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9. Summary of Results for Response Functions

9a Definitions and results

Impulse response functions can be a powerful way of describing the behaviour of the atmo-
spheric CO2 system (Oeschger and Heimann, 1983). Impulse response functions have been
calculated as perturbations from two specific cases: an ‘equilibrium response’ in which the
background was zero emissions and a ‘perturbation response’ in which the background was
the emissions deduced from the S650 concentration profile. The responses were calculated by
adding 10 GtC to the background emissions (in 1995 for the perturbation case), integrating
forward and calculating the concentration differences from the background case.

Equilibrium response functions have been calculated using Models E, G, H, J, L and W. Pertur-
bation calculations have been undertaken with Models E, H, J, L, R and W.

The response function, Ga(t), can then be evaluated as

Ga(t) = 2:123[C(t)� Cbackground(t)]=10:0 (9:1)

G(t) is taken to be 1.0 at t = 0, defined as mid-1995 for the perturbation case. The most widely
quoted ocean response function is

GO(t) = 0:131 + 0:201e�t=362:9 + 0:321e�t=73:6 + 0:249e�t=17:3 + 0:098e�t=1:9 (9:2)

from the ocean GCM of Maier-Reimer and Hasselmann (1987) relative to the pre-industrial
state. This response function is used as the basis for describing oceanic uptake in Models T and
W.

The equilibrium and ‘S650’ response functions are tabulated in Tables 9.1 and 9.2, and plotted
in Figures 9.1 and 9.2 respectively.

Model 0 10 25 50 100 200 300 400 500
E 1.0 0.546 0.386 0.289 0.234 0.204 0.187 0.174 0.163
G 1.0 0.639 0.552 0.497 0.435 0.369 0.329 0.299 0.276
H 1.0 0.430 0.284 0.217 0.174 0.141 0.126 0.117
J 1.0 0.560 0.410 0.316 0.248 0.204 0.185 0.172 0.163
L 1.0 0.643 0.459 0.354 0.302 0.254 0.228 0.212 0.202
W 1.0 0.629 0.442 0.309 0.225 0.176 0.155 0.143 0.135

Table 9.1. Equilibrium response function, at selected values of t in years, calculated
relative to constant pre-industrial concentrations.

Model 0 10 25 50 100 200 300 400 500
E 1.0 0.624 0.493 0.419 0.401 0.425 0.408 0.389
H 1.0 0.679 0.567 0.540 0.560 0.562 0.531
J 1.0 0.628 0.507 0.435 0.401 0.393 0.376 0.359 0.348
L 1.0 0.695 0.555 0.495 0.477 0.459 0.424 0.399 0.386
R 1.0 0.786 0.616 0.531 0.488
W 1.0 0.709 0.555 0.430 0.368 0.347 0.320 0.280 0.247

Table 9.2. Perturbation response function, calculated relative to S650.
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Figure 9.1. Impulse response relative to pre-industrial state.

Figure 9.2. Impulse response relative to S650.

The calculation of global warming potentials requires the evaluation of the time-integrated CO2

radiative forcing. With the radiative forcing, FCO2, of CO2 (in Wm�2) approximated by (Shine
et al: IPCC, 1990, p41)

FCO2 = 6:3 ln
C(t)

C(0)
; (9:3)
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the integrated extra forcing per Gt of carbon is
Z �

0
�FCO2dt

0 =
Z �

0

6:3

2:123C(t0)
Ga(t

0) dt0 (9:4)

Again t0 = 0 is defined as mid-1995. Integrated forcings have been calculated for the five
models listed above.

9b The reference response for GWP calculations

The Global Warming Potential (GWP) is a numerical index that is designed to assist in com-
parisons of the relative radiative importance of various greenhouse gases. The index has to be
defined for specific time intervals of interest. The definition of the GWP of constituent X (for
time horizon � ) is

GWPX;� =

R �+tX
tX

�FX(t
0; tX) dt

0R �+tr
tr �Fref(t0; tr) dt0

(9:5)

where the �F terms give the extra radiative forcing at time t0 due to a unit input of constituent
X at time tX . Note that this definition has an implicit dependence on both tX and tr, the initial
impulse times for X and the reference. These are important if non-linearities occur in either the
emission-concentration or the concentration-radiative forcing relationship. The IPCC (1990)
definition was to use CO2 as the reference gas.

The difficulties with this definition were:

� Non-linearities in the response of CO2 to emission changes mean that in equation (9.3)
defining �FCO2 for CO2, the term Ga(t) (equation 9.1) depends on the background con-
centration profile.

� The concentration dependence of the radiative forcing of CO2 (equation 9.3) will give an
additional dependence on CO2 profile for the CO2 forcing.

� Uncertainties in the carbon budget translate into additional uncertainties in the CO2 re-
sponse (see Section 11). Specifically, the results depend on how the contemporary budget
is balanced vis-a-vis the incorporation of a CO2-fertilisation effect.

� The three dependences above will propagate into all GWP calculations if the actual forc-
ing from CO2 is used as the reference case for GWP definitions.

In order to address these difficulties, the IPCC report on Radiative Forcing of Climate Change
(IPCC, 1994, chapter 5) adopted the following procedure:

� The reference case (defining the denominator of 9.5) would be an idealised CO2 radiative
forcing.

