrations.
The deduced source depends linearly on the observations and so we can examine
separately the three parts of the observations (the trend, seasonal variation and
inter-hemispheric gradient). Note that, since the initial concentrations are set to
zero everywhere, this linearity applies not just at steady state but at all times.

Figure 8 shows the deduced source when the surface concentrations are simply
the trend of 1.5 ppmv yr~!. The space-time structure of the deduced sources is
entirely due to the space and time variations of the transport fields. The latitudinal
structure of the annual mean deduced sources is shown in Figure 9. Here the
strong apparent sources in the mid-latitudes are required to balance the transport
due to the Hadley-cell circulation and so maintain equal CO; concentrations at all
latitudes.

Because the deduced source depends linearly on the observations the errors
involved in wrongly specifying the trend are easily estimated by rescaling Figure 8.
The root mean square value of the source in the figure is 3.85 Gt/(E*yr). Thus, for
example, an error in the trend of 0.2 ppmv yr~!would cause a root mean square
difference of 0.51 Gt/(E*yr).

Figure 10 shows the seasonal variation in the surface CO, observations for the
standard run. The Fourier coefficients which specify this variation are given in
Table 2. (The data set from which the coefficients are derived is given in Table 3
of EM2.) The accuracy of this estimate of the seasonal variation of surface CO,
may be guessed by using the same method to derive a new estimate from a different
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Figure 9: Total annual carbon sources (in Gigatonnes) in each of 10 equal area
latitudinal zones where the surface concentrations are solely a trend of 1.5 ppmv
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Figure 10: The contribution to the surface COz observations made by the seasonal
cycle used in the standard run.
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cos(2nt) sin(2nt) cos(4nt) sin(4t)
1 0.334 1.810 -0.107 -0.636
cos(nz) -0.865 -3.054 -0.220 1.058
cos(2mz) 0.850 0.819 0.415 -0.553
cos(3ma) -0.264 -0.148 -0.401 0.085

Table 2: Coeflicients describing the seasonal variation of CO3 concentration in the
standard run.
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Figure 11: The contribution to the surface CO; observations made by the seasonal
cycle derived from GMCC data (Harris and Bodhaine, 1983).

data set (Harris and Bodhaine, 1983). The resultant seasonal variation is shown in
Figure 11. The corresponding Fourier coeflicients are given in Table 3. The pattern
correlation coeflicient for the two figures is 0.986, the root mean square difference is
0.404 ppmv and the linear regression of the new set of seasonal observations against
the standard set gives a coefficient of 1.023.

The corresponding deduced sources from the two data sets are given in Fig-
ures 12 and 13. The pattern correlation coeflictent is 0.964, the root mean square
difference between the two figures is 6.49 Gt/(E*yr)and the linear regression coef-
ficient is 1.085. The inversion process has accentuated the difference between the
two observational sets with the most significant change being in the magnitude of
the small source/sink pair at around 30°S. This suggests that this feature may be
within the noise level of the data. The noisiness of the inversion in the Southern

Hemisphere is further emphasized by Figure 14 which shows the annual mean of the
deduced source. It should be realised however that the seasonal variation in CO,
concentration makes a relatively small contribution to the estimated annual mean
source in the Southern Hemisphere. The dominant contributions are from the trend
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cos(2mt) sin(2wt) cos(4t) sin(4wt)
1 0.275 1.880 0.251 -0.622
cos(mz) -0.753 -3.256 -0.394 1.101
cos(2rz) | 0.876 0.700 0.076 -0.659
cos(3nz) | -0.507 0.223 0.010 0.202

Table 3: Coeflicients

GMCC data set.

describing the seasonal variation of CO; derived from the

90°S

Figure 12: As for Figure 1, but the surface concentrations are the seasonal cycle

from the standard run.
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Figure 13: As for Figure 1, but the surface concentrations are the seasonal cycle
derived from GMCC data (Harris and Bodhaine, 1983).

and inter-hemispheric gradient.

The deduced source associated with the inter-hemispheric gradient of CO; was
studied by using four different estimates. These four estimates, which are shown
superimposed in Figure 15, were derived by applying the same method to different
data sets. A finite Fourier cosine series in =z = 0.5(1 + sin(latitude)) was fitted to
the data by a least squares technique. The constant coefficient was then neglected
as it must be absorbed by the trend term. Table 4 gives the resultant sets of Fourier
coefficients.

