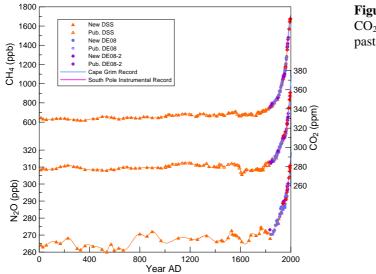
Changes in concentrations of CO_2 , CH_4 and N_2O over the past 2000 years and their causes

David Etheridge^{1,*}, Cecelia MacFarling Meure¹, Ray Langenfelds¹, Cathy Trudinger¹, Paul Steele¹, Colin Allison¹, Dominic Ferretti², Andrew Smith³, Keith Lassey², Dave Lowe², Tas van Ommen⁴, Roger Francey¹, James Elkins⁴, Jim White⁵ and Paul Fraser¹

¹CSIRO Marine and Atmospheric Research, Aspendale, Victoria
²National Institute of Water and Atmospheric Research Ltd, PO Box 14901, Wellington, New Zealand
³AustralianNuclear Science and Technology Organisation, Menai, NSW
⁴Department of Environment and Heritage, Australian Antarctic Division and Antarctic Climate and Ecosystems CRC, Private Bag 80, Hobart, Tasmania 7001, Australia
⁴NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, Colorado, USA
⁵Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA


Abstract

The concentrations of the major greenhouse gases carbon dioxide (CO_2) , methane (CH_4) and nitrous oxide (N_2O) have increased significantly over the industrial period. We present new evidence of these increases and other changes and their causes over the past 2000 years from measurements of the air preserved in ice cores.

The measurements are on air from Law Dome (Antarctica), which is enclosed rapidly into bubbles, reliably recording past atmospheric composition. Advanced techniques of air extraction and analysis are used to precisely measure a large number of trace gas concentrations and isotopic ratios.

The results show major increases in CO₂, CH₄ and N₂O (29%, 150%, and 21% respectively) over the past 200 years and relative stability beforehand. Variations of up to 10 ppm CO₂, 40 ppb CH₄ and 10 ppb N₂O occur on decade to century timescales throughout the pre-industrial period.

Measurements of the isotopic composition (δ^{13} C) of CO₂ and CH₄, combined with modelling of their sources and sinks, help to identify the causes of these changes. Anthropogenic emissions are the main cause of the increases over the past 200 years, or even longer for methane, whereas the effects of climate on natural sources are the main likely cause of the decade-century variability.

Figure 1. Concentrations of CO_2 , CH_4 and N_2O over the past 2000 years.

^{*} david.etheridge@csiro.au