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Abstract

This report outl ines experiments to test whether the mean diarneter of
a sample of randomly oriented fibres can be inferred from observations of the
power spectrum along a single ray in the Fourier plane. The report concludes
that the obvious features of the power spectrum are uncorrelated with the mean
diameter.

* Present address: Tasmanian Development Authority,
PO Box 6460,  Hobar t ,  Tas .  7001.



L . OVERV]EW

While studying the theory of dif fract ion. Thomas young (1-773 - LB29)
proposed that the diameter of a hair f ibre could be determined from its
dif fract ion pattern. rndeed, there is an inverse relat ion between the
diamet-er and the spacing of the minima of the dif fract ion pattern. In recent
years Young's idea has been extended to a wide range of practical problems,
ranging from determining the concentrat ion of red blood cerls to
determining the size distr ibrrt ion of kerosene drops in fuel spray. rn
each of these applications the principre remains the same: objects in the
sample contr ibute most strongly to the power spectrum at spatial frequencies
inversely related to their size, and so by judiciousry sarnpl ing the power
spectrum one can infer the size distr ibutj .on.

A typical experimental setup is shown in Figure 1. Light from a
laser is expanded into a col l imated beam, into the path of which is introduced
the sample to be analysed. The image in the focal plane of the lens is the
Fourier transform of the transmittance of the sample. Consequently, a
detector which measures the intensity in the focal prane, but discards
the phase' wi l l  record the power spectrum of the sample. Normally the focal
plane wil l  be part i t ioned into a nrrmber of reqions, such as angular
seqments or annuli '  and the power spectrum wil l  be averagred over each of the
regions. The part i t ioning is cal led a mask.

four ie r
i ra n sform
I e n s f o c a l  p l a n e

lase r p i n h o t e sampte d  i  f f r ac t i on
pat  te fn

aper tu re

Figure 1: Typical experimental setup for an  op t ica l  Four ie r  ana lyser .

As an example, suppose that the sample consists of circular
part icles with a range of sizes. The spectrum of each part icle is axial ly
symmetrj-c and i ts ampli tude is related to the Besse1 function J.(2trsl/st
where s denotes the spatial frequency and r is the part icle radius. The
Besse1 function has a central maximum at s = 0 and a sequence of
decreasing maxima, whose spacing depends upon the size parameter r.  Thrrs,
by using an annular mask with radius at the spatlal frequency of the f irst
non-zero maximum, one might hope to detect part icles with size r.  The
simplici ty of this argument is deceptive, because the spectra generated by
part icles of dif ferent sizes interfere and may produce peaks at spatial
frequencies which do not correspond to any of the part icles presenr.
Similarly, i f  the sample contains part icles with a variety of shapes, then
their spectra also interfere with equally confusing results.



In addit ion to these theloret ical problems,
problems, largely due to the wide dynamic range
part icular:

3

there are certain practical
of the power spectrum. In

the theoretical and experimental
simple correlation between the

(1) the l ight intensity at high spatial frequencies may be nany orders of
magnitude less than the central peak;

(2) the power spectrum is dif f icult  to sample at low spatial frequencies;

(3) the laser output usually f luctrrates randomly.

Desp i te  these we l l  documented d i f f i cu l t ies  (S tark ,  ed i to r  (1982)  ) ,
there are many applications where optical processing offers signif icant
advantages because i t  is non-destructive and produces results in real t i rne.

This report describes some experimental and theoretj .cal work carr ied
out at CSIRO division of atmospheric research (DAR) into the possibi l i ty of
determining the mean diameter of wool f ibres by optical Fourier analysis.
The merits of such a scheme are obvious:

(1) instantaneous processing, rather than laborious microscope analyses;

(2) larger samples, Ieading to increased accuracy;

(3) 1ow cost instrumentation, which would be both rugged and easy to use,
and consequently which could be instal led in numerous f ield stat ions.

