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Characterising the Temporal Variability
of the Global Carbon Cycle

I.G. Enting
CSIRO Atmospheric Research

Private Bag 1, Aspendale,
Vic 3195, Australia

Abstract

Over recent years there has been an increasing appreciation of the degree of natural
temporal variability in the global carbon cycle. Analysis of this behaviour requires
techniques that can estimate the variability and characterise the degree of uncertainty
in such estimates. This report analyses and illustrates a number of such tools, con-
centrating on variations on the time-scale of seasons or longer.

1 Introduction

The natural carbon cycle involves large exchanges of carbon between atmospheric CO2 and the
major carbon reservoirs in the oceans and the terrestrial biosphere. The anthropogenic input
of CO2 to the atmosphere represents a relatively small perturbation to this natural cycle. Over
recent years there has been an increasing appreciation of the extent to which there is a large
natural variability in the carbon cycle and of the need for this to be taken into account when
trying to interpret the anthropogenic perturbation.

The large-scale nature of variability in the carbon cycle has been apparent since the work of
Bacastow (1976) who identified a correlation between the CO2 growth rate and the Southern
Oscillation index. Subsequent studies (e.g. Thompson et al., 1986) have confirmed the large-
scale nature of such variability and also identified large-scale interannual variations in the am-
plitudes of seasonal cycles of CO2 concentrations. More recent studies using both CO2 and 13C
data have interpreted variability in composition in terms of oceanic and terrestrial fluxes, both
of which were estimated to have interannual variability that was a significant fraction of the
anthropogenic perturbation (Francey et al., 1995a; Keeling et al., 1995; see however Lee et al.,
1998).

For a variety of reasons, the analysis of the carbon cycle requires a careful treatment of un-
certainty. One requirement is the evaluation of how present uncertainties propagate into future
predictions. Another problem that requires analysis of uncertainties is the assessment of the
significance of apparent differences between different ways of studying the cycle. The issue is
often one of estimating quantities of possible biogeochemical significance from data that are
subject to a number of uncertain perturbing influences. This needs to be treated as a statistical
estimation problem. Because of both the natural variability and the progressive changes in the
anthropogenic perturbation, an uncertainty analysis requires the statistical characterisation of
functions of time. This report investigates a range of issues involved and gives a number of il-

1



CSIRO Atmospheric Research Technical Paper no. 40

lustrative examples. The main aim of this report is to review a number of important tools, and so
some of the examples involve methane (CH4) which is somewhat simpler than CO2, because of
the absence of large two-way fluxes between reservoirs. Detailed applications will be presented
elsewhere.

Some of the issues involved in analysing, describing and comparing quantities with such tem-
poral variation in a function g(t) are:

i. How are (continuous) functions of time estimated from discrete data?

ii. How are confidence intervals assigned to statistical estimates, ĝ(t)? What are the require-
ments for appropriate statistical modelling?

iii. How can estimates of a function g(t) (and associated uncertainty) be related to confidence
intervals on growth rates? As the mass-balance Equation (1.1) shows, fluxes are related
to rates of change of concentration. Estimation of such growth rates involves the (ill-
conditioned) problem of numerical differentiation of observational data.

iv. How can confidence intervals be assigned to seasonal cycles? The seasonal cycle is a ma-
jor feature of the carbon cycle and estimated variations are being attributed to specific
biogeochemically significant changes.

v. What effect do correlated errors have on the estimates and their confidence intervals? This
analysis aims to cover general error distributions, with white noise (independent errors)
as a particular case. However many of the standard techniques used to analyse time series
have been used in forms that are applicable only for the ‘white noise’ case.

vi. What are the appropriate measures of uncertainty for estimates of smoothed quantities?
There is a need to be specific about what is being estimated by smoothing observations:
whether the smoothing is being treated as a way of reducing the extent to which noise
affects the estimate (at the expense of losing some of the signal) or whether one is really
trying to estimate a smooth function.

vii. How can statistical studies be related to modelling? More specifically how can statistical
and deterministic modelling be interfaced? The problems involved include model cali-
bration, stochastic forcing and assessing uncertainties in projections of the future.

viii. What are the consistency requirements when combining disparate data? This is important
because much of our information about the carbon cycle is indirect and our understanding
is based on combining a range of perspectives.

ix. How can the global representativeness of a time series be assessed and how can the error
due to non-representativeness be characterised? The observations of the carbon cycle
are primarily time series from a small number of locations. The atmospheric records are
predominantly remote sites, giving good signal-to-noise characteristics but poor global
coverage.
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x. More generally, how does the characterisation of temporal variability and uncertainty ex-
tend to spatial and space-time analogues? The higher-dimensional cases can be expected
to bring in new complications relative to one-dimensional time series, but many of the
underlying concepts can be expected to remain applicable.

xi. How can the uncertainties be represented? This is a matter of finding effective ways of
communicating the results of the analysis of uncertainties.

An important case, which we examine from several perspectives, is the equation for the overall
carbon balance of the atmosphere:

d

dt
M(t) = �Fossil(t) + �Ocean(t) + �Biota(t) (1:1)

where M(t) is the atmospheric carbon content and �Fossil, �Ocean and �Biota are the net carbon
fluxes into the atmosphere from fossil emissions, the oceans and the terrestrial biota.

The mass-balance Equation (1.1) applies instantaneously. However, none of the quantities in
the equation can be determined on arbitrarily short time-scales. Some form of time-averaging
always occurs. For consistency, the same time-averaging must be applied to each of the terms
in such equations if the validity of the relations is to be retained.

Some of the reasons for time-averaging are:

� to avoid trying to represent the small time-scales that are not resolved by discrete data;

� to reduce the influence of measurement error by averaging multiple measurements;

� to reduce the influence of natural time-variability by averaging over such variations;

� to reduce the influence of spatial inhomogeneities, by time-averaging over times with
differing atmospheric transport;

� to allow comparisons with concentration data from ice cores where the trapping process
gives concentrations that are a time-average of the atmospheric concentrations;

� to provide consistent comparisons with other data sets that are in a time-averaged form.

We use the notation h:i to denote time-averaging. In most cases we consider a linear stationary
formalism that treats all times equivalently. Such averages, of a function a(t), can be written as
convolutions with averaging kernels,  (:), as:

ha(t)i =
Z
 (t

0)a(t+ t0)dt0 =
Z
 (t� t00)a(t00)dt00 =   � a (1:2)

where � denotes a convolution operation. A budget equation such as (1.1) must be consistently
averaged by applying the same averaging operator to each term:

h d
dt
Mi = h�Fossili + h�Oceani + h�Biotai (1:3)
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The same notation is used for the discrete case involving a sum rather than an integral.

In this report, the integral form (Equation (1.2) and its various special cases) will mainly be
used as a conceptual tool. Actual time-averages (or more precisely estimates of such averages)
will be obtained from sums over discrete data. We denote such digital filtering by:

hhzii =
X
k

 k:z(t + k�t) (1:4)

We also define the filter response, 	(:), in terms of the dimensionless frequency � as

	(�) =
X
k

 k:e
ik� (1:5)

In addition to time averaging, relations such as (1.1) can be transformed by other means such
as Fourier transforms, Laplace transforms and spatial disaggregation. As with time-averaging,
such transformations have to be applied consistently to all terms if the integrity of the relations
are to be maintained.

An additional issue that applies to studies of CO2 is the need to distinguish different related
budget concepts. On a regional scale, the atmospheric carbon budget is not identical to the
atmospheric CO2 budget because of a significant role played by CO and its precursors (Enting
and Mansbridge, 1991). Furthermore, the net fluxes from oceanic and biotic reservoirs are not
equal to the respective rates of change of reservoirs because of the role of rivers in transporting
carbon from biota to oceans without passing through the atmosphere (Sarmiento and Sundquist,
1992).

The contents of the remainder of this report are as follows: Section 2 describes the overall statis-
tical framework used in this report and gives details of several important special cases. Section 3
demonstrates several ways of presenting analyses of uncertainty. Section 4 considers the issues
of deriving indirect inferences from observational data, in terms of estimating functions derived
from observations. Special cases are growth rates, seasonal cycles and fluxes determined by
deconvolution. As a more complicated example, we revisit the joint CO2-13CO2 budget analy-
sis of Francey et al. (1995a). In Section 5 the use of smoothing splines is discussed. Section 6
notes analogous issues in the spatial variability of the carbon cycle. It also addresses the specific
issue of representativeness of observational data: how measurements from a small number of
sites can be related to global changes. Section 7 reviews the recursive estimation techniques
based on the Kalman filter. Section 8 summarizes the results in terms of the requirements for
undertaking consistent analyses of carbon cycle variability. An appendix lists the notation.

2 Framework

2.1 Summary

Our consideration of uncertainties in the carbon cycle is presented in statistical terms. We regard
the process of analysing the cycle as being one of obtaining statistical estimates of quantitities
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of biogeochemical significance. The underlying principle on which we base our discussion
is that any statistical analysis has to be based on a statistical model. We consider a number
of statistical models, but an underlying property is that we model observations as an additive
combination of a signal and ‘random’ noise. Regarding the observations as having a random
component means treating them as random variables, with the consequence that any estimates
derived from these observations must also be regarded as random variables.

Within this general framework it is necessary to define a statistical model of the error or noise
terms. Techniques such as regression analysis or other least-squares fits implicitly assume in-
dependent identically-distributed Gaussian noise. If this assumption is not true then estimation
techniques based on this assumption will produce estimates that may be biased, or at least sub-
ject to larger-than-necessary uncertainty and error estimates may be quite inaccurate. This is
a particularly serious problem if the error distribution is ‘long-tailed’ (relative to a Gaussian
distribution) and/or correlated.

Enting and Pearman (1993) characterised the ‘uninterpretable noise’ as whatever could not be
interpreted i.e. modelled deterministically. They noted that this would depend on the sophis-
tication of the model that was used to interpret the data. This still seems to be an appropriate
approach, but for illustrative purposes in this report a number of simple time series models of
error statistics are used, without being related back to any particular deterministic model.