Coeflicient set A is used in the standard run and was derived from the annual
mean data of Harris and Bodhaine (1983) normalized to 1982. Set B was derived
in the same way, and from the same data, but involves fitting only the first four

Set cos(mz) cos(2mz) cos(3mz) cos(4mz) cos(5mz)
A -1.490 -0.294 0.134 0.338 -0.115
B -1.490 -0.196 0.032

C -1.258 0.004 -0.111 0.179 -0.000
D -1.370 -0.010 -0.160 0.142 0.134

Table 4: Coefficients describing the inter-hemispheric gradient of CO;. Coeflicient
set A is used in the standard run and was derived from the annual mean data of
Harris and Bodhaine (1983) normalized to 1982. Set B was derived from the same
data but involves a least squares fit to only the first three Fourier components. Set
C was derived using only the 1982 annual mean data of Harris and Bodhaine. Data
set D is derived from the GMCC 1984 annual means (Schnell and Rosson, 1986).
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Figure 14: Total annual carbon sources (in Gigatonnes) in each of 10 equal area
latitudinal zones. The solid curve is for the case where the surface CO; observations
are taken from the seasonally varying part of the standard surface observations
(Figure 10) and the broken curve is for the case where the alternative seasonal
variation is used (Figure 11).

Fourier components. For set C the data used were the 1982 annual means of COz
at 15 surface sites (again taken from Harris and Bodhaine, 1983). Data set D is
derived from GMCC 1984 annual means at the same 15 surface sites (Schnell and
Rosson, 1986).

Taken together these curves indicate the possible variation in estimates of the
inter-hemispheric gradient. It should be realised that while curves A and B attempt
to represent a composite year, curves C and D are smoothed versions of the gradient
for particular years.

The year to year variability can be seen in Figure 16 which shows the finite
Fourier approximation to the inter-hemispheric gradient for each of the years 1979
to 1985. The data are taken from Schnell and Rosson (1986). The curves for years
1981 to 1085 are from a 6 parameter fit to 15 surface stations while for 1979 and
1980 a 4 parameter fit was used because less surface data were available (there were
9 and 12 sites respectively). The inter-annual variability of the inter-hemispheric
gradient appears to be of the same order as the variability between the 4 curves
shown in Figure 15. It should be noted however that the latitudinal variation is
much smoother for the years 1982 to 1985 (shown as continuous curves) than for
the years 1979 to 1981 (shown as broken curves). It is most likely that this is due to
improvements in the representativeness of the measurements. Hence the envelope
of the four continuous curves is probably a good description of the inter-annual
variability.
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Set B C D

A | (0969, 0.11, 1.01) (0.961, 0.14, 1.18) (0.942, 0.15, 1.06)
B (0.976, 0.11, 1.15)  (0.973, 0.10, 1.05)
C (0.994, 0.05, 0.91)

Table 5: Statistics comparing the four approximations to the inter-hemispheric
CO; gradient. In each triplet the first number is the correlation coefficient, the
second number is the root mean square error and the third number is the regression
coeflicient.
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Figure 15: Different cosine series approximations to inter-hemispheric gradients
of CO;. Curve A is for the standard inter-hemispheric gradient, using a 6 term
expansion. Curve B uses the same data as curve A but a 4 term expansion. Curve
C uses a 6 term expansion to 1982 GMCC surface data. Curve D uses a 6 term
expansion to 1984 GMCC surface data. The ordinate is (1 + sin(latitude))/2 and
the co-ordinate is in units of parts per million by volume (ppmv).

The four curves in Figure 15 are compared quantitatively in Table 5. For each
pair of curves the table lists the pattern correlation coefficient, the root mean square
difference and the linear regression coefficient. It should be noted that curves C
and D do not resemble the standard curve (A) as closely as they resemble its lower
resolution version (B). This is presumably because the non-surface data used in
the determination of A and B were responsible for a significant amount of high
frequency noise. Note also the strong correlation between curves C and D.

The triplets in Table 5 may be compared to those in Table 6, which shows the
relationship between the deduced sources when curves A to D are used to specify
the CO; observations. As would be expected from the the earlier table, the sources
deduced from curve B more closely resemble those from curves C and D than do
the sources from curve A. Also, the most highly correlated sources are those from
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Figure 16: Cosine series approximations to inter-hemispheric gradients of CO4 for
the years 1979 to 1985. The ordinate is (1 + sin(latitude))/2 and the co-ordinate is
in units of parts per million by volume (ppmv). The data were taken from Schnell
and Rosson, 1986.