As an optical Fourier analyser had already been constructed at DAR
for the purpose of analysing the size distr ibution of clouds from satel l i te
imagery, i t  was decided to invest a small  amount of research t ime into the
proposal for determining wool sizes. Besides, wool is f luffy l ike clouds!

As already mentioned above, other attempts at determining size
distributions from power spectra have used a mask in the two dimensj-onal plane
of the power spectrum. rn the f irst series of experiments conducted at DAR
and described in this report,  we only sampled the power spectrum along a
single l ine through the origin of the spectrum. our reasons for this
simpli f icat ion were twofold:

(1) i t  enabled us to use a single detector on a motorised stage rather
than an expensive detector arrav;

(2) i f  the f ibre diameter could be correlated with some gross feature of
the power spectrum, as we hoped it might, then it seemed reasonable
that evidence of the correlat ion would survive in a one dimensional
section of the povrer spectrun.

This hope proved to be unfounded, since both
work showed clearlv that there is no
t'wo.

Consider f irst ly the theoretical results. f t  is well  known that a
one dimensional scan of the spectrum is the one dimensional Fourier
transform of the Radon transform of the object. The latter quanti ty is
the function obtained by integrating the object along l ines perpendicular
to the direct ion of scan. We wil l  give a simple example of f ibres with a
single diameter but whose Radon transform consj.sts of blobs with a range of
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diameters. We wil l  also give a segrrence of analyt ical results, start ing with
thg power spectrum for a single straight f ibre, and ending with the power
spectrum of a col lect ion of randomly oriented straight f j .bres with a range
of diameters. For the f irst case, there is a clearly identi f iable feature
(the one observed by Young!) from which the f ibre diameter can be
inferred, but as the complexity of the sample is increased, the features
which can be correlated with the f ibre diameter are rapidly obscured.

Corresponding to each of these theoretical models, w€
constructed an experimental model from fine wires with known diameters
and then veri f ied the theoretical results in the laboratory. fn
addit ion, we processed wool samples obtained from the Austral ian Wool Testing
Authority, but were unable to find any sirnple correlation between the one
dirnensional scan of the power spectrum and the f ibre diameter.

Another avenue v/e explored was to reduce the two dimensionaJ,
transform to a one dj-mensj.onal transform by introducing a slit in front of the
fibres. The attract ion of this procedure was that the total length of the
fibres in the sl i t  corr ld be related to the integral of the power spectrum,
whereas the number of f ibres could be related to i ts asymptotic rate of
decay. Both of these quanti t ies could be determined by integration of
the power spectrum; a procedure which is general ly stable. From the total
length and the number of f ibres, the average f ibre diameter fol lows
immediately. Although this procedure worked perfect ly on numerical examples,
the noise levels in the power spectrum prevented i ts practical
appl icat ion.

Our conclusion was that a useful measure of the f ibre diameter could
only be extracted from a one dimensional- scan of the power spectrum when the
fibres were fair ly closely al igned and the range of diameters was small .
Conseqhently, the device would probably be of more use in an industry such
as the fibre glass industry where fibres are extruded, rather than the wool
industry where sheep prefer wool with crimp.

Our analysis shows clearly why the simplist ic treatment of the power
spectrum is unsuccessful,  and suggests that integration of the power spectrum
around annuli would remove the dependence upon the orientation of the- fibres.
If sor the determination of the mean diameter of a random sample of wool
f ibres indeed might be possible. Further research (with increased
experimental outlay) is needed to resolve this question.

Section 2 of this report outl ines
experimental confirmation of the sirnple models.
the experimental setup. Section 4 presents
wool sanples.

the theoretj-cal analysis and
Section 3 contains detai ls of

the spectra obtained for the



ANALYTICAL RESULTS

In this sectiorr we present a sinple exanple to i l lustrate the
implicat. ions of the rproject ion - sl ice' theorem, which relates Fourier and
Fadon transforms. In addit ion, we bonsider some simple cases involving
straight f ibres which are amenable to exact analysis in order to form a basis
for interpretation of the power spectrum.

we use the notat ion of Bracewell  (1965) for Fourier transform pairs:
functions of the spatial coordinates (xry) are denoted by lower case Roman
letters, such as f(x,y), whereas the transformed function of the spatial
frequency (urv) is denoted by the corresponding upper case Roman letter,
F ( u , v ) .  W e  d e n o t e  t h e  p o w e r  s p e c t r u m  o f  f ( x r y )  b y  P ( u , v ) .