A simple class of correlated noise models can be defined by autoregressive processes. A first-
order autoregressive, AR(1), noise model for the Mauna Loa CO2 time series was used by
Cleveland et al. (1983). This model, together with a number of other ‘noise’ models for CO2

data, is summarized in Section 2.6. Regardless of the basis of the statistical model, an important
part of the analysis should be checking the model by examining the residuals to ensure that they
are consistent with the model assumptions.

Much of the analysis is based on digital filtering, either for actual calculations or as an illustra-
tive concept. We define a number of the filters that are used in several examples:
The running mean of 2K + 1 time-steps is defined by:

 k =
1

2K + 1
for �K � k � K (2:1:1a)

For even numbers, we define a 2K-step ‘running mean’

 k =
1

2K
for �K + 1 � k � K � 1 (2:1:1b)

 k =
1

4K
for k = �K or k = K (2:1:1c)

Bloomfield (1976) defined a class of low-pass filters specified by two parameters, �c = �c=2��t,
the ‘cutoff’ frequency, and K, the half-width. The half-width, K, leads to a transition band, of
width �� = 4�=(2K+1), over which the filter response drops from near 1 to near 0. The filters
are defined by:

 0 =
��c
�

(2:1:2a)
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Figure 1: Frequency response of filter defined by K = 18, � = 0:3 case
of (2.1.2a–c) (solid line) and running means of 12 months (dashed line), 24
months (chain curve) and 36 months (dotted curve).

 k =
 0(2K + 1) sin(k�c) sin(2�k=(2K + 1))

2��ck2
for 0 < jkj � K (2:1:2b)

with � determined by:
KX

k=�K

 k = 1 (2:1:2c)

(The normalization coefficients in (2.1.2a,b) will ensure that � � 1, with asymptotic equality
for large K). In many of the examples in the remainder of this report, we will use the special
case specified by K = 18 and � = 0:3 y�1 for �t = 1=12 y. Figure 1 shows the frequency
response for this filter along with the responses of 12-month, 24-month and 36-month running
means. (Only the lower frequencies, less than 3 cycles y�1, are plotted.)

In the examples below, running means will often be used when relating the discussion to the
time domain and the ‘Bloomfield’ filters will be used for cases characterised in the frequency
domain.

The use of digital filtering as a tool for estimation requires the resolution of a potential ambigu-
ity. This is because the concept of ‘averaging’ arises both as a transformation of biogeochemical
signals (e.g. the transformation from (1.1) to (1.3)) and averaging of observations as a technique
for the estimation of such biogeochemical signals. If we have a time-varying biogeochemical
‘signal’, g(t) then we may hope to estimate g by applying a ‘filtering’ operation “” to the data,
i.e. hhzii , where (as shown in examples below) the filtering operation may be averaging, dif-
ferentiation, deconvolution, or multi-component generalisations of these operations. The type
of error analysis described in this report enables us to characterise how good hhzii is as an
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estimate of g. There is, however, another type of interpretation: hhzii could be regarded as an
estimate of h(t) = hgi�. If both the kernels  and � involve similar time-averaging, then hhzii
could be much better (smaller mean square error) as an estimate of h, rather than an estimate of
g. In general,

E[(hhzii � g)2] 6= E[(hhzii � hgi�)2] (2:1:3)

There is no unique ‘correct’ answer to this ambiguity: what is essential is to specify which
quantity is being estimated.

In cases where the specific time-average of a signal, g, is defined by the context, we can use the
simplified notation �g to denoted such a time-average. In this notation, the distinction discussed
here becomes one of distinguishing ĝ (an estimate of g) from �̂g (an estimate of �g).

The following subsections apply the general framework described here to a range of cases.
We start by calculating the propagation of known error statistics through a linear estimation
procedure (Section 2.2). Section 2.3 looks at the special case where the linear estimation takes
the form of a digital filter applied to a stationary time series. Direct propagation of errors
may be impractical, particularly for non-linear estimation procedures. In such cases a Monte
Carlo approach adding simulated noise to the observations provides an alternative (see Section
2.4). If the error distribution is unknown then the analysis will have to use error distributions
derived from the data. There are some simple standard cases where the distribution is taken
as known apart from a small number of parameters. The simplest is that of independent data,
with identical normal distributions with unknown variance. For cases where there is even less
information about the error distribution, bootstrap analyses (see Section 2.5) may provide a way
of estimating uncertainties.

2.2 Error propagation

As noted above, the general form of statistical model that we use is an additive error model of
the form:

zk = gk + nk (2:2:1a)

where gk is a ‘signal’ that is of interest and nk is a residual ‘noise’ that is treated as random. We
write the specific case for time series as

z(t) = g(t) + n(t) (2:2:1b)

We use the more general model (2.2.1a) to examine the simplest case which is that of linear
estimation where we obtain estimates, f̂ , of some quantity, f , by taking linear combinations of
the observations, zk, with the chosen combination being the same regardless of the actual values
of the zk.

f̂j =
X
k

Ajkzk (2:2:2)

This includes both the case f = g where we wish to estimate g and the more general case where
we wish to estimate a function f that is linearly related to g. A measure of whether f̂ is a ‘good’
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estimate is given by

E[(f̂k � fk)(f̂j � fj)] = [fk �
X
p

Akpgp][fj �
X
q

Ajqgq] +
X
pq

AjpAkqE[npnq] (2:2:3a)

where E[:] denotes a statistical expectation. In particular, the mean square error of component
k is

E[(f̂k � fk)
2] = [fk �

X
p

Akpgp]
2 +

X
pq

AkpAkqE[npnq] (2:2:3b)

The second term in (2.2.3b) is the variance of the estimate and the first term is a squared bias.
In special cases, it may be possible to define the relations so that the bias vanishes. For example
if f is defined to be the 7-point running mean of g then the K = 3 case of the filter (2.1.1a) will
give an unbiased estimate of f . However in some cases it may be desirable to accept biased
estimates in order to reduce the variance (and the mean square error). The difficulty is that
doing this effectively requires some knowledge of the unknown f .

A special case of estimation that is ‘biased’ (i.e. biased with respect to the observations, zk) is
Bayesian estimation. This is the case when there is statistical information about f , specified by
an a priori probability distribution Pr(f).

The general form of Bayesian estimation is based on the relation:

Pr(f jz) = Pr(zjf) Pr(f)P
f Pr(zjf) Pr(f)

(2:2:4)

This defines what we know about f given observations z. This (posterior) knowledge of f
is given in terms of its (posterior conditional) probability distribution, Pr(f jz). Often we are
mainly interested in E[f ] and its variance, i.e. the first and second moments of Pr(f jz) — of
course in the simple case where Pr(f jz) is Gaussian, these moments completely characterise
the distribution. In the numerator on the right, the factor Pr(f) is the a priori distribution for
f . The factor Pr(zjf) has its mean given by the (determinstic) relation g(f) and its distribution
about the mean given by the ‘error’ distribution of ek. For fixed z, i.e. for a given data set, the
denominator is a constant normalizing factor.

2.3 Frequency domain

An important special case arises with what are known as stationary time series. In these cases,
the autocovariance for two times, t1 and t2, depends only on the time difference, t1� t2, and not
on the actual times, i.e. they can be expressed in terms of an autocovariance function,Ra(t1�t2)
where

E[a(t1)a(t2)] = Ra(t1 � t2) (2:3:1)

Such series can be characterised by their power spectra, fa(�), which are the Fourier transforms
of the autocovariance functions, with � a dimensionless frequency. Specifically:

fa(�) =
1

2�

1X
k=�1

cos(k�)Ra(k�t) (2:3:2)

8
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and
Ra(k�t) =

Z �

��
cos(k�) fa(�) d� (2:3:3)

For the case of stationary time series, the form of the statistical model in which observations are
the sum ‘signal-plus-noise’ is:

z(t) = g(t) + n(t) (2:3:4)

where z(t) are the observations, g(t) is a signal of interest (with power spectrum fg(�)) and
n(t) represents unwanted noise (with power spectrum fn(�)).

The standard way to obtain an estimate, ĝ(t), of a stationary signal, g(t), is through digital
filtering:

ĝ(t) = hzi =
X
k

 k:z(t + k�t) (2:3:5)

The mean-square-error of such an estimate is given by

E[(ĝ(t)� g(t))2] =
Z �

��
[j1� 	(�)j2fg(�) + j	(�)j2fn(�)] d� (2:3:6)

where 	(�) is the frequency response of the filter. In this expression, the first term in the integral
is the mean-square bias due to distortion of the signal and the second term is the variance due
to failure to completely eliminate the noise.

A standard result is that the optimal filter (i.e. the one that minimises the mean-square error
2.3.6) has the response:

	opt(�) =
fg(�)

fg(�) + fn(�)
(2:3:7)

Applying this formalism requires a knowledge of the error statistics, expressed as the power
spectrum fn(�). The difficulty is that from the observations, we can only obtain estimates of the
combined power spectrum fz(�) = fg(�) + fn(�). This report is intended mainly as a survey
of techniques of estimation and will not specifically address the issues of modelling the signal
and noise. The ‘noise’ or ‘error’ models are simply taken from previous studies, primarily
Cleveland et al. (1983).

These optimal filtering calculations can be regarded as inherently Bayesian since the signal is
being treated as a random process, characterised by its power spectrum fg(�). In the absence
of an a priori model of the signals of interest, the examples in this report do not include such
optimal filtering. The discussion focuses on the propagation of ‘noise’ through the estimation
process, this being quantified (in part) by the second (variance) term in integrand of (2.3.6). The
time-domain equivalant is Equation (3.3).

At this point we need to recall the ambiguity, noted above, concerning the interpretation of
digital filtering. If we put ĝ = hhzii then the mean square error in the estimate of g is given by
(2.3.6). If however we define
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h(t) = hhgii (2:3:8a)

and put
ĥ(t) = hhzii (2:3:8b)

then
ĥ(t) = h(t) + hhnii(t) (2:3:8c)

This is an unbiased estimate of h(t) and so the first term in the integrand of (2.3.6) vanishes.