Set B C D

A | (0.793, 7.17, 1.30) (0.856, 6.37, 1.37) (0.692, 8.24, 0.85)
B (0.940, 2.42, 0.91) (0.903, 4.18, 0.68)
C (0.949, 3.31, 0.73)

Table 6: Statistics comparing the four deduced sources resulting from the four
approximations to the inter-hemispheric CO; gradient. In each triplet the first
number is the correlation coefficient, the second number is the root mean square
error and the third number is the regression coeflicient.

curves C and D. All of the correlation coeflicients in Table 6 are smaller than the
corresponding ones in Table 5; this is because the inversion process causes ‘errors’
(in this case differences) to grow (EM3; Newsam and Enting, 1988).

These deduced sources are shown in Figures 17 to 20. They have similar time
variations because the surface concentrations used to derive them differ only in their
time independent parts. The differences caused by the different inter-hemispheric
gradients are most obvious in Figure 21 which shows the annual mean values of the
deduced sources for each of the curves. This Figure strongly suggests that the high
frequency latitudinal variations in the standard inter-hemispheric gradient (curve
A) have exaggerated the magnitude of the sink near 30°S and of the source near
the equator. Also the deduced source in the Northern Hemisphere is noticeably
different.
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Figure 17: As for Figure 1, but the surface concentrations are the inter-hemispheric
gradient as used in the standard run.
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Figure 18: As for Figure 1, but the surface concentrations are the inter-hemispheric
gradient formed from the 4 term cosine series expansion of the GMCC data used in
the standard case.
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Figure 19: As for Figure 1, but the surface concentrations are the inter-hemispheric
gradient formed from the 6 term cosine series expansion to surface level GMCC

1982 annual mean data.
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Figure 20: As for Figure 1, but the surface concentrations are the inter-hemispheric
gradient formed from the 6 term cosine series expansion to surface level GMCC

1984 annual mean data.
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PFigure 21: Total annual carbon sources (in Gigatonnes) in each of 10 equal area
latitudinal zones. The four curves labelled A, B, C and D refer to the cases where
the surface CO; concentrations are taken from the four descriptions of the inter-
hemispheric gradient described in the text.

Set B8 Y
a (0.968, 6.37, 1.03) (0.938, 8.80, 0.95)
8 (0.965, 6.49, 0.92)

Table 7: Statistics comparing the deduced sources in three runs. The standard run is
labelled ¢, the run with the curve C-type inter-hemispheric gradient is labelled 8 and
the run with both the curve C-type inter-hemispheric gradient and the alternative
seasonal cycle is labelled . Triplets are: ( correlation coefficient, root mean square
error, regression coefficient).

It should be noted that these results do not invalidate any of the conclusions
in EM3. In that paper we stated that the weakness of the mid-latitude Southern
Hemisphere sink compared to the mid-latitude Northern Hemisphere sink suggests
that there are strong non-oceanic sinks in Northern latitudes; this conclusion would
thus be strengthened by using one of the other inter-hemispheric gradients. Sim-
ilarly, a weaker net equatorial source, but with the same seasonality, would not
require the alteration of any of our discussion in EM3 (in particular, see Section 5.5
of EM3).

The total effect of errors in the surface CO3 observations may be estimated by
comparing Figure 1 (the standard deduced source) with Figures 22 and 23. The
concentrations used in the derivation of Figure 22 differ from the standard ones
by using the curve C inter-hemispheric gradient. Figure 23 uses the same inter-
hemispheric gradient and the alternative seasonal cycle discussed earlier.
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Figure 22: As for Figure 1, but the surface concentrations differ from the standard
run by using the type C inter-hemispheric gradient.

Figure 23: As for Figure 1, but the surface concentrations differ from the standard
run by using the type C inter-hemispheric gradient and the alternative (GMCC)
seasonal cycle.
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Figure 24: Total annual carbon sources (in Gigatonnes) in each of 10 equal area
latitudinal zones. The solid curve refers to the deduced source in the standard run.
The broken curve refers to the case where the type C inter-hemispheric gradient
has been used instead of the standard one. The dashed curve refers to the case
where the type C inter-hemispheric gradient and the alternative (GMCC) seasonal
cycle have been used. A, B, C and D refer to the cases where the surface CO,
observations are taken from the four descriptions of the inter-hemispheric gradient
described in the text.