1 Fourier and Radon transforms.

Consider a col lect ion of f ibres such as that i l lustrated in
Figure 2a. Let f(xry) denote the function which is equal to one o4 the
fibres and zero elsewhere. The Radon transform of f ,  denoted by f,  is
defined by

' L .

f ( x ) = j d y f ( x , y )

Figure 2b shows the Radon transform of the frbres shown in 2a. Although the
fibres have a common diameter, this dimension is obscured in the Radon
transform, which consists of blobs with a variety of sj .zes. This observation
is signif icant because the Radon transform is the one dimensional Fourj-er
transform of the horizontal section through the spectrum of f .  This is easy
to see: the spectrum (Fourier transform) of f  is

F(u ,v )  =  /  ax  /  ay  exp ( -2n i (ux+vy ) )  f  ( x , y )

Along the l ine v = 0, F reduces to

F ( u , o )  =  /  d x  e x p ( - 2 n i u x )  1 , f  a y  f  ( x , y )  )  ,

which is clearly equal to the one dimensional transform ot ?. Because the
Radon transform does not contain a singl.e characterist ic dimension, one might
expect that a one dinensional scan through the power spectrun of f will not
reveal a dominant spatial frequency. The results which follow wiLl show that
th is  i s  so .

a

f ib re
sample
f  ( x , y  )

b
rado n
transform
i  t * t

Figure  2 : Radon transform of a sample of f ibres.
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2.2  S ing1e s t ra igh t  f ib re .

Consider a f ibre with centre (x^,y^), diameter a and length b. Such
fibre rnay be represented by the boxcar fiincEion

f  ( x , y )  =  I I  ( ( x  -  x ] / a l  I I ( ( y  -  y d / b )

Its Fourier transform is

F ( u , v )  =  e x p ( - 2 r i u x o )  a  s i n c ( a u )  e x p ( - 2 n i v y o )  b  s i n c ( b v )  ,

and the corresponding power spectrum is

P(u 'v )  =  u2  
" i " t2  

(au)  
'b2  

s i " t2  (b" )

Along the line v = 0 where the power spectrum is
reduces to

P ( u , o )  =  ^ 2  b 2  s i n c 2  ( a u )

This function has zeros at a spacing of ! /a, so
inferred from the spacing of the mj.nima.

sampled. the power spectrum

the f ibre diameter can be

Figure 3-is an experimental observation of the power spectrum of a
single wire. The three curves on the graph correspond to three dif ferent gain
settings of the amplifier used to sarnple the spectrum. The minima are
clearly visible. Measurement of thej.r spacing leads to a diameter of 260
microns, in agreement with the value obtained with a micrometer.

2.3 Al igned f ibres with a single diameter.

Suppose tha t  the  f ib res  have cent res  (x r ,y r ) ,  (x r ,y r l  |  . . .  ,  (x r r ,y r r ) .
The object function, Fourier transform and power*sp€ctrum are now

f  ( x , y )  =  I
k

F ( u , v )  =  a

n( (x-xo)  /a)  I l (  (v-vn) /b)

s inc(au)  b s inc(bv)  X exp ( -2r i (uxn+rry*) )

P ( u , v )  =  s 2  s i n g z  ( a u )  b 2  s i n c 2  ( b v ) .

( n + 2  t  c o s  2 n  ( u ( x . - x .  )  + v ( y . - v .  ) ) )
j > k  )  K  - l  - K

The sinc functions now modulate a very rapidly osci l lat ing function, whose
frequencies are determined by the spacing between the fibres.