More generally, with
h(t) = hgi� (2:3:9a)

and
ĥ(t) = hhzii (2:3:9b)

the mean square error of the estimate is

E[(ĥ(t)� h(t))2] =
Z �

��
[j	(�)� 	�(�)j2fg(�) + j	�(�)j2fn(�)] d� (2:3:9c)

which is minimised by choosing   to have the response

	:opt(�) =
fg(�)	�(�)

fg(�) + fn(�)
(2:3:9d)

In cases where the filter,   , used in constructing the estimates is close to the transformation  �

that defines the function of interest, the (first) ‘bias’ term in the integrand (2.3.9a) will be small
and the mean square error will be dominated by the (second) ‘variance’ term.

Given the desirability of estimating smoothed signals, hgi�(t), because these can often be es-
timated with less bias than g(t), the question still remains of what type of smoothing should
be used and how it should be described. The two possibilities are to describe the filtering in
the frequency domain, taking hgi�(t) as a band-pass-filtered transformation of g(t) or in the
time-domain, taking hgi�(t) as a time-average (especially a running mean) of g(t). These pos-
sibilities are captured by the two types of filter used in our examples. Intermediate cases will
need to be characterised in terms of the specific filter involved.

We have introduced the concept of estimating a filtered function in terms of smoothing. This
is applicable when lower frequencies have the best signal-to-noise ratio. However, Equations
(2.3.9a–d) are applicable for more general filters, �. In particular, where there may be long-term
biases that are constant, or very slowly varying, an analysis of functions subject to band-pass
filtering may be appropriate. An example where the transformation � corresponds to numerical
differentiation is given in Section 4.2.

10
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2.4 Monte Carlo

There are a number of cases in which the direct propagation of errors (as in Section 2.2) is either
impossible or impractical. The most obvious cases are those involving non-linear estimation.
This includes robust estimation techniques (i.e. those with reduced sensitivity to departures
from the normal distribution, particularly the presence of outliers). The analysis of the seasonal
cycle by Cleveland et al. (1983) is an example of the use of simulation of errors to calculate
the confidence intervals for robust estimation. Cleveland et al. (1983) used n(t) defined as an
AR(1) process (for which realisations are readily generated) in order to determine an envelope
of uncertainty for their estimated cycle amplitudes.

The effect of noise on such non-linear estimates can be assessed by simulation. If the estimate
of g is given by some function (or functional) of the observations z, i.e. ĝ(t) = K[z(t)] then
one can create an ensemble of realisations of alternative estimates as:

ĝ(m)(t) = K[ĝ(t) + n(m)(t)] (2:4:1)

where n(m)(t) is a synthetic time series drawn from the appropriate error distribution.

Cases where we are estimating a functional h(:) of g(t) need to be treated with a ‘two-stage’
procedure where the estimation procedure for obtaining ĥ(:) is applied to a set of realisations,
ĝ(t) + n(m)(t), based on an estimate of g(t) the ‘signal’ component of the observations.

As noted above, Cleveland et al. (1983) applied this technique to estimate the uncertainty for
their seasonal cycle cycle amplitudes. However it is suggested in Section 3 below (and il-
lustrated in Figure 5) that displaying a set of realisations can also provide a useful way of
communicating the degree of possible variation about the estimate.

A final comment is that this Monte Carlo approach can also be valuable with estimation tech-
niques that are actually linear but which are implemented as a ‘black box’ that calculatesP

k Ajkzk given the zk but which cannot readily calculate
P

pq AjpAkqRpq givenRpq. The spline
fits described in Section 5 are an example of such a case.

2.5 Bootstrap

The analyses above have assumed that the statistical distribution of the errors is known. Often
this will not be the case, and it will be neccessary to estimate the errors from the observations.
One of the simplest ‘standard’ cases of such a procedure is linear regression for the case where
the data errors are assumed to be independant and have identical Gaussian distributions with
unknown variance �2. In this case, � becomes an additional parameter to be estimated. This is
a particularly simple case, because the estimates of the regression coefficients will not depend
on the value of �.

More complicated cases can be dealt with by using a variety of ‘re-sampling’ strategies such
as the ‘bootstrap’ approach (see Efron, 1982). The idea is that if one has a data set, A0 =
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fz1; z2; : : : ; zNg from which an estimate f̂(A0) is obtained, then the statistical properties of
this estimate can be obtained from a sequence of estimates, f̂(Am) derived from a sequence of
synthetic data sets, Am. These data sets are Am = fz1:m; z2:m; : : : ; zm:Ng where each synthetic
value zj:m is obtained by randomly selecting an element of A0, with replacement. (For large M ,
the probability of any particular point being chosen at least once approaches 1� e�1).

This ‘bootstrap’ approach is used in Section 5 below to estimate the degree of uncertainty in
spline fits to ice-core data. ‘Resampling’ as a concept rather than an operational procedure, also
forms the basis of the method of generalized cross-validation (GCV) of smoothing splines. In
GCV, the objective is not so much the characterisation of uncertainties, but rather the determi-
nation of the (statistically) optimal degree of smoothing, which, as illustrated by the analysis in
Section 2.3 will depend on the nature of both the signal and the noise.

2.6 Error models

Table 1 summarizes a number of time series models that have been proposed for the ‘irregular’
or ‘noise’ component of monthly mean CO2 data at Mauna Loa, and in one case for the South
Pole. These models are to some extent based on different assumptions about what constitutes
the ‘regular’ component(s). Thus some of the ‘noise’ variability captured by some of the error
models may represent variations that other studies would regard as ‘signal’.

Site Model Var(�) Reference
Mauna Loa nj+1 = 0:63nj + �j 0.066 Cleveland et al. ’83
South Pole nj+1 = 0:72nj + �j 0.049 Cleveland et al. ’83
Mauna Loa �j 0.23 Surendran & Mulholland ’87
Mauna Loa nj+1 = 0:48nj + 0:18nj�1 � 0:12nj�2 + �j 0.063 Martı́n & Dı́az ’91

Table 1: Models of irregular, or ‘noise’ component of monthly mean CO2 data.

Cleveland et al. (1983) represented the irregular components of the Scripps Institution of Ocean-
ography (SIO) Mauna Loa and South Pole records as first-order autoregressive (AR(1)) pro-
cesses as indicated in Table 1. They noted that this model did not capture the ENSO-scale
variations in the long-term growth.

Surendran and Mulholland (1987) analysed the SIO Mauna Loa time series by fitting an expo-
nential and 12-month and 6-month sinusoids. They then used an AR(2) model to capture the
variability associated with the ENSO phenomenon. They suggested that the residuals could be
represented as white noise with a variance of 0.2303.

Martı́n and Dı́az (1991) investigated several statistical models of the SIO Mauna Loa time series.
Their first model was based solely on the CO2 time series and took the form of an ARIMA
(autoregressive integrated moving average) model:

[1� �1B� �2B
2 � �3B

3]r12r[c(t)� �c] = [1� �1B
12][1� �2B]�(t) (2:6:1)
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Figure 2: Power spectra for error models of monthly mean
Mauna Loa time series, as described in Table 1 from Cleveland et
al. (solid line) and Martı́n and Dı́az (dashed line).

where B is the backward shift operator and r is the difference operator. They also modelled
the CO2 data in terms of fossil fuel and sea-surface temperature and fitted the residuals as an
AR(3) model:

[1� 0:48B� 0:18B2 + 0:12B3][n(t)� �n] = �(t) (2:6:2)

with Var[�] = 0:063.

Tunnicliffe-Wilson (1989) modelled the monthly mean Mauna Loa CO2 data series from NOAA
as an ARMA (autoregressive moving average) model

[1�B][1�B12]c(t) = [1� 0:49B][1� 0:86B]�(t) (2:6:3)

with Var[�] = 0:09 but this was a model for the series as a whole and not just the irregular
component.

Thoning et al. (1989) constructed an AR(1) model of the irregular component of daily mean
data from the NOAA/GMCC Mauna Loa record. They did not quote the autocorrelation but,
using the theoretical AR(1) power spectrum (Equation 2.6.4a below), it can be estimated from
their Figure 6 as a � 0:8. This would imply an autocorrelation of order 0.001 for monthly data.
Clearly the synoptic and subseasonal variation modelled by Thoning et al. is only a very small
part of the variability identified by Cleveland et al.

Figure 2 shows some of the power spectra for these error models, plotted as a function of
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frequency � = �=2��t. These use (see for example Priestley, 1981, Section 4.12.3)

f(�) =
Var[�]

2�

1

1� 2a cos(�) + a2
(2:6:4a)

for AR(1) models, or the more general expression for AR(N ):

f(�) =
Var[�]

2�

1

j1�PN
j=1 aje

ij�j2 (2:6:4b)

3 Representation of uncertainty

The following sections concentrate on the formal mathematical ways of characterising and cal-
culating the variability inherent in statistical estimation of time-varying functions, using the
framework developed in Section 2. The present section addresses the issues of how to commu-
nicate such results. This is done by presenting a number of examples.

EXAMPLE 1: The long-term trend at Mauna Loa

As an example we analyse the record of monthly mean CO2 concentrations from Mauna Loa,
Hawaii, as determined by the SIO measurement program (Keeling and Whorf, 1994, with ad-
ditional data for later periods downloaded from the Carbon Dioxide Information and Analysis
Center internet site at Oak Ridge National Laboratory). We treat the observed concentrations,
z(t), as consisting of a long-term trend, g(t), a seasonal cycle, s(t), and an irregular noise
component, n(t), i.e.

z(t) = g(t) + s(t) + n(t) (3:1)

The trend, which we seek to estimate, can be regarded as a global mean trend plus a contribution
from medium to long-term variations in the mean spatial distribution of CO2, primarily the
latitudinal and vertical gradients. As noted in Section 2.6, Cleveland et al. (1983) modelled the
SIO Mauna Loa CO2 time series in this way with a separate signal describing the seasonal cycle
and fitted the remaining irregular component to a first-order autoregressive (AR(1)) process with
autocovariance Rn(k�t) = �2ajkj=(1� a2) with � = 0:257 and a = 0:63.