The three figures are qualitatively similar. However, the use of the non-standard
(smoother) inter-hemispheric gradient has caused a strengthening of the seasonal
cycle in the Northern mid-latitudes while all other seasonal features have been
weakened. Figure 24, which shows the annual mean deduced sources for the three
sets of results, displays the same broad effects of varying the inter-hemispheric
gradient that were considered when discussing Figure 21.

The three sets of deduced sources are quantitatively compared in Table 7. The
pattern correlation coefficient and root mean square difference between the stan-
dard run, e, and the run with type-C inter-hemispheric gradient, 3, are very close
to the statistics discussed earlier where the standard run was compared to one with
the alternative seasonal cycle — in that case the statistics were 0.964 and 6.49
Gt/(E*yr)respectively. Run 7y employs the variations on both the inter-hemispheric
gradient and the seasonal cycle. It is interesting that if the two variations are
regarded as perturbations from the standard set of observations, and those pertur-
bations have exactly zero correlation with the standard observations and each other
then the pattern correlation coefficient would be 0.935 and the root mean square
difference 9.09 Gt/(E*yr). The actual values in Table 7 are very close to these and
so indicate, as would be expected, that there is no significant correlation between
the perturbations and the standard set of CO3 observations.
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Experiment Correlation Root mean Regression
coefficient  square diff. coefficient
09 %9y 0.9993 1.382 0.958
0.9x KPP 0.9996 0.924 0.975
0.9x KYY 0.9998 0.646 0.982
0.9x KYP 0.9999 0.428 1.009
0.9% (¢, all Ks) 0.9995 2.100 0.923
R1 0.9989 1.186 0.994
R2 0.9975 1.796 1.005
R3 0.9966 2.099 0.984

Table 8: Statistics comparing the deduced surface sources in a number of experi-
ments to that in the standard run. The experiments are fully described in the text.
The second column gives the correlation coefficient, the third column gives the root
mean square difference and the fourth column gives the regression coeflicient.

6. Uncertainties in the zonally averaged transport
coefficients

The significance of the uncertainties in the transport coefficients was examined
by conducting a number of experiments in which the transport coefficients were
perturbed. Table 8 lists the statistics comparing the deduced surface sources in
these experiments to those in the standard run.

For the first experiment the usual streamfunction is everywhere multiplied by
0.9. For the second experiment it is the vertical diffusion coefficient which is mul-
tiplied by 0.9, for the third experiment the horizontal diffusion coefficient, and for
the fourth experiment the cross-diffusion term. In the fifth experiment all four
coefficients are everywhere multiplied by 0.9.

The deduced source from this last experiment is shown in Figure 25. Note how
this figure strongly resembles the standard deduced source, but with the peaks and
troughs smoothed out.

The correlation coefficients in the first five rows of Table 8 confirm that, for
a uniform decrease in one of the transport coeflicients, the deduced sources are
very highly correlated with those deduced in the standard case. By contrast, the
regression coefficient is very different from 1 in each case (excepting that involving
the cross-diffusion” term). It is clear that a uniform decrease in the one of the
transport coeflicients corresponds to an almost uniform decrease in the magnitude
of the deduced source. The fifth row of the table shows that a 10% decrease in
the transport changes the deduced surface source, as measured by the regression
coefficient, by less than 10%. Thus the source is not as sensitive to perturbations in
the transport fields as it is to other perturbations, for example those in the surface
concentrations.

This may be appreciated intuitively by considering the case of a small change to
the transport coeflicients. To a first approximation the solution adjusts by propor-
tionally varying the source. This behaviour is suggested by equations 3.9 and 4.2 of
Newsam and Enting (1988) in which the source deduction problem is considered for
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Figure 25: As for Figure 1, but all of the transport coefficients have been multiplied
by 0.9.

a simplified model where transport is due to three-dimensional homogeneous tur-
bulence. Those equations show that, in the asymptotic limit of large wave-number,
the deduced source changes in proportion to changes made simultaneously to all of
the diffusion coeflicients.

All three statistics in the first four rows of Table 8 indicate that the largest
changes in the deduced source result from changes in the streamfunction. Next
important is the vertical diffusion coefficient, followed by the horizontal diffusion
coefficient and the cross-diffusion coefficient.