Figure 4 shows the experinental curve obtained with a sample of fine
wires. Most of the rapid osci l lat ion is averaged out by the l imited spatial
resolut ion of the detector, but some traces remain. lhe posit ion of the
ninima of the sinc functj .on are clearly visible, and the measurement of the
spacing between the f irst minima yields a diameter of 50 microns. The
diameter quoted by the manufacturer for the wires is 0.0016 inches, or 4I
mj-crons, although an attempt to measure the diameter with a micrometer gave
45 t 5 microns. Since the wire was intended for winding f ine coi ls, the
quoted diameter is only a nominal figure and the diameter measured optically
is almost certainlv correct.
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2.4 Non-al j .gned f ibres with a single dj.ameter.

We now have

sinc (a (+ucosek+vsin0n)  )  exp ( -2nixn (+ucosek+vsin0*)  )  .

sinc (b (-usinO*+vcos0O) ) exp (-2niyn (-usinOO+vcos0n) ) ,

f  (x ,y )  =  X  I I  (  (+  (x -x* )  cosek  +  (V-VO)  s in0O) , /a )  .
k

I i  (  ( -  (x-xn)  s in0k + (y-yn)  cos0n), /b)  ,

is the inclination of the kth fibr" to the vertical. Thenwhere 0O

F ( u , v )  =  X  a

P(u ,v )  =  4z lz  (Xs inc2  (a (+ucosOn+vs in0O)  )  s incz  (b  ( -us in0n+vcos0k)  )
k

+ 2  X  s i n c ( a ( + u c o s € . + v s i n O . )  )  s i n c ( b ( - u s i n O . + v c o s O . )  )  . .
j > k

sinc (a (+ucos0Otvsin0U) ) sinc (b (-usin0n+vcos0n) ) .

c o s 2 n ( ( + u c o s 0 . + v s i n 0 . ) x -  -  ( - u s i n e . + v c o s 6 . ) y ,
t J l l J l

-  (+ucosOn+vs in0n)  xn  +  ( -us in0O+vcos0* )  yn)  )  .

Because the length to diameter ratio of the fibres is large, the sinc function
involving the length is very small  r :nless i ts argument is close to zero.
conseguently, the cross terms in the power spectrum wil l  be small  in
comparison with the diagonal terms' so, to an excel lent approximation,

P ( u , v )  =  4 z b . 2 sinc2 (a (+ucosek+vsin0n) ) sinc2 (b (-usinO*+vcos0n) ) ,

= 4zl'"2 sinc2 (as cos (e-0n)  )  s inc2 (bs s in (6-en)  )

Here we have introduced polar coordinates (s'q) in the Fourier plane:

u  =  s  c o s 4 ,

v  =  s  s i n q .

Figure 5 shows that a minimun can st i l l  be detected, but i ts posit ion is not
so clearly defined. The diameter inferred from the spacinq of the minima for
this sample is 48 microns, in reasonable agreement with the value of 50

microns obt-ained above.

x
k

x
k
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Figure 5: Power spectrum of non-al igned f ibres with a single diameter.
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2.5 Al igned f ibres with a range of diameters.

Suppose now that the f ibres have centres (x.,  rY., )  r  (xrrYrl  ,  . . .  ,
( T n , y r r ) ,  d i a m e t e r s  a ! ,  a 2 t  . . .  t  a n r  a n d  l e n g t h s  b L ,  b 2 l . 1 . ,  b r r . -  f h e n

f  (x,y) = x [((x-xn) /an) TI(  (v-vo)4. 
,  -

k k "

F  (u ,v )  =  X  . t  g lnc  (aku)  exp  ( -2n i t rxn) .
k "

bn  s inc(bnv)  e lp ( -2n ivyn) ,

P(u ,v )  =  X  a i  b f  s inc2(a*u)  s inc2(bUv)
k ' -

*  2  
.8 ,_  

a  .a*  s inc  (a ru)  s inc  (a*u)  .
l> ] (

b .bn  s inc  (b jv )  s inc  (bnv)  .

