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What does Qualitative Modelling offer 
BBN’s?
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Bayesian Belief Networks in Risk 
Analysis

Bayesian Belief Networks (BBNs) applied to 
ecological risk assessment

�Prediction (Borusk et al 2004)

�Synthesis of ecological data and expert 
knowledge (Pollino et al 2006, Stiber et al 2004)

�Optimal decision-making (Varis 1998)



Bayesian Belief Networks

Bayesian Belief Network

� a group of nodes connected by directed arrows such that 
there are no cycles (loops)

� “Child” nodes with incoming arrows are probabilistically 
dependent on “parents” values
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Bayesian Belief Networks

� The directed graph represents conditional dependency 
among nodes

� Joint probability recovered from Bayesian network

� Answer any query
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An expert-informed BBN

� Ecological risk assessment starting to utilize expert 
opinion within BBN framework

� Allows inference in absence of case-specific measurements

� Well-suited for variety of ecological problems

� Set probabilities for every possible contingency in 
Conditional Probability Table (CPT)
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Conditional Probability:

“ Given a fish population in ‘poor’ health, a day in

which bottom water oxygen concentrations average

0.5 mg/l at mid-channel locations, and the strength

and direction of winds are such that the bottom water

is being brought to the surface along the windward

shore, what is the probability of more than

100,000 fish being trapped and dying? 

- Borusk et al 2004

Condition 1
Condition 2

Condition 3

Probability 
statement



Determining Conditional Probability 
Tables (CPT’s)

� BBN’s have difficulty incorporating unobserved or 
unmeasured variables since CPT becomes very large with 
additional contingencies (Elye-Datubo et al 2006)
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Qualitative Modelling Advantages:
Inclusion of feedback cycles

� Acyclic representation of BBNs disallow the incorporation 
of ecologically significant feedback cycles (Borusk et al. 
2004)

� Qualitative models utilize feedback cycles to make 
predictions:
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Example: Hare and Lynx

�Simple trophic chain: Vegetation – Hare – Lynx 

�Krebs et al. (1995) observed non-intuitive indirect 
effect: experimental increase of vegetation did not 
significantly increase the density of hares

Experimental 
positive input 
to vegetation



Hare – Lynx alternative model predictions
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“Null” Model – Uniform probabilities of 
increase or decrease

Fully connected community matrix:
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Transforming weighted predictions to 
probabilities of increase and decrease

• Simulations suggest weights > 0.5 have better than 90% 
chance of sign determinacy

• Functions translate predicted weights to probabilit ies

Dambacher et al (2003)
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LynxVegetation Snowshoe_hare

Input_to_Veg

Alternative_models

Example: Hare Lynx BBN

Model comparisons:

Observations:

Press perturbation:



Conditional Probability Table: Vegetation
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Linear transformation:
Model A1

Model A2

Null

Model Input(Veg) Increase Unchanged Decrease
1 Incr 0.950 0.025 0.025
1 Unch 0.025 0.950 0.025
1 Decr 0.025 0.025 0.950
2 Incr 0.950 0.025 0.025
2 Unch 0.025 0.950 0.025
2 Decr 0.025 0.025 0.950

Null Incr 0.333 0.333 0.333
Null Unch 0.333 0.333 0.333
Null Decr 0.333 0.333 0.333



Lynx
Increase
Unchanged
Decrease

33.3
33.3
33.3

Vegetation
Increase
Unchanged
Decrease

33.3
33.3
33.3

Snowshoe_hare
Increase
Unchanged
Decrease

29.9
40.2
29.9

Input_to_Veg
Increase
Unchanged
Decrease

33.3
33.3
33.3

Alternative_models

A1
A2
Null

33.3
33.3
33.3

Hare Lynx BBN

Model comparisons:

Observations:

Press perturbation:



Lynx
Increase
Unchanged
Decrease

74.4
12.8
12.8

Vegetation
Increase
Unchanged
Decrease

74.4
12.8
12.8

Snowshoe_hare
Increase
Unchanged
Decrease

53.9
23.1
23.1

Input_to_Veg
Increase
Unchanged
Decrease

 100
   0
   0

Alternative_models

A1
A2
Null

33.3
33.3
33.3

Hare Lynx BBN

Experimental 
positive input 
to vegetation:



Lynx
Increase
Unchanged
Decrease

85.8
7.10
7.10

Vegetation
Increase
Unchanged
Decrease

 100
   0
   0

Snowshoe_hare
Increase
Unchanged
Decrease

59.6
20.2
20.2

Input_to_Veg
Increase
Unchanged
Decrease

 100
   0
   0

Alternative_models

A1
A2
Null

42.5
42.5
14.9

Hare Lynx BBN

Hare Increase � Model A1

Hare Unchanged � Model A2

Hare Decrease � Other / Null

Observe 
Increase in 
Vegetation



Lynx
Increase
Unchanged
Decrease

79.8
10.1
10.1

Vegetation
Increase
Unchanged
Decrease

 100
   0
   0

Snowshoe_hare
Increase
Unchanged
Decrease

   0
   0

 100

Input_to_Veg
Increase
Unchanged
Decrease

 100
   0
   0

Alternative_models

A1
A2
Null

5.26
70.1
24.6

Hare Lynx BBN

Observe 
Decrease in 
Hare



Invasive species example:
Non-native shrimp introduction

Variables of interest:

�Shrimp – Detritus – Zooplankton – Juvenile Fish –
Benthic invertebrates

Shrimp do not consume 
Benthic invertebrates

Shrimp consume 
Benthic invertebrates

Model B1 Model B2



Shrimp
Increase
Unchanged
Decrease

74.4
12.8
12.8

Benthos
Increase
Unchanged
Decrease

23.1
23.1
53.9

Juv_Fish
Increase
Unchanged
Decrease

12.8
12.8
74.4

Zooplankton
Increase
Unchanged
Decrease

48.8
17.9
33.3

Detritus
Increase
Unchanged
Decrease

21.0
21.0
58.0

Input_to_Detritus
Increase
Unchanged
Decrease

   0
 100
   0

Input_to_Shrimp
Increase
Unchanged
Decrease

 100
   0
   0

Alternative_Models
B1
B2
Null

33.3
33.3
33.3

Which variable best differentiates 
between models?

� If only have resources to monitor one variable, 
which should it be?

Model comparisons:

Observations:

Press perturbations:



Sensitivity Analysis of BBN Informs 
Monitoring Strategy

• Sensitivity findings suggest zooplankton best  
discriminates between competing models:

� Model B1: Shrimp do not prey on benthic invertebrates

� Model B2: Shrimp consume benthic invertebrates

� Null Model: Uniform probabilities of increase or 
decrease 

.248Detritus

.288Benthic Invertebrates

.323Juvenile Fish

.323Shrimp

.404Zooplankton

Mutual InformationNode



Observing a decrease in zooplankton 
suggests model B2 is incorrect

�Observation consistent with shrimp not preying on 
benthic invertebrates:

Shrimp
Increase
Unchanged
Decrease

74.4
12.8
12.8

Benthos
Increase
Unchanged
Decrease

32.6
32.6
34.9

Juv_Fish
Increase
Unchanged
Decrease

12.8
12.8
74.4

Zooplankton
Increase
Unchanged
Decrease

   0
   0

 100

Detritus
Increase
Unchanged
Decrease

13.4
13.4
73.2

Input_to_Detritus
Increase
Unchanged
Decrease

   0
 100
   0

Input_to_Shrimp
Increase
Unchanged
Decrease

 100
   0
   0

Alternative_Models
B1
B2
Null

64.2
2.50
33.3



More Qualitative Modelling advantages:
Alternative model falsification

�BBN’s sensitive to structural uncertainty with 
important impacts on intervention strategy (Varis
and Kuikka 1999)