Further experiments were conducted where values X; were chosen from a zero
mean, unit standard deviation, Gaussian distribution. The Fourier coefficients in
time for each of the transport coefficients were projected onto the space grid and
then multiplied by different factors (1.0+0.1X;). The statistics resulting from three
such experiments with random errors are shown in Table 8.

The correlation coefficient and root mean square statistics indicate that the
deduced sources for these experiments are less like the standard source than the
earlier experiments with a smooth variation of the transport fields but the linear
regression coeflicient indicates the opposite. This is to be expected when comparing
systematic and random errors.

Finally, it should be noted that in some two-dimensional transport models very
different transport fields have been used. In EM3 we compared the present model
with that of Hyson et al. (1980). This model uses the Eulerian advection fields of
Oort (1983) together with diffusion coefficients tuned by Hyson et al. but ultimately
derived from Hidalgo and Crutzen (1977). We doubled their horizontal diffusion
coefficients in order to simulate the numerical diffusion in their model and then
used this transport field to deduce the surface sources in our model. The result is
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Figure 26: As for Figure 1, but the transport coefficients have been taken from
Hyson et al. (1980) with the horizontal diffusion doubled to simulate their numerical
diffusion.

shown in Figure 26.

The deduced source in this case is clearly very different from that of the standard
run. The correlation coefficient between the two is 0.768 and the root mean square
difference is 16.19 Gt/(E*yr). The Hyson et al. fields produce a much weaker set
of deduced sources and this is reflected in a linear regression coefficient of 0.637.

7. Errors in projecting the transport coefficients

The transport coefficients derived by Plumb and Mahlman (1987) were calculated as
monthly mean values on a grid of 74 points equally spaced in latitude (not counting
the poles) and 9 non-equally spaced pressure levels (not counting the upper and
lower boundaries). To use these values in the 2-d transport model we first replaced
all negative values of the horizontal and vertical diffusion coefficients by zero. We
then found the best fit (in the least squares sense) finite Fourier decomposition in
time and space for each of the fields. The 100 Fourier coefficients with the largest
magnitude were then projected onto the 8 x 10 grid in space at time intervals of
0.01 years for use in the model.

The exact form of the Fourier decomposition depends on the field being de-
composed and the variable used: t = time, p = pressure, z = height or y =
(1 + sin(latitude)/2). The fields used in the standard run were v (the velocity
streamfunction), KZZ (the vertical diffusion in height coordinates), KYY (the hori-
zontal diffusion in sin(latitude) coordinates) and KYP (the cross-diffusion in y and
p coordinates). The vertical coordinates for each field were chosen so that the field
would vary as slowly as possible and so allow the best representation by a small set
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Figure 27: The mid-january mass streamfunction, in atmospheric masses per year,
as used in the standard run.

of wavenumbers. Since KPP = p? KZZ and the mass streamfunction = py then the
coordinate change causes no difficulty when projecting onto the p—y grid.

For the fields employed in the standard run, denoted v,, KZZ, , KYY, and
KYP, , we used wavenumbers 1 to 20 for a Fourier sine series expansion in 7y and
wavenumbers 0 to 2 for a Fourier series expansion in 27t. KYP and KZZ were
expressed as Fourier sine series in 7p and KYY was expressed as a Fourier cosine
series in mp using wavenumbers 1 to 6 in each case. These choices were determined
by the boundary conditions for these fields. Because the velocity streamfunction
tended to zero on the lower boundary and a constant on the upper boundary we
expressed it as a cosine series in 7p/2 using wavenumbers 1 to 10.

The accuracy of this procedure was tested by creating two alternative sets of
fields. In the first we followed the same procedure except that instead of taking a
spectral decomposition in the vertical we linearly interpolated the fields onto the
pressure grid used in the 2-d model. We give these fields the subscript p. To form
the second set of fields we linearly interpolated the Plumb and Mahlman monthly
mean fields onto our p-y grid. These field were given the subscript ‘pyt’.

The resultant mass streamfunctions at mid-January for the three sets of fields
are given in Figures 27, 28 and 29. These Figures give an intuitive sense of the
differences in mass flux which result from the different projection methods; Table 9
gives some statistics which quantify these differences.