cos2n (u  (x  .  -xn)  +  v  (V i -Y1)  )  .

r f  the interference between the spectra of separate f ibres is neglected' then

P (u ,v )  =  
.X  

tk 'bk"  s inc2  (anu)  s inc2  (bnv)  ,
K

and along the l ine v = 0

P ( u , 0 )  =  
. X  

u t '  b n 2  s i n c 2 ( a n u ) .
K

The power spectrum no longer has zeros which can be. relatect to the fibre

diameter.

In order to carry the analysis further, suppose that the diameters
are drawn from a beta distrj"bution, so that the number of fibres with

diameters in the range from a !e 6+da is

n ( a )  d a  =  ( a / c l p - l  ( 1 - a / d a - 7 / e ( p , q )  d ( a / c )  .

Here p and q are parameters defining the distr ibution, c is the maximum fibre

diameter in the sample, and B(prq) is the beta function. Then,

P ( u , 0 )  =  /  d a  n ( a )  a 2 b 2  s i n c z ( a u ) .

where we have assumed that the fibres have the same length. rhis integral

reduces to

P (u ,o )  =  2 (b /  Qru)  )  z  (1 - rea l  o  (p ,p+q ' -2n icu)  )  ,

where 6 is the confluent hypergeometric function. For large u,

P  ( u , o )  =  2 ( b /  ( 2 n u )  )  2  ( 1 - c o s  ( n p / 2 )  /  I  G )  t z n c u )  
p )  

)  .
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From the valrre of the power spectrum at the origin, the analytical form

involving tD, and the asymptotic behaviour for large u, four parameters must be
determj.ned, namely b, cr Pr q. In terms of the Parameters, the mean f ibre
diameter is

<a>  =  . f  n (a )  a  da = c P/ (p+q) .

Tn principle a least squares fitting procedure ought to recover the parameter

values. This technique was considered by o'Brien (1986) in another context '

but the results of numerical simulations \4rere not encouraging due to the rapid

osci l lat ion of the power.sPectrum.

Figure 6 shows the experimental results for a sample consist ing of
para1le1 wires with three diameters, 38, 41,and 6I microns, mixed in

approximately equal numbers. As expected. the power spectrum does not have

zeros which can be related simply to an average fibre diameter.

2.6 Non-al igned f ibres with a variety of diameters.

In this most gdneral case,

f (x,y) = X II ( (+ (x-xn) cos0k+ (y-yt) sin0n) ,/an) .
k

II ( (- (x-xn) sin0n+ (y-yn) cos0n) ,/bn) ,

F(u,v)  = 
_X uu s inc (an(+ucos0n+ vs in0*)  ) .
k ' -

exp ( -2r i

bn sinc

9xp (-2ni

xU(+ucos0n  +  vs inO* ) ) .

(bn(-us in0n + vcos0n) )  .

yn(-us inOn *  r rsqs0k)  ) ,

P ( u , v )  =  
i . o "  

s i n c 2 ( a n ( + u c o s 0 *  +  v s i n O n ) ) .

6 *2  s i ncz (b * ( -us in0o  +  vcos0n ) )

j > k
a .  s i n c  ( a .  ( + u c o s 0 .  +  v s i n 0 r )  )  .

b .  s i n c  ( b . ( - u s i n 0 .  +  v c o s O . ) ) .
l l l l

a n  s i n c  ( a n ( + u c o s 0 n  +  v s i n O * ) ) .

b n  s i n c  ( b n ( - u s i n O n  +  v c o s O n ) ) .

cos2n (  (+ucos0 .  +vs in0 ,  )  x  .  -  ( -us in0  .  +vcos0,  )  V i

- (+ucos 0O+vsin0o) xk+ (-usinen+vcos0*) Yn) ) )
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Again the interference between fibres may be neglected and so