� A particular background CO2 concentration profile would be specified, so as to avoid the
concentration dependence of both the response and the radiative effects.
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� The background CO2 concentration profile chosen as the reference was a constant con-
centration (at 354.17 ppmv) from 1990 onwards. (This avoids the potential dependence
of tr noted in connection with 9.5).

� The reference gas impulse response would be defined as the effect of a pulse release in
1995 as calculated with a representative model.

� On the basis of the results of the calculations presented in this report, Model J, the model
described by Siegenthaler and Joos (1992), was chosen as the reference case.

The response function for the reference case is tabulated in Table 9.3 and plotted in Figure 9.3
(together with other response functions calculated using Model J).

Time 0 20 40 60 80 100 200 300 400 500
Ga 1.0 0.515 0.412 0.359 0.327 0.305 0.253 0.231 0.217 0.206

Table 9.3. Response function for Model J, calculated by adding a pulse in 1995
to the emissions required to give constant concentrations (354.17 ppmv) from
1990 onwards. Note that the differences from Table 9.1 arise from the higher
background concentration which in turn requires non-equilibrium conditions at
the time of the pulse.

Figure 9.3. Response functions for Model J. IINIT is relative to the pre-industrial
case, IPERT is relative to S650 and IP90 is the case defined as the reference for
GWP, i.e., relative to constant concentrations from 1990.

The response functions for Model J were parameterised as sums of exponentials in the form

Ga(t) = a0 +
X
j

aj exp(�t=�j) (9:6)
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with the aj and �j as specified in Table 9.4.

j 0 1 2 3 4
IINIT
aj 0.130164 0.333279 0.260540 0.165742 0.110275
�j — 4.144656 18.587414 58.455562 414.152957
IPERT
aj 0.297144 0.202022 0.365643 0.135191 —
�j — 3.054167 16.5172219 506.977719 —
IP90
aj 0.168312 0.261529 0.246715 0.197060 0.126483
�j — 3.899498 18.664312 59.315997 415.962281

Table 9.4. Coefficients defining the parameterisation of the response
functions calculated using Model J. IINIT is relative to the pre-industrial
case, IPERT is relative to S650 and IP90 is the case defined as the ref-
erence for GWP, i.e., relative to constant concentrations from 1990.

9c. Combining response functions

The analysis in the previous sections has involved the response of the combined terrestrial-plus-
oceanic system to perturbations in atmospheric CO2 levels. However, it can be useful to study
the separate responses of oceanic and terrestrial components, firstly as a basis for combining
results from components of a single model and secondly for relating results of full models to
the results of partial models. This section shows how sub-system responses are related to the
total response.

The general equation governing concentration changes may be written as

d

dt
Na(t) = Q(t)� Sfert(t)� Socean(t) = Q(t)�

d

dt
Nb(t)�

d

dt
No(t) (9:7)

where Nb denotes changes in terrestrial carbon without any land-use change.

Assume that we have a linear system consisting of atmosphere, ocean and biosphere. From the
definition of the atmospheric impulse response function, Ga(�), as a Green’s function, we may
write:

Na(t) =
Z
1

0
Ga(�)Q(t� �) d� (9:8a)

where Na(t) represents the excess atmospheric CO2 mass at time t and Q(t) the atmospheric
CO2 source.

Treating the terrestrial and oceanic components separately, the atmospheric concentrations are
also linear in the sources — the sources for each component being the anthropogenic source
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plus the carbon flux from the other component. We can define partial Green’s functions, Ga:bio

and Ga:oc such that:

Na(t) =
Z
1

0
Ga:bio(�) [Q(t� �)� Socean(t� �)] d� (9:8b)

and
Na(t) =

Z
1

0
Ga:oc(�) [Q(t� �)� Sfert(t� �)] d� (9:8c)

where Ga:oc and Ga:bio are the respective responses of the oceanic and terrestrial components to
a pulse source.

The equations (9.7, 9.8a,b,c) involving convolution integrals can be solved by taking Laplace
transforms and solving the resulting algebraic equations for Ga. In practice, the partial impulse
response functions are given in numerical form, calculated using the models for each component
separately and applying pulse sources. By numerical fitting these can be represented as a series
of exponential functions (plus possibly a constant offset). The series can be easily transformed
and algebraically solved for the Laplace transform of Ga. Since only exponentials are involved,
rational functions of p result. These are readily transformed back into a series of exponentials.

Using h, or more specifically h(p), to denote the Laplace transform of a functionH(t) we obtain
the transforms of equations (9.8a–c) as equations (9.9a–c)

na = ga(p) q(p) (9:9a)

na = ga:bio(q � pno) (9:9b)

na = ga:oc(q � pno) (9:9c)

and the transform of (9.7) is
pna = q � pnb � pno (9:10)

Eliminating no and nb gives:

pna = na=ga:bio + na=ga:oc � q(p) (9:11)

so that for the full atmospheric response function, Ga(t), we have from (9.10)

ga = p�1
"

1

p ga:oc
+

1

p ga:bio
� 1

#
�1

=
ga:oc ga:bio

ga:oc + ga:bio � p ga:oc ga:bio
(9:12)
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