The statistics compare the first and second named fields. Note that we are
comparing the non-dimensionalized fields used directly by the transport model, ie.,
the mass streamfunction, KPP, KYY and KYP. The first statistic is the root mean
square difference between the two fields using the 960 points made up from the 12
values at the middle of each month projected onto the 8 x 10 grid. The second
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Figure 28: The mid-january mass streamfunction, in atmospheric masses per year,
where linear interpolation was used in the vertical.
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Figure 29: The mid-january mass streamfunction, in atmospheric masses per year,
where linear interpolation from the gridded monthly mean values of Plumb and
Mahlman (1987) was used.
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Field 1 Field 2 RMSD Total p p;  Total A A,

Yoyt s 0.104 0.987  0.989 0.955 0.784
Ypyt ¥y 0.219 0.954 0986  0.923 0.944
Yp P 0.228 0.949  0.981 0.907  0.810

KPP,,, KPP, 0367 0982 0954 00934 0.841
KPP,,. KPP, 0526 0972 0957 0955  0.918
KPP, KPP, 0518 0970 0934 0976  0.936
KYY,;; KYY, 0096 0968 0077 0.981 0.986
KYY,,: KYY, 0120 0942 0886 0.994  0.997
KYY, KYY, 0131 0933 0899 0.967 0.973
KYP,,: KYP, 0.063  0.94 0.996 0.058  0.048
KYP,: KYP, 0.140 0966 0962 0984  0.996
KYP, KYP, 0.145 0967 0965 0.938  0.049

Table 9: Statistics comparing the first and second named fields. Fields with the
subscript s are as used in the standard run (which have been spectrally decomposed
in pressure, horizontally and time), those with the subscript p have been linearly
interpolated in pressure but spectrally decomposed in the other two dimensions and
those with the subscript pyt have been linearly interpolated in all three dimensions.
The first statistic is the root mean square difference between the two fields using
the 960 points made up from the 12 values at the middle of each month projected
onto the 8 x 10 grid. The second statistic is the correlation coefficient using all
960 points and the third statistic is the correlation coefficient using the 120 points
on the lowest level above the ground. The fourth statistic is the total regression
coefficient A, where (first field) = Ax(second field) and the fifth statistic is the
regression coeflicient A; where only the 120 points from the surface concentrations
are used.

Fields 1 Fields 2 Correlation Root mean Regression

coefficient  square diff.  coeflicient
(Ypyr, Kpye) (¢, K ) 0.960 7.090 0.890 -
(Ypyt> Kpyt)  (¥p, Kp)  0.961 6.481 1.025
(¥p, Kp) (ws, ) 0.966 6.951 0.840
(¥e, Kp) (95 Ks) 0.985 4.471 0.933
(Yp, Ke) (¥s, Ks) 0.986 4.459 0.914
(¥p, Km) (s, Ks) 0.978 5.902 0.855
(¥pr Kin) (¥p, Kpp) 0.997 1.696 1.004

Table 10: Statistics comparing the deduced sources where different sets of trans-
port coefficients have been used. The first statistic gives the correlation coeflicient,
the second statistic gives the root mean square difference and the third gives the
regression coefficient A, where (source from field 1) = A x(source from field 2).
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Figure 30: As for Figure 1, but the original monthly mean transport fields of Plumb
and Mahlman (1987) have been linearly interpolated onto the standard 8 x 10 p~y
grid to give transport coeflicients which are linearly interpolated in time during a
source-deduction run of the 2-d transport model.

statistic is the correlation coefficient using all 960 points and the third statistic
is the correlation coefficient using the 120 points on the lowest level above the
ground. The fourth statistic is the total regression coefficient A, where [first field]
= Ax[second field] and the fifth statistic is the regression coefficient A; where only
the 120 points from the lowest level are used.

The corrrelation coefficients in the table indicate that the projected fields are
very similar. Although the correlation coefficients do not indicate that the linear
interpolation in p produces a closer fit to the original field than does the spectral
fit the linear regression coeflicients do indicate this.

Most importantly, the linear regression coefficients suggest that the spectral
decomposition causes a systematic overestimation of the transport coefficients. In
particular, the mass streamfunction and vertical diffusion coefficients are generally
overestimated by more than 10% at the level closest to the ground. This would be
expected to result in an overestimate of the magnitude of the deduced source/sink.
That this does occur can be seen from Table 10.

The first row in the table compares the deduced source when the transport
coefficients are linearly interpolated directly from the Plumb and Mahlman fields
(having subscripts ‘pyt’) with the deduced source found in the standard run (where
the transport coefficients have subscript ‘s’). The linear regression coefficient shows
that the deduced source from the standard run has a magnitude about 10% greater
than that using the interpolated transport coefficients. This is easily observed by
comparing Figure 30, which shows the latter deduced source, with the standard
deduced source in Figure 1.




Sensitivity of a 2-d model 31

Fields 1  Fields 2 Correlation Root mean Regression
coeflicient  square diff.  coeflicient

(Y, Kp) (¥, Ky) 0.965 6.411 0.817
(¥s Kp) (05, Ki) 0.978 4.984 0.882
(¥p, Ko) (¥, Ks) 0.992 2.933 0.937

Table 11: As for Table 10 except that the source deduction method is not the
standard one but involves quadratic interpolation of the CO,; near the surface.
This is fully described in Section 3.

The second row of the table compares the deduced source derived from the fully
interpolated fields with those where the interpolation is only in p. This does not
indicate any systematic difference between the two deduced sources and so suggests
that the choice between linear interpolation and spectral decomposition is important
for the vertical coordinates but not the horizontal or time ones.

This conclusion is supported by examination of the third row of the table. Here
the sources from the fields with interpolation only in p are compared to those of the
standard run. The linear regression coefficient is similar to that in the first row.

Rows four and five of the table give comparisons in which for the first deduced
source either the streamfunction or the set of diffusion coeflicients has been linearly
interpolated in p and the other has not. The linear regression coeflicients in the two
rows are very similar and so suggest that the systematic difference comes equally
from the interpolation in the streamfunction and the diffusion coefficients.

We would expect that most of the systematic error caused by the interpolation
of the diffusion coeflicients to be due to the vertical term. This is because our earlier
results showed that the horizontal and cross diffusion coefficients are not affected by
the method of vertical interpolation as much as is the vertical diffusion coefficient.
Also we would expect the vertical term to be the dominant one in determining the
deduced source at the surface.

This is confirmed by rows 6 and 7 of the table. Here the expression K,, means
that the the field of diffusion coefficients is made up of KPP, , KYY, and KYP,,
i.e., linear interpolation has been used in the vertical for the vertical diffusion coef-
ficient but spectral decomposition has been used for the other two. Note the strong
similarities between the coefficients in rows three and six. The stalistics in row
seven show directly that the deduced source depends very little on the method by
which the KYY and KYP are interpolated vertically.

This importance of the interpolation method is not dependent on the source-
deduction method. A series of experiments using a different source deduction pro-
cedure have produced comparable results. We employed the third source-deduction
method described in Section 3 (involving fitting a parabola to the tracer concentra-
tions) in experiments with different sets of transport coefficients. The results are
summarized in Table 11 and the three rows in that table may be directly compared
with rows three, four and five in Table 10.
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8. Conclusions

Better modelling of the lower boundary is crucial to improving the accuracy with
which the surface data, i.e., observations from the surface boundary layer, can be
inverted. However, the extent to which the boundary layer can be modelled on a
zonally averaged basis is not known.

One possibility for reducing sensitivity to boundary effects is to use non-surface
data (both EM3 and Tans et al. have used surface data exclusively). However,
Newsam and Enting (1988) have noted that the inversion of upper atmosphere data
is much less well conditioned than is the inversion of surface data, due to the sparcity
of observations. Moreover, much of the lost information is zonal variation and this
will lead to aliasing errors in a zonally averaged model. Thus the use of non-surface
data could only determine a small number of modes of variation but it could do
so with less ambiguity than could surface data. Numerical experiments along these
lines are planned for the future.

As is usual in inverse problems, the result (the surface source) is sensitive both
to the observations (the surface concentrations) and the model (the transport coef-
ficients). Plausible variations in the observations and the model have indicated that
many details of the deduced sources in the Southern Hemisphere are close to the
noise level. However, these changes further weaken the net Southern Hemisphere
sink in comparison to the Northern sink and so strengthen the case for the existence
of strong non-oceanic sinks in Northern latitudes (as stated in EM3). Similarly, the
seasonality of the tropical source (attributed in EM3 to seasonal burning of cleared
biomass) seems to be a persistant feature well above the noise level. The seasonal
features of the northern hemisphere, having a much larger magnitude than those in
the southern hemisphere, are correspondingly much larger than any noise.
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