P(u ,v )  = .X  u ] ( ,  s i nc2 (an (+ucosek  +  vs inon )  )
k ' -

b O z  s i n c 2 ( b O ( - u s i n e O  +  v c o s 0 O ) )

and along the l ine

p  ( u , 0 )  = a ,  2  s i .ncz(a ,  ucose.  )b .  2  s incz(b .  us ine .  )
K K K K K ' K

k

Figure 7 is the experimental power spectrum obtained with a sample
consist ing of approximately equal numbers of wires with diameters of 38, 4l
and 61- microns. A1l evidence of a minimum has faded from the plot.

2 .7  One d imens iona l  ana lys is .

I f  a horizontal sl i t  is placed in front of vert ical ly running f ibres,
then the spectrum is the one dimensional Fourier transforrn of the fibres in
the sl i t  window. Let f(x) denote the function equal to one on the f ibres in
the sl- i t  window and zero elsewhere. The total lenqth of f ibre in the st i t
window is

t  =  !  f ( x )  d x  I

and this quantity is related to the integral of the power spectrum. Indeed,

t = I p ( u ) d u

Also, i t  is possible to prove (o'Brien (1986) ) that the number N of f ibres in
the slit window is qiven by

,,"
N = l im n ' /x  I  u2P(u)  du

X+o -k

Since the mean fibre diameter is

<a> = L,/N ,

i t  can, in principle, be determined by integration of the power spectrum, a
process which is usually numerical ly stable. I f  successful,  this method wouLd
allow accurate determination of the average diameter of al igned f ibres, no
matter how wide the range of diameter . This procedure work&

because the signal to
noise ratio was too small at the high spatial frequencies needed to compute
the number of f ibres in the sample.
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3. EXPERTMENTAL SETUP

The apparatus is essentiall-y the same as that given in figure 1. A
para11eI beam of light fron a He - Ne laser falls on the sample whose fibres
are al igned as cl-ose1y as possible with the vert ical.  In front of the sample
is an optional horizontal sl i t  of about 0.5mm width. The lens creates a
Fraunhofer diffraction pattern of the sample and the slit in the focal plane
of the lens. The detector consists of a pin hole, with diameter approximately
equal to 100 microns, and a photo-transistor which has a bui l t  in lens over
the si l icon chip. Consequently, al l  the l ight energy which passes through the
pinhole is col lected by the photo-transistor. Three cascaded operational
amplifiers produce three outputs lvith a gain of about i-l- between each stage.
The pin ho1e, photo-transistor and anpli f iers are mounted on a motorised stage
which is used to scan the detector at a constant rate across the dif fract ion
pattern. The stage motor produces a pulse for every 0.1 microns travel led, so
the posit ion of the detector is determined by counting the puJ-ses, and
consequently is known with high precision.

The ampli f ier circuit  is shown in Figure B. The variable resistors
are used to adjust DC offsets in the circuit ,  and the zener diodes are used to
l ini t  the input voltage into the analogue of digital converter. The 1.9M ani l
1pF feeclback inpedance of the first amplifier could be switched out and a
series of other resistor,/capacitor combinations, and hence other gains, could
be substituted. However, for the experiments described herein only the vaLues
shown were used.
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Figure 8: Ampli f ier circuit .
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Before each experiment, the offsets in the ampli f iers were adjusted
to be slightly above zero, so that the output signal-s would remain positi\re
even i f  the ampli f iers dri f ted. This was necessary because the A/D converter
only digit ises posit ive voltages. The photo-transistor aperture was covered
at the beginning and at the end of eaeh scan in order to f ind values for the
DC o f fse ts .