In using digital filtering to construct an estimate, ĝ(t), of the trend g(t)

ĝ(t) =
X
k

 kz(t + k�t) (3:2)

the autocovariance function for the estimate is

E[(ĝ(t)� g(t))(ĝ(t0)� g(t0)] =
X
jk

 j kRn(t� t0 +�t(k � j)) (3:3)

(see for example Thoning et al., 1989, for examples of the use of such error estimation). The
t0 = t case of (3.3) is the time-domain equivalent of the variance term in (2.3.6).
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Figure 3: Long-term CO2 trend at Mauna Loa, estimated by running mean of
SIO data. The �2 s.d. range for the estimate is calculated using the Cleve-
land et al. error model. Tick marks for time on this and later plots are at the
beginning of the indicated year.

We apply (3.2) with a 12-month running mean (actually  k = 1=12 for k = �5 to 5 and
 k = 1=24 for k = �6). Applying (3.3) for t = t0 gives Var[ĝ(t)] � 0:182 ppm2. Figure
3 shows the estimated trend with the 2 s.d. range of �0:36 ppm. However, while this range
gives an indication of how much the ‘true’ trend might be expected to differ from the estimate,
it does not show the possible patterns of departure. The covariance function for the estimates
(Equation 3.3) contains this information. Figure 4 plots this autocovariance function for the
trend estimated by the running mean, assuming the Cleveland et al. model of n(t). The error
estimates are highly correlated for periods of up to 6 months. This correlation time reflects the
combined effects of the spread of the filter and the correlations in the ‘noise’ component. The
information in Figure 4 could also be presented in the frequency domain as a power spectrum
for the uncertainty in the estimate.

To convey more directly the information about the degree of possible variability due to uncer-
tainties in the estimate we use the Monte Carlo procedure from Section 2.4. Figure 5 shows a
set of curves produced by the Monte Carlo procedure (with each successive sample displaced
by 0.5 ppm to enable the cases to be distinguished).
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Figure 4: Autocovariance for estimates of the Mauna Loa CO2 trend, calculated using
Equation (3.3) with error model taken from Cleveland et al. (1983). The solid curve is
for estimates calculation by the 12-month running mean (i.e. for the estimates shown in
Figure 3. The dotted curve is for estimates obtained from the K = 18, � = 0:3 case of
(2.1.2a–c).
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Figure 5: Estimate of Mauna Loa CO2 trend (dashed curve) with sample of possible
alternative functions. These are calculated by adding a synthetic ‘noise’ term, defined
by the Cleveland et al. (1983) model and then applying the running mean filter. Each
successive case is displaced by an additional 0.5 ppm, to separate the plots.
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4 Functions and functionals

4.1 Issues

For the most part, the discussion in Section 2 was quite general and did not depend on whether
the quantity that was being estimated was a particular component of the observed data or
whether it was a more general function of some signal in the data. Nevertheless it seems worth-
while to address the issue of estimating functionals of signals in the observations, both as a
general issue and in terms of some important specific cases.

Among the common principles involved in estimating functionals, we note that:

� explicit linear estimation allows explicit propagation of uncertainty. The discussion in
Section 2.2 specifically included this degree of generality;

� for non-linear estimation (or linear problems that can not be readily manipulated) the
Monte Carlo approach remains applicable.

Particular cases of estimating functionals are illustrated in the following subsections:

i. estimation of a time-averaged (i.e. smoothed) version of a signal (see Sections 2.1, 4.2 and
4.3);

ii. estimation of the growth rate (see Section 4.3);

iii. deconvolution of an observed signal, where the signal interpreted as the convolution of a
forcing with a response function (see Section 4.4);

iv. estimation of seasonal cycles (see Section 4.5 and Enting et al., 1999).

v. extraction of a vector signal from multi-component data (see Section 4.6 for an example).

4.2 Running means

One particular transformation that is often of interest is the mean signal over some specified
period. A prominent example is the IPCC discussion of the atmospheric carbon budget for the
1980s (Schimel et al., 1995). The time-average for a specific N -month period is, of course, just
a single point from the N -month running mean and so the discussion of specific time-averages
is just a special case of our general approach.

For the moment, we regard the averaging period (N months) as fixed and use  � to denote this
running mean of the signal. Thus

�g =  � � g (4:2:1)
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The actual estimates of �g will be obtained from the data using a filter   . The properties of a
‘good’ estimate are low variance (as calculated using Equation 3.3) and low bias, i.e.   �  � .
However when   is a running mean, the filter passes a signicant amount of high frequency
power (see the examples in Figure 1) and thus may pass a significant amount of noise. However
reducing this contribution to the variance of the estimates of �g introduces a ‘bias’ as   departs
from  �. The best trade-off is determined by the expressions (2.3.6) and (2.3.7) defining the
optimal filter, but this requires an a priori estimate of the power spectrum of the signal.

To analyse the importance of reducing the variance in estimates of running means, we consider
a specific class of estimates which we define as

�̂g = �̂g (4:2:2a)

where
ĝ =  � � z (4:2:2b)

This means that
�̂g =   � z (4:2:2c)

with
  =  � �  � (4:2:2d)
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Figure 6: Variance when estimates of N -month running mean signal are derived derived
by filtering observations which include noise characterised by Cleveland et al. AR(1)
model. Solid curve shows variance (as a function of N ) when N -month running mean
signal is estimated as N -month running mean of observations. Dotted curve shows vari-
ance when N -month running mean signal is estimated as running mean of observations
filtered with K = 12, � = 0:5 cycle y�1 ‘Bloomfield’ filter.
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Figure 6 shows (as a plot against N ) the variance of estimates obtained using an N -month
running mean (solid curve) and the variance using the convolution of the running mean and a
low-pass ‘Bloomfield’ filter (Equations 2.1.2a–c, with K = 12 and � = 0:5 cycle y�1). For a
fixed amount of additional smoothing (provided by  �) this smoothing has progressively less
effect on the variance of the estimate as the averaging period increases. (In practice, the running
means of greatest interest are for whole numbers of years, so that the running mean acts to filter
out the seasonal cycle). Recall that for even N we define the ‘running mean’ as a filter with
N + 1 points, the two end-points having coefficients 1=2N (Equations 2.1.1b,c). This gives an
extra smoothing for even N which leads to the odd-even oscillation apparent in the solid curve
in Figure 6.

4.3 Rates of change

As noted in the introduction, a very important case where we need to consider transformations
of observational data is when we require rates of change. The realisations of estimates of CO2

concentrations shown in Figure 5 show that great variability and uncertainty in the growth rate
can be accomodated within the confidence intervals shown in Figure 3.

A conceptual starting point for discussing rates of change is to note that, for smoothing defined
by a convolution, the derivative of a smoothed function is equivalent to having smoothed (with
the same kernel) the derivative of the original function. This can be seen by differentiating (1.2)
as

@

@t
hf(t)i =

Z
 (t

0)
@

@t
f(t+ t0) dt0 = h @

@t
f(t)i (4:3:1)

As a specific example, the derivative of the 2-year mean is equivalent to the 2-year mean of the
derivative, or in the abbreviated notation, �_g = _�g.

For discussing estimation from discrete data, it is useful to transform (4.3.1) as

@

@t
hf(t)i =

Z
 (t

0)
@

@t
f(t+ t0) dt0 =

Z
 (t

0)
@

@t0
f(t+ t0) dt0 = �

Z
f(t+ t0)

@

@t0
 (t

0) dt0

(4:3:2)
assuming   is differentiable on [�T; T ] and goes to zero at �T . Equation (4.3.2) expresses the
smoothed derivative in terms of a kernel that differentiates and smooths the original function.
This kernel is given by the negative of the derivative of the smoothing kernel. Discretised
forms of such kernels can be used with Equation (3.3) to calculate the uncertainty of derivatives
estimated from discrete data.

One important reason for explicitly considering estimation of derivatives is that the problem of
numerical differentiation is well-known as an ill-conditioned inverse problem, i.e. one which
is subject to large amplification of any errors in the input. While this might suggest that the
derivative needs to be smoothed more than the concentration curve in order to obtain meaningful
estimates, this argument needs to be treated with caution. If one takes the time derivative of the
relation z(t) = g(t)+n(t) then the derivatives of g and nwould have power spectra �2fg(�) and
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�2fn(�) respectively, so that from (2.3.7) the optimal estimate of _g will be obtained by filtering
_z with the same filter that extracts the optimal estimate of g from z.

A special case that often occurs is that of estimating the time-average growth rate over some
interval. Without loss of generality in the case of stationary times series, we take the intervals
as [�T; T ] = [�M�t;M�t]. Since we have:

2T�_g =
Z T

�T
_g dt = g(T )� g(�T ) (4:3:3)

an obvious class of estimator of the mean derivative is:

�̂_g = [ĝ(T )� ĝ(�T )]=2T (4:3:4)

Using the analysis from Equations (2.3.8–9) with

 k:� = [Æk;M � Æ�k;M ]=2M�t (4:3:5)

shows that the optimal estimate of the time-averaged growth rate of g(t) is the difference of
the optimal estimates of g, divided by the time-interval. The uncertainty in any estimate of the
mean growth rate derived from differencing estimates of the function will be

Var[�̂_g] = [Rĝ(0)�Rĝ(2T )]=T (4:3:6)

where Rĝ is the autocovariance function of ĝ, the estimate of g.

The analysis of growth rates using smoothing splines is discussed as a special case in Section
5.2 below.