Eutrophic Lake Trophic Interactions only



Danish Lake BBN

Macrophytes
Increase
Unchanged
Decrease

38.7
30.6
30.6

Bird_Inv
Increase
Unchanged
Decrease

47.9
26.0
26.0

Invertebrates
Increase
Unchanged
Decrease

47.9
26.0
26.0

Bird_Fish
Increase
Unchanged
Decrease

21.5
21.5
56.9

Pisc_Fish
Increase
Unchanged
Decrease

24.0
24.0
51.9

Cyprinids
Increase
Unchanged
Decrease

21.5
21.5
56.9

Zooplankton
Increase
Unchanged
Decrease

48.4
25.8
25.8

Phytoplankton
Increase
Unchanged
Decrease

20.4
20.4
59.3

Nutrients
Increase
Unchanged
Decrease

53.8
23.1
23.1

Bird_Mac
Increase
Unchanged
Decrease

38.7
30.6
30.6

Input_to_Macrophytes
Increase
Unchanged
Decrease

   0
 100
   0

Input_to_Cyprinids
Increase
Unchanged
Decrease

   0
   0

 100

Shallow_Danish_Lakes
Eutrophic model
Trophic only interactions
Null model

33.3
33.3
33.3

Input_to_Nutrients
Increase
Unchanged
Decrease

   0
 100
   0

Cyprinid removal



Danish Lake BBN
“Optimistic” transformation:

Macrophytes
Increase
Unchanged
Decrease

 100
   0
   0

Bird_Inv
Increase
Unchanged
Decrease

74.7
12.6
12.6

Invertebrates
Increase
Unchanged
Decrease

74.7
12.6
12.6

Bird_Fish
Increase
Unchanged
Decrease

8.94
8.94
82.1

Pisc_Fish
Increase
Unchanged
Decrease

 100
   0
   0

Cyprinids
Increase
Unchanged
Decrease

   0
   0

 100

Zooplankton
Increase
Unchanged
Decrease

 100
   0
   0

Phytoplankton
Increase
Unchanged
Decrease

   0
   0

 100

Nutrients
Increase
Unchanged
Decrease

   0
 100
   0

Bird_Mac
Increase
Unchanged
Decrease

 100
   0
   0

Input_to_Macrophytes
Increase
Unchanged
Decrease

   0
 100
   0

Input_to_Cyprinids
Increase
Unchanged
Decrease

   0
   0

 100

Shallow_Danish_Lakes
Eutrophic model
Trophic only interactions
Null model

89.8
1.17
8.98

Input_to_Nutrients
Increase
Unchanged
Decrease

   0
 100
   0



Alternate models and transformations

�Observations from published studies of cyprinid 
removal

�Eutrophic and trophic models have predictions of 
same sign but different weights

�Tested three different weight-to-probability 
transformations:

“Optimistic”

“Linear”

“Pessimistic”
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Transformations influence ability to falsify 
alternative models

� Eutrophic and trophic model predictions of same sign but 
different weights

� Each transformation suggested observations consistent with 
“eutrophic” model

� Optimistic transformations allow better model discrimination

� Difficult to falsify under pessimistic transformation

.22.13.09Null

.38.21.01Trophic

.41.66.90Eutrophic

PessimisticLinearOptimisticModel

Transformation:



Deepened 

channel

Benthic fauna loss

Dredge plume

Benthic / pelagic 

fauna

Primary

Production

Alternative 

Models

Benthic

Infauna

Epibenthic 

Infauna
Pelagic Fauna Seagrass

Sediment

BBN Modularity

Numerical 
Model

Experimental 
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Qualitative Modelling – BBN:

Expert CPT 
Elicitation



BBN’s and Qualitative Modelling

Advantages:

� Informed construction of large multi-conditional 
BBN’s

�Explicit inclusion of important feedback cycles

�Represent multiple alternative models

Why important?

Incorporate both observations and model 
structure uncertainty in Bayesian framework 
to predict community response following 
perturbation
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