The detector was centred on the central spot of the dif fract lon
pattern and the optical sl- i t  was al igned as closely as possible with the scan
line of the motorised stage. Al-ignment errors cause asymmetries in the
measured i l i f fract ion patterns, which should be even functions of spatial
frequency. The detector was moved well away from the central spot and then
data was cgl lected as the detector noved across the dif fract ion pattern,
through the central region, and out to the opposite extreme. Data was taken
after every 128 or 256 pulses from the stage motor, or every 12.8 or 25.6
microns. The three outputs from the circuit were digitised by a 

'l-2 
bit A/D

converter and stored on floppy disk. Each scan took about five minutes to
complete.

The three channels of data were subsequently plotteil as functions of
the spatial frequency, which is related to the l-abel k of the sample by

u  =  k  p / ( I f )

where f is the focal length of the
p is the number of motor pulses
spatial frequency was chosen to
dif fract ion pattern.

lens, I  is the wavelength of the l ight, and
between data samples. The zero point for
coincide with the central maximum of the

Figure 9 shows the wire samples used for the test runs. Sample #1
consisted of 47 micron diameter wire wound around a photographic slide holder
so that the wires were approximately evenly spaced and were approximately
vertical. Sample #2 was the same wire, but scatter wound onto the slide ancl
kinked. The aim was to produce a sample of wires with a single diameter that
represented a wool sample. Sample #3 was similar to sanple #1, except that
three dif ferent wire sizes were wound together, thus giving a distr ibution of
diameters. The wire diameters were 38 microns, 41 microns and 61 microns.
Sample #4 was wound in a similar way to sample #2, but the three wire sizes
were used. In alL samples, between 20 and 40 wires were j . l luminated and
formed the dif fract ion pattern.
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4 . WOOL SAMPLES

Eight samples of classed wool from the Austral ian WooL Testing
Authority were analysed, both with and without the horizontal sl i t
mentioned above. The nominal mean diameters for the samples were 18.5t 2O.2,
2 2 . 3 ,  2 3 . 6 ,  2 6 . 3 ,  2 8 . 4 ,  2 9 . 5 ,  3 3 . 4  m i c r o n s .  F i g u r e s  1 0  a n d  1 1  s h o w  f o r  1 8 . 5
micron wool the raw data set and a normalised data set, obtained by selecting
the most sensitj.ve, non-saturated output frorn the three ampli.fiers. These
curves are typical for al l  the wool sizes tested. None of the curves shows any
pronounced feature, such as a minimum, which might be correl-atetl with the
fibre diameter. The widths of the normalised curves, measured at half  height '
and the nominal f ibre diarneters are l isted in the Table below.

Table: A comparison of f ibre diameter with measured peak widths.

Fibre diameter
(microns)

width of peak at half  height
(arbitrary units)

sl i t No s l i t

1 a  E

20 .2
2 2 . 3
23 .6
2 6 . 3
24.4

3 3 . 4

0 .  6 5
0 . 6 5
0 .  7 0
0 . 6 0
0 . 8 0
n 6 c

0 . 8 5

n 7 q

0 .  7 0

n ? q

0 .  70
v .  r )

0 .  70
0 . 6 0

The correlation between width of the peak in the power spectrum and the fibre
cl iameter is O.42 for the experiment with the sl i t  and -0.67 in the experiment
without the sl i t .  I t  is clear that this technique is useless for measuring the
average diameter of wool f ibres.



20

1 8 . 5  m i c n o n  w o o l N o  s l i t .

E
f
b
O
o
o-
@

c)
=
o
o-

4 . 5

4 . 0

3 . 5

3 . 0

2 . 5

2 . 0

t . 5

1 . 0

n t r

n n

- 0 . 5
-1.. 5  - 1 . 0  - 0 . 5  0 . 0  0 . 5  1 . 0  1 . 5

Spatial frequency I per mm )
H o n i z o n t a l  a x i s  s c a l e  f a c t o n  =  0 . 1 E + 0 3
V e n t i c a l  a x i s  s c a l e  f a c t o n  =  O . 1 E + 0 4

Figure 10: Power spectrum for 18.5 micron wool: unprocessed.
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Figure 11: Power spectrum for 1-8.5 micron wool: processed.