EXAMPLE 2: The long-term CO2 growth rate at Mauna Loa

In order to illustrate some of the above issues involved in estimating growth rates, we consider
the rate of increase of CO2 at Mauna Loa. We analyse the SIO data set (Keeling and Whorf,
1994, plus electronic update as noted above) and use the Cleveland et al. error model as in
Example 1. We consider an initial smoothing of the record defined by the Bloomfield low-pass
filters with coefficents  k specified by Equations (2.1.2a–c) with K = 18 and �f = 0:3 cycles
y�1, i.e. !f = 0:6� y�1. The filter that generates the estimates of the (smoothed) derivative is
given by

 0k = ( k�1 �  k+1)=2�t (4:3:7)

Figure 7 shows the estimated growth rate, together with the �1 s.d. and �2 s.d. uncertainty
ranges (i.e. point-by-point uncertainties). Figure 8 shows the autocovariance of these estimates
(so that the range in the previous figure are �

q
R(0) and �2

q
R(0) ) . The curve is obtained

from (3.3) using (4.3.7) for the filter and the Cleveland AR(1) model for R(:). It will be no-
ticed that there is a prominant negative autocorrelation beyond 1 year. This is to be expected
in estimates of derivatives. Positive errors in the estimated derivative must be followed by
compensating negative errors (and vice versa) to keep the integral of the estimated derivative
consistent with the confidence intervals on the original function.
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Figure 7: Estimated CO2 growth rate at Mauna Loa based on 2-month dif-
ferencing of concentration estimates derived from K = 18, � = 0:3 case
of (2.1.2a–c) (solid curve), with point-wise uncertainties at �1 s.d. (dashed
curves), and �2 s.d. (dotted curves).
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Figure 8: Autocovariance for estimates of CO2 growth rate at Mauna Loa
(as in Figure 7). Calculated using (3.3) with Cleveland et al. error model and
2-month difference (Equation 4.3.7) of K = 18, � = 0:3 case of (2.1.2a–c).
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Figure 9: Multiple realisations of CO2 concentration estimates (using 12-
month running mean), normalised to the (mid-January) 1970 value. The
changes for N -years from 1970 correspond to N times the N -year mean
growth rate for the period 1970–1970+N

Figure 9 illustrates the issues described by Equation (4.3.6) involved in estimating time-averages
of rates of change. The curves are Monte Carlo realisations of 12-month running means of the
Mauna Loa CO2 record, normalized to January 1970. The time-average for the period 1970
to 1970+� is given by ��1 times the increase from 1970. As described by (4.3.6) there is an
overall tendency for the variance to decrease as � increases, due to the ��1 averaging factor. For
small � , the �Rĝ(�) term partly offsets this tendency since Rĝ(�) is largest at small � — the
autocorrelation in the estimates keeps the curves in Figure 9 together for the initial period after
1970.

4.4 Deconvolutions

An early application of response functions to the study of the carbon budget was by Oeschger
and Heimann (1983) who expressed the atmospheric carbon content, M(t), in terms of the
sources, S(t), as

M(t) =M0 +
Z t

G(t� t0)S(t0) dt0 (4:4:1)

where G(t) represents the response of the natural systems and is the amount of a unit input to
the atmosphere that remains in the atmosphere after a time t.
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Enting and Mansbridge (1987) noted that (4.4.1) has a formal inverse of the form:

S(t) =
d

dt
M(t)=G(0)� [M(t)�M0] _G(0)=G(0)2 �

Z
K(t� t0) [M(t0)�M0] dt

0 (4:4:2)

where the kernel K(:) can be derived from G(:). If G(:) is a sum of n exponentials, then K(:)
is a sum of n�1 exponentials.

Relation (4.4.2) corresponds to

S(t) =
d

dt
M(t)=G(0)� �response(t) (4:4:3)

where �response is the flux associated with the response of the natural system. This flux is a
functional of M(t).

A key result is that if the time-averaging takes the form of a convolution, then (4.4.1), which is
conceptually an instantaneous relation, can be consistently averaged as

hM(t)i =M0 +
Z t

�1
G(t� t0) hS(t0)i dt0 (4:4:4)

The result (4.4.4) is a particular case of the general result that convolution operations commute.
The specific case is derived by noting that, in our notation, taking a time average of such a
convolution gives

h
Z t

�1
G(t� t00)S(t00)dt00i =

Z T

�T
[ (t

0)
Z t+t0

�1
G(t+ t0 � t00)S(t00)dt00]dt0

=
Z T

�T
[ (t

0)
Z t

�1
G(t� �)S(� + t0)d� ]dt0 (4:4:5)

with � = t00 � t0. Thus

h
Z t

�1
G(t� t00)S(t00)dt00i =

Z t

�1
G(t� t00) hS(t00)idt00 (4:4:6)

Most deconvolutions of carbon cycle data are performed using (4.4.3) with a numerical model
to calculate �response. This is commonly done by running a model in ‘inverse mode’ with the at-
mospheric concentration forced to track a specified concentration record C(t) (see for example
Siegenthaler and Oeschger, 1987; see also discussion in Enting et al., 1994). The significance of
the formal solution (4.4.2) is that it emphasises the fact that the function M(t) occurs in more
than one term in the expression for S(t) and so the errors in these terms cannot be regarded
as independent. Cases where response functions have been used more directly in carbon cycle
studies are in the model developed by Wigley (1991), IPCC modelling by the group at the Max
Planck Institut für Meteorologie (see Enting et al., 1994), and the Bern group (Joos et al., 1996;
Bruno and Joos, 1997; Joos and Bruno, 1998) and in the Kalman filtering analysis by Trudinger
(1999).

Many deconvolution studies of CO2 have been based on smoothing spline fits to observational
data, particularly from ice cores. However the analysis in this section suggests that the main
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uncertainties arise from the need for differentiation. Therefore, when discussing smoothing
splines in Section 5 below, we concentrate on the determination of growth rates (Section 5.2)
and do not explicitly address deconvolution studies.

EXAMPLE 3: Deconvolution of methane data

In order to illustrate the issues discussed above, we consider the problem of deducing the total
source of atmospheric methane, this being somewhat simpler than the corresponding calcula-
tions for CO2. The budget equation is written as

S(t) =
d

dt
M(t) +M(t)=� (4:4:7)

where � is an atmospheric (chemical) lifetime, which we set to 10 years as used in the IPCC
Radiative Forcing Report by Prather et al. (1995). Note that this is a ‘whole atmosphere life-
time’ and not an ‘adjustment time’, because the budget refers to the whole atmosphere and
not just a perturbation. Equation (4.4.7) can be seen to be a special case of (4.4.2) with
G(t) / exp(�t=�), since K(:) vanishes if G(:) is a single exponential.
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Figure 10: Deconvolution kernel for methane source estimates (solid curve)
and the two terms in the (smoothed) budget (4.4.8): the derivative (dotted
curve) and the M=� (dashed curve). The curves are shown as continuous for
clarity, but the filter coefficients are defined only for integer values.

We consider the time average

hS(t)i = h d
dt
M(t)i + hM(t)i=� (4:4:8)

with the averaging using the same filter as in Example 2.
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This implies that we estimate hS(t)i with a deconvolution kernel defined by

 �k = ( k�1 �  k+1)=2�t +  k=� (4:4:9)

Figure 10 shows the form of this filter, based on a ‘Bloomfield’ filter (Equations 2.1.2a–c above)
with K = 18 and �c = 0:3 cycles per year. The solid curve plots the filter coefficients, the
dotted curve is the filter defining the derivative and the dashed curve is the filter defining the
(smoothed) M=� term. It is clear that in this case, the uncertainties in the estimates obtained
by deconvolution will be dominated by the uncertainties in estimating the derivative. For CO2

where the time constants are longer than the atmospheric lifetime of CH4, the uncertainties
in deconvolutions will be dominated to an even greater extent by the uncertainties inherent in
numerical differentiation.

4.5 Seasonal cycles

One of the most prominant signals in atmospheric CO2 concentrations is the seasonal cycle.
This is the largest signal after the long-term trend, especially in the northern hemisphere. The
cycle and its variability is analysed in a forthcoming report by Enting et al. (1999) and so
only a summary is presented here. The technique of complex demodulation (Bloomfield, 1976;
Priestley, 1981, Section 11.2.2) is used to obtain an estimate of the principle component, s(t),
of the cycle (frequency !A = 2� y�1) as s(t) = A(t) cos(!At��(t)) withA(t) and �(t) slowly
varying.

The technique of estimating amplitude and phase of the cycle by complex demodulation is non-
linear. Therefore, the Monte Carlo technique outlined in Section 2.4 is a convenient way of
determining the range of uncertainty in the estimates. However, in spite of the non-linearity,
Enting et al. (1999) were able to obtain analytic expressions that gave an approximate error
analysis. The approach was to follow Enting (1987b) and note that the technique of complex
demodulation can be expressed as a digital filtering problem. Consequently, the formalism in
Section 2.3 above can be applied to the analysis of the cycle. The basis of the equivalence is
that if

ŝ(t) = Â(t) cos(!At� �̂(t)) (4:5:1)

then the complex demodulation estimates for Â and �̂ were equivalent to defining the estimate
ŝ as

ŝ(t) =
X
k

 k:cz(t + k�t) (4:5:2)

The error analysis is based on combining this with the estimate, r̂, of the phase-shifted cycle

r̂(t) = Â(t) sin(!At� �̂(t)) (4:5:3a)

which is given by
r̂(t) =

X
k

 k:sz(t + k�t) (4:5:3b)
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where the  k are the coefficients of the low-pass filter  used in complex demodulation and
 k:s = sin(k�A) k and  k:c = cos(k�A) k are transformations of this low-pass filter. Given a
stationary error model, we can apply (3.3) to determine the (constant) variances of the estimates
r̂ and ŝ. From the definitions of  c and  s we have 	s(�A) =

p�1	c(�A). If  is highly
smoothing (i.e. 	(�) is non-zero for only a narrow band of low frequencies) then 	c(�) and
	s(�) are non-zero only in a small range of frequencies around �A and so j	c(�)j � j	s(�)j
for all frequencies, and so we have (approximately) Var[ŝ] = Var[r̂] = �2. For  k symmetric,
Cov[ŝ; r̂] is zero by symmetry.

Therefore we can write

Â2 = ŝ2 + r̂2 = (A cos(!at) + x)2 + (A sin(!At) + y)2 (4:5:4a)

where x and y are normally distributed with variance �2 whence

E[Â2] = A2 + 2�2 (4:5:4b)

Enting et al. (1999) use a binomial expansion to show that

E[Â] = A+ a bias of order �2=2A (4:5:4c)

whence
Var[Â] � �2 (4:5:4d)

EXAMPLE 4: The seasonal cycle at Mauna Loa

The seasonal cycle of CO2 is a prominent feature of northern hemisphere records. Over the
4 decades of the Mauna Loa record, it has been apparent that the amplitude of the cycle is
changing. A number of studies have expressed this change as a long-term trend, but a more
detailed analysis suggests that most of the longer-term changes come from periods of relatively
rapid change in the late 1970s and late 1980s (Thompson et al., 1986). Enting et al. (1999) have
extended the complex demodulation analysis to a large number of CO2 records. In this section
we present the Mauna Loa case as an illustrative example.

Again, the data set and error model are those used in Example 1. The filter  is specified by
(2.1.2a–c) with K = 18 and �c = 0:3 cycles per year. Applying (3.3) gives Var[ŝ] � Var[r̂] �
0:01884 so that the standard deviation of the amplitude estimates is 0.14 ppm. Figure 11 shows
the estimated amplitude for Mauna Loa. Studies by Enting et al. (1999) indicate that the range
of estimates obtained by different observational programs at Mauna Loa is consistent with this
uncertainty range. This suggests that a significant fraction of the noise is due to measurement
and sampling procedures rather than coherent atmospheric variability.
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Figure 11: Estimate of the amplitude of the seasonal cycle of CO2 at Mauna
Loa, with �1 s.d. and �2 s.d. uncertainty ranges.

4.6 Isotopes

The basis of the use of isotopes in biogeochemical studies is the relation between elemental
fluxes and isotopic fluxes. We represent the carbon balance of the atmosphere as

d

dt
M =

X
Y

�Y (4:6:1a)

where the sum is over all processes, Y . The corresponding 13C balance is

d

dt
(MRA) =

X
Y

RY�Y (4:6:1b)

where RA is the isotopic ratio of the atmosphere and RY is the (average) isotopic ratio of flux
�Y . (The subdivision into processes, Y , has to be sufficiently detailed to allow meaningful
averaging of isotopic ratios to obtain RY .) Often it is possible to obtain good estimates of the
isotopic ratios RY (or equivalently the ÆY defined below) and, assuming that the RY are known
and are not all equal, Equation (4.6.1b) gives additional constraints on the fluxes �Y .

The 13C budget can be re-expressed as a linear combination of Equations (4.6.1a,b) in terms of
a 13C anomaly M�

x defined by

M�
x = �(M13

x =Rr �Mx) = ÆxMx (4:6:2)

where Rr is a reference ratio and � is a scale factor that defines the units of Æx. The anomaly
budget is given by

d

dt
M�

x =
d

dt
(MÆA) =

X
Y

ÆY�Y (4:6:3)
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in terms of anomaly fluxes

��
Y = �(�13

x =Rr � �Y ) = ÆY�Y (4:6:2)

d

dt
(MÆA) =

X
Y

ÆY�Y (4:6:3)

using
ÆY = �(RY �Rr)=Rr (4:6:4)

The notation ÆY is meant to be suggestive of the Æ13C used to communicate measurements of
isotopic ratios. (The principle is essentially that of Tans (1980) treating an anomaly, ÆXMX , as
a conserved tracer.) The correspondence between Æ from (4.6.4) and the conventional Æ13C will
not be exact and will depend on the choice of the constants Rr and � used in the definitions.
If we denote the ‘standard’ definition of Æ13C (in units of ‰) by Æ0 and 13C:12C ratios by r, we
have

r = (1 + Æ0=1000)rs (4:6:5a)

where rs is the standard 13C:12C ratio of a material with Æ13C = 0. The anomaly Æ values defined
here are

Æ = �
�

r

1 + r
=Rr � 1

�

Putting Rr = rs=(1 + rs) gives

Æ = �
r � rs

(1 + r)rs
(4:6:5b)

Putting � = 1000(1+r)would make Æ exactly equivalant to the standard definition of Æ 0 (in ‰).
However, we need to use the same � value for all terms in Equation (4.6.3) and so the factor 1+r
needs to be replaced by a fixed value. If all the Æ values lie between �10 and �30 then using
the central value and replacing 1+ r by 1+ 0:98rs will lead to errors of only 1%. Therefore, in
all the calculations listed below, we substitute Æ 0 values in place of the corresponding Æ values.

When considering carbon isotopes, we need to recall that the anthropogenic perturbation is a
small change in a large natural cycle with gross fluxes, ��

Ocean � �+
Ocean and ��

Biota � �+
Biota, to

and from oceans and biota. The net fluxes �Ocean = �+
Ocean���

Ocean and �Biota = �+
Biota���

Biota

are small residuals of the two opposing gross fluxes.

The net isotopic change due to two opposing gross fluxes can be re-expressed as:

�+
XÆ

+
X � ��

XÆ
�
X = (�+

X � ��
X)Æ

+
X + ��

X(Æ
+
X � Æ�X) (4:6:6)

In (4.6.6) the first term on the right is the isotopic signal carried by the net flux and the second
term is an isotopic signal (an ‘isoflux’) due to isotopic disequilibrium. Note that the Æ+X , Æ�X refer
to the isotopic compostion of the fluxes and that if these are composite fluxes the Æ+X , Æ�X need
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to be defined as flux-weighted averages. Often the isotopic composition of exchanges between
reservoirs will be offset from the isotopic composition of the source reservoir, so a transfer
�P!Q between reservoirs P and Q will have an isotopic composition given by

ÆP!Q = ÆQ + �P!Q

where �P!Q specifies the isotopic fractionation in the P ! Q transfer.

EXAMPLE 5: Joint CO2-13CO2 budget

This example reviews the uncertainty analysis in the calculations of Francey et al. (1995a). This
study is important is its own right as an indication of the variability of the carbon cycle. The
calculation is also important because it is essentially equivalent to the double deconvolution
method that is applied to the analysis of CO2 and 13C records from ice cores. The global
constraint from 13C in synthesis inversions, both steady-state (Enting et al., 1995) and time-
dependent (Rayner et al., 1999), comes from essentially the same set of equations. For CO2,
the specific cases of (4.6.1a and 4.6.3) that are of most interest take the form:

d

dt
M = �Fossil + �Ocean + �Biota (4:6:7a)

d

dt
(MÆA) = ÆF�Fossil + Æ+O�Ocean + Æ+B�Biota +��

Ocean(Æ
+
O � Æ�O) +��

Biota(Æ
+
B � Æ�B) (4:6:7b)

Enting et al. (1993) represented these equations in the form of a sum of two-component vectors
[a; b] with a in ‰GtCy�1 and b in GtCy�1. The vector sum equivalent to (4.6.7a,b) is

� _M [1; ÆA]� [0;M _ÆA] + �Fossil[1; ÆF ] + �Biota[1; Æ
+
B ] + �Ocean[1; Æ

+
O]

+[0;��
Ocean(Æ

+
O � Æ�O)] + [0;��

Biota(Æ
+
B � Æ�B)] = [0; 0] (4:6:7c)

A graphical representation of this relation is shown in Figure 12.

The simultaneous Equations (4.6.7a,b) can be solved explicitly so that (eliminating �Biota):

�Ocean(Æ
+
O�Æ+B) = _M(ÆA�Æ+B)+M _ÆA��Fossil(ÆF �Æ+B)���

Ocean(Æ
+
O�Æ�O)���

Biota(Æ
+
B�Æ�B)
(4:6:7d)

We now apply the concepts developed earlier in this report to re-examine how well we can
estimate �Ocean on various time-scales, working through (4.6.7d) term by term. Francey et al.
(1995a) noted a distinction between two types of error. Firstly there was a short-term ‘noise’
that they aimed to remove by time-averaging. Time-averaging was also proposed as a solution
to the issue of spatial representativeness (see Section 6.2 below). Secondly, there was the pos-
sibility of unknown long-term biases (particularly in the isoflux terms) that, it was argued, were
sufficiently slowly-varying not to affect the signal on sub-decadal time-scales, but which might
give a mean offset to the estimates.

The error analysis of (4.6.7d) is complicated by the appearence of Æ+B in multiple terms and the
apparent non-linearity as the Æ factors multiply mass terms. Such non-linearity can, in principle,
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Figure 12: Vector representation of joint CO2-13CO2 budget. Arrows are: — _M ;
. . . . . . _Æ2 – – – �Fossil – � – . biotic disequilibrium – � � � – � � � oceanic disequilibrium.
The solution for �Biota and �Ocean is determined by the intersection of the two lines
– – � of known slope (i.e. known ÆX ) and unknown length, representing net ocean
fluxes and net biotic fluxes.

lead to covariance effects when time-averaged. To resolve the role of the non-linearity it is
easiest to go back to the original (linear) equations of the budgets of carbon and 13C anomaly
and to time-average before transforming the equations.

In these terms we can define �ÆY as
�ÆY = ���

Y =
��Y (4:6:8)

In other words, as with averages over component fluxes, time-averaged Æ values need to be
defined as flux-weighted time-averages.

In order to address the issue of non-linearity we note that Æ+B arises when choosing a multiple
of Equation (4.6.7a) that cancels �Biota in (4.6.7b). For the purposes of this analysis we modify
this and subtract a multiple of (4.6.7a) specified by Æref � Æ+B without requiring exact equality.
The results of uncertainty in Æ+B then appear as a multiple of �Biota. This would vanish if we had
exact equality, but that given Æref is only an approximation to Æ+B there is an error contribution
/ �Biota. Combining the use of Æref with the use of the flux-weighted time-average Æ values
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defined by (4.6.8) re-casts (4.6.7d) as:

�Ocean(�Æ
+
O � Æref)

= _M(�ÆA�Æref)+M _�ÆA��Fossil(�ÆF�Æref)���
Ocean(

�Æ+O��Æ�O)���
Biota(

�Æ+B��Æ�B)��Biota(�Æ
+
B�Æref)
(4:6:9)

As working approximations, we use

Æ�B = ÆA � 18 in ‰ (4:6:10a)

and
Æref = Æ̂A � 17:5 (4:6:10b)

Note that we are treating Æref as an ‘error-free’ prescribed function that ‘just happens’ to have a
fixed difference from an estimate of ÆA. Therefore we must, in principle, consider the degree of
uncertainty in the difference between ÆA and Æref .

With these preliminaries we can work through (4.6.9) term-by-term. There are several different
types of quantity involved. Some of the quantities are from direct observational data and the
uncertainties can be treated as described in previous sections. The fossil data are inventory-
based estimates derived from annual data. The isofluxes (disequilibrium contributions) involve
more complicated analyses. In each case there is a long-term variation in isotopic disequilibrium
that can be described by the convolution of a model response with the history of change in
atmospheric Æ13C over the industrial period. However in each case there is also a short-term
variability. For the biotic fluxes, much of this comes from interannual variation in the gross-
flux, ��

Biota. For the oceans there will be short-term interannual variability driven by changes in
disequilibrium due to temperature dependence of isotopic fractionation. The error statistics of
these isofluxes are modelled as the sum of two independent AR(1) processes: one with a very
large autocorrelation to represent the uncertainty in the long-term model-derived estimate and
one with a small autocorrelation to characterise the unknown interannual variability.

A number of these quantities are only available in annual mean form. The inventory data for
�Fossil are given as annual totals, and the biotic gross fluxes have such large seasonal cycles
that the balance described in Figure 12 is only meaningful for de-seasonalised data. Because
of this restriction, the calculations are performed with �t = 3 months. This recognises that a
time-step of 1 month is carrying more information than is meaningful for the analysis. The use
of a time-step of 1-year is inadequate given that the analysis above indicates that to estimate
a mean flux for a single year requires additional smoothing. The calculations are performed
for the years 1983 to 1994 inclusive, except when additional smoothing leads to data loss from
the ends of the record. For each term on the right of (4.6.9) we require a best estimate (see
Figure 13) (with some consistent degree of time-averaging) and an autocovariance function for
the estimate (see Figure 14).

d
dt
M(ÆA � Æref) This term is derived from observations. For the present analysis we use CO2

from Mauna Loa (Keeling and Whorf, 1994, plus electronic update) and Æ13C from Cape
Grim (Francey et al., 1995b and personal communication). In principle this raises issues
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of consistency in the departures from global representativeness. An outline discussion is
given in Section 6 below. However, the comprehensive approach to having the correct
spatial representation of the data is to perform the analysis within the framework of a
synthesis inversion based on calculated responses from an atmospheric transport model.
It will be recalled that one of the objectives of the present report is to identify the issues
associated with the time series statistics of inputs to such calculations.

The Æ13C data are taken as monthly means with �1 s.d. of 0.02‰ independent errors.
A small number of gaps in the record are filled by linear interpolation. When there are
overlapping data for the two different mass spectrometers, the average is used. Full con-
sideration of the change of instruments would take us beyond the stationary analysis used
here. In the discussion above we noted that in principle we need to consider errors from
the ÆA � Æref term. However, these errors will be of order 0.1% of the product, while the
analysis in Section 4.3 indicates that errors in estimates of _M will be of order 10–20%.
Thus for the error autocovariance, we propagate the Cleveland et al. error model through
the filtering process described below. For concentrations and their autocovariances, the
conversion factor 0.471 ppm/GtC is used. The autocovariance of the term is shown as the
solid curve in Figure 14.

M d
dt
ÆA This term is based on the same set of observations as the previous term. Again, the error

is dominated by the contribution from the derivative term and is calculated as described
in Section 4.3, starting from a 0.01‰ s.d. white noise on the monthly mean Æ 13C data.

��
Biota(Æ

+
B � Æ�B) This is usually derived from modelling with the terrestrial biota respond-

ing to the atmospheric Æ13C record derived from ice cores. (Quay et al. (1992) es-
timated 12‰GtCy�1; Enting et al. (1993) used a 5-box biosphere model to estimate
26.5‰GtCy�1; Fung et al. (1997) calculate an isotopic disequilibrium of 0.33‰ in 1998,
corresponding to an isoflux of� 18‰GtCy�1). Heimann and Maier-Reimer (1996) quote
a ‘best-estimate’ of 23.4‰GtCy�1, but this is a composite that incorporates the equivalent
of the present budgeting calculation and so is not an independent estimate. The function
used here (25.6‰GtCy�1 in 1990 and increasing at 0.2‰GtCy�1y�1 over the 1980s) is
taken from BDM (box-diffusion model) calculations by Trudinger (personal communica-
tion). The curve is shown in Figure 13 as the – � – line. For the long-term uncertainty,
the intermodel differences suggest a standard deviation of around 3‰GtCy�1. We use
9.0(‰GtCy�1)2 as theR(0) value of an AR(1) autocovariance with an inter-season corre-
lation a = 0:99. The long-turnover times for the biota will buffer the isotopic composition
against significant interannual variability. However, there is scope for significant interan-
nual variability in the isoflux due to interannual variability in �Biota. One measure of how
large this variability might be is obtained from the study by Dai and Fung (1993) mod-
elling ecosystem responses to variations in temperature and precipitation. This suggests
short-term net flux variations of order 0.25 GtCy�1 with NPP variations of about twice
this amount, or 1% of the total. We represent this as an AR(1) process with R(0) = 0:2,
a = 0:7.

��
Ocean(Æ

+
O � Æ�O) The oceanic isoflux can be obtained from observations (as in Tans et al.,

1993) or from modelling as in double deconvolution. As with the biotic disequilibrium,
we regard the uncertainty as having a long-term ‘model-error’ component and a short-
term ‘natural variability’ component. The model error component is assigned a 10%
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Figure 13: Terms in Equation (4.6.9) used to obtain ocean flux estimates.
Lines as for Figure 12.

uncertainty. The short-term variability is related to the temperature dependence of the
difference between the air-sea and sea-air fractionation factors. This is of order 0.1‰
ÆC�1. With a gross flux of order 80 GtCy�1, we represent this as an AR(1) process with
R(0) = 64 and a = 0:7.

�Fossil(ÆF � Æref) Both the fossil flux �Fossil and its isotopic composition ÆF are derived from
inventory studies, with the main isotopic differences being associated with the type of
fuel. We attribute most of the uncertainty to the �Fossil factor and split it into a possible
long-term methodological bias (most plausibly due to under-reporting) and a year-to-
year variability due to effects such as mis-match between reporting times and emission
times. Each component is assigned a 0.5 GtCy�1 uncertainty. The effect of this term is
small because ÆF � Æref . Uncertainty in the fossil emissions will translate directly into
uncertainties in estimates of �Biota.

�Biota(Æ
+
B � ÆBref) This term is negligible compared to most of the other terms in (4.6.9) because

we expect �Biota to be at most a few GtCy�1 and Æref to differ from the ‘ideal’ value of
Æ+B by less than 1‰. This term is omitted from the subsequent uncertainty analysis.

Figure 13 shows the initial time series for each term in (4.6.9). Figure 14 shows the autocovari-
ances of each of these time series inputs.

Figure 15 shows the estimated ocean fluxes. These are obtained by combining the contributions
shown in Figure 13 (with the signs as shown in (4.6.9)) and then dividing by Æ+O � Æref � 15‰.
Figure 16 shows the autocovariance for the ocean flux estimate. These are obtained by summing
the autocovariances shown in Figure 14, and then dividing by (15‰)2.
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Figure 14: Autocovariance of terms in (4.6.9). Lines as for Figure 12.
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Figure 15: Ocean flux estimate(s)
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Figure 16: Autocovariance of ocean flux estimate(s)

The isotopic disequilibrium terms are input as smooth curves. In the absence of observations,
all short-term variability is treated as noise. Similarly, the fossil data are smoothly interpolated
from annual values. The CO2 and Æ13C observations were each input as monthly mean values
and smoothed with a ‘Bloomfield filter’ and (when required) differenced to obtain growth rates.
The autocovariances for the estimated growth rates were calculated as described in Section 4.3,
using the Cleveland et al. (1983) error model for the CO2 data and a 0.1‰ standard deviation
white noise error for the Æ13C data.

These results need to be regarded as indicative of exploratory calculations rather than as defini-
tive statements about the carbon cycle. The point-wise uncertainties in �Ocean (of order �0:6
GtCy�1 are well below those estimated for longer-term averages in the synthesis inversion cal-
culations by Enting et al. (1995). This difference will reflect a combination of ‘representative-
ness’ error, and the assumed a priori precision of the isoflux estimates. Figure 14 is of particular
interest because it shows the relative importance of the different error contributions on a range
of time-scales. In particular, within the present assumptions, the uncertainties in multi-year
averages will be dominated by the uncertainties in the long-term dynamics of isotopic disequi-
librium.

The interannual variability of the oceanic CO2 uptake has recently been discussed by Lee et
al. (1998). They noted significant differences between the degree of variability estimated by
Keeling et al. (1995), Francey et al. (1995a) (similar analyses with different data sets), Rayner
et al. (1999) (essentially a similar analysis using an atmospheric transport model to deal with
the ‘representativeness’ problem) and the Lee et al. analysis (based on interannual variations
in wind-speed and pCO2). An assessment of the significance of these discrepancies requires
combining the present approach (detailed statisitical analysis) with the spatial inversions of
Rayner et al. (1999).
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5 Smoothing splines

5.1 Principles

Spline curves are defined as piecewise polynomial functions: i.e. as polynomials between a set
of points known as the nodes. A spline of order n is a continuous function with continuous
derivatives up to order n�1 and the nth derivatives constant over the intervals between the
nodes.

A number of early analyses of CO2 time series made use of fixed-node splines. These had
fewer nodes than data points and used the node spacing to define a low-pass filtering effect:
variations on scales less than about the node spacing were suppressed because they could not
be represented by such a spline. With the node spacing defined to give a desired frequency
cutoff, the fit was defined as the spline that gave the least-squares fit to the data. An analysis by
Enting (1986) showed that this type of fixed-node spline fit had a very great phase-dependence
for frequencies in the cutoff band: the results depended strongly on the position of the nodes,
and not just on their spacing.

Smoothing splines have a node at each data point. The filtering is achieved by an additional
smoothness constraint. They are formally defined as the curves, g(t), that minimize the func-
tional:

J =
NX
j=1

[z(tj)� g(tj)]
2 + �

Z tN

t1

"
d2

dt2
g(t)

#2
dt (5:1:1)

Formally the minimum in (5.1.1) is over all functions with bounded second derivatives. Actual
calculations use the result that the curve that minimises (5.1.1) is a cubic spline with nodes at
the data points, tj .

Enting (1987a) has reviewed some of the properties of smoothing splines, using normalisations
consistent with those used in the computer routines given by de Boor (1978). The key result is
that smoothing splines act approximately like low-pass filters with response functions:

	spline(!) = 1=[1 + (!=!c)
4] (5:1:2)

where the 50% cutoff frequency is given by

!c = (��t)�1=4 (5:1:3a)

corresponding to a period
Tc = 2�=!c (5:1:3b)

In the time domain, the filtering has been described by Silverman (1984, 1985). (Note that
the notation of these two papers differs from that used here — and from each other! Note in
particular that the density of points — Silverman’s f — is 1=N�t rather than 1=�t.) The spline
curve is shown to be approximately equivalent to convolving the data with a kernel given by
h�1�((t� t0)=h) with

�(x) = exp(�jxj
p
2) sin(jxj=

p
2 + �=4)=2 (5:1:4a)
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and
h = (��t)1=4 = !�1c (5:1:4b)

The equivalent filter has coefficients:

ck = !c�t� �(k!c�t) (5:1:4c)

Note that (5.1.2) to (5.1.4) are asymptotic results. One point at which they will break down
is near the ends of records. Silverman (1984) show that this can be approximated by using
a slightly modified kernel reflected about the end-point. Enting (1989) gives examples that
show the limitations of this approximation. These asymptotic results will break down if � is so
large that all points are affected by the ends of the records or if � is so small that Tc becomes
comparable to �t.

A common modification of smoothing splines is to use a weighted sum of residuals in the
objective function, defining the spline as the function that minimises

J =
NX
j=1

[z(tj)� g(tj)]
2=u2i + �

Z tN

t1

"
d2

dt2
g(t)

#2
dt (5:1:5)

If all the weights are equal to u then the cutoff frequency becomes

!c = (u2��t)�1=4 (5:1:6)

This equivalance can be used as a way of applying different filtering to different parts of a
single record. Dividing the data set into two or more time intervals and using different choices
of constant weight within each interval is (approximately) equivalent to using different time-
averaging within each interval. This can be convenient, but may lead to difficulties in defining
consistent time-averaging for subsequent analysis.

Smoothing splines have a number of advantages:

� as with all splines, they interpolate between the data points, i.e. the fit g(t) can be evalu-
ated at all times t (in the interval [t1; tN ]), and not just at the data points;

� they can handle unequally-spaced data and the filtering properties are relatively insensi-
tive to the data spacing; and

� the spline curve is defined as a differentiable function.

One disadvantage is that the de Boor (1978) smoothing spline algorithm breaks down at about
N � 1000 data points (when using 32-bit arithmetic). This problem is noted by de Boor who
suggests that the fixed-node splines might be more appropriate when such a large number of
data points are involved. As noted above, Enting (1986) has pointed out problems with this
approach. Numerical experiments (H. Granek and C. Trudinger, unpublished) show that the
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problems with smoothing splines can be postponed to larger N by changing the calculation
from a 32-bit to a 64-bit floating point representation, or by replacing the matrix inversion
procedure used by de Boor (1978) with a procedure that is less sensitive to rounding error.

Granek (1995) has discussed a hybrid form that uses the same smoothness constraint as for
smoothing splines but works with a reduced number of nodes. The fit is still determined by
minimizing (5.1.1) but over a ‘smaller’ class of functions defined by splines with the specified
nodes. A heuristic argument by Granek illustrates why such a spline should be very close to the
smoothing spline: Minimizing over a restricted class of functions will not change the solution if
the restricted class includes the minimum for the wider class. Since minimising (5.1.1) over all
functions produces a smooth function, the same result can be produced by minimizing over an
appropriate set of smooth functions. The set of reduced-node splines will not in general contain
the smoothing spline, but it should contain splines that are very similar. Thus minimising over
the restricted set should give a curve similar to the smoothing spline. Numerical and analytic
studies by Granek (1995) have confirmed and quantified this argument.

There are a number of ways in which particular smoothing spline (i.e. the particular value of �)
can be chosen:

1. As discussed above, the value of � can be chosen on the basis of the requisite frequency
response by using (5.1.2). This is the approach that we have mainly used in our laboratory.
We also make use of the ability to use the data weights to modify the frequency response
in different parts of the record on the basis of Equation (5.1.6).

2. Alternatively, the spline can be chosen to be the smoothest (i.e. largest �) subject to the
sum of squares of residuals not exceeding some pre-specified value.

3. Less commonly, a requisite smoothness can be pre-specified and � chosen to give the
closest fit consistent with this smoothness.

4. A more sophisticated way of choosing � is the technique of generalised cross-validation
(GCV) described by Craven and Wahba (1979). This approach aims to find the spline
with the minimum mean-square error. As will be seen from the discussion on digital
filtering in Section 2.3, this requires a knowledge of the error distribution. The GCV
technique uses estimates derived (conceptually) from the set of residuals for each point
k = 1; N calculated for a spline using all points but k. The expressions for the optimal �
are asymptotically correct for largeN (subject to constraints on the distribution of nodes).
Theoretical and numerical examples show that the GCV estimates are near-optimal for N
of order 50 or more.

Approaches (2) and (3) involve iterative solution of problem (1), i.e. finding the smoothing
spline for specified � and repeatedly adjusting � and then recalculating the spline until the
solution with the required properties is found. Similarly, GCV involves iterative adjustment of
the paramater �.

It is straightforward to apply the various techniques described in Section 2 for quantifying the
uncertainties in splines, regarded as estimates of unknown functions. In particular, the explicit
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expression for the (approximate) equivalent filter allows the use of (3.3). In addition, Monte
Carlo simulations can be used to simulate the error distribution in spline fits and, for unknown
error statistics, bootstrap analyses can be undertaken.

The literature on splines also addresses the issue of estimating uncertainty. Silverman (1985)
analyses splines in a Bayesian framework, where � characterises the a priori distribution of
‘smoothness’. Within this framework, he expresses the variance of the spline estimates as
2�3=2�2��1=4(�t)3=4 where �2 is the variance of the data. Silverman notes the general form
of confidence intervals for linear functionals such as the derivative. However he doesn’t give
explicit expressions and for practical calculations, the easiest approach is to use the results of
(4.2.2) with the approximation (5.1.4c). Silverman also notes the possibility of determining con-
fidence intervals for non-linear functionals (e.g. locations and/or values of maxima) by Monte
Carlo simulation of samples from the posterior probability distribution. The main limitation of
Silverman’s analysis is that it assumes independent errors on the data.

The use of smoothing splines to estimate functions raises the question of what is actually being
estimated. In terms of the discussion in Section 2.3, the spline fit is not well descibed as a band-
pass filter because the transition band around !c is very broad. Similarly, it is not simply an
average over a period Tc because the equivalent filter (Equations 5.1.4a–c) differs greatly from
a running mean.

EXAMPLE 6: Fitting ice core and firn data

Measurements of trace gas concentrations in bubbles trapped in polar ice provide an invaluable
record of past atmospheric changes. However this is a smoothed record of actual atmospheric
changes. Although the majority of the trapping happens in a short time before the final close-off
(Enting, 1985), the age distribution of the gas is broadened by the processes of diffusion through
the firn (Trudinger et al., 1997).

The data set analysed here is 69 data points over the period 1006–1978 as measured by Etheridge
et al. (1996). Figure 17 shows smoothing spline fits to the data for various degrees of smoothing
with detail for the recent period shown in Figure 18. In the recent period, �t of order 2 years
leads to cutoff periods of Tc = 16, 42, and 112 years for � = 20, 1000 and 50000. In the
pre-industrial period, these same values of � give Tc = 30, 79 and 210 years.

Since there is little information available about the ‘noise’ structure of these ice-core records,
we have used the bootstrap method to explore the issue. Figure 19 shows the spline fit to the
original data set and then 25 realisations of spline fits to re-sampled subsets, all calculated with
� = 1000. One feature of the realisations is that the distribution has a strong clustering about
the original fit and then a long-tailed component, generated by cases when the resampling omits
a sequence of consecutive data points. This behaviour is even more pronounced for fits using
smaller �.

There is a minor technical point that arises in connection with re-sampling calculations (and
occasionally with ‘normal’ spline fitting). The definitions of smoothing splines in terms of the
function that minimises (5.1.1) remains valid even when the tj are not all distinct. However
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Figure 17: Smoothing spline fits to ice-core data for various cutoff frequen-
cies defined by � = 20 (solid curve), 1000 (dotted curve), 50000 (dashed
curve).
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Figure 18: Smoothing spline fits to ice-core data (detail 1900-1980) for var-
ious cutoff frequencies defined by � = 20 (solid curve), 1000 (dotted curve),
50000 (dashed curve).
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Figure 19: Bootstrap analysis of smoothing spline fits to ice-core data for
various cutoff frequencies.

the de Boor (1978) algorithm fails in this case (and will encounter numerical instability if the
internode spacing is too small.) The way to use the de Boor code to produce the correct spline
is to replace yj values whose tj coincide by their average y value and apply a weight 1=

p
n for

each point with n coincident values in the original data set. Alternatively, for splines whose
set of nodes is specified independently of the set of tj (i.e. in the algorithms for the approach
described by Granek, 1995) the problem does not arise.

5.2 Growth rates and deconvolutions

As noted in Section 5.1, an important advantage of smoothing splines is their ability to define
values continuously through the interval fitted, to the extent that the spline function is dif-
ferentiable (with discontinuous third derivatives at the nodes). This makes smoothing splines
particularly useful for problems involving rates of change. As shown by Equation (4.4.2) source
deconvolution problems effectively involve differentiation. Furthermore, the methane deconvo-
lution example discussed in Section 4.4 suggests that the uncertainties in deconvolution calcu-
lations will often be dominated by the uncertainties in estimating the derivatives. Therefore in
this section we do not consider deconvolutions explicitly, but rather concentrate on the use of
splines to estimate growth rates.

The issue raised in Section 5.1 as to ‘what is being estimated’ remains a problem when consid-
ering derivatives. An additional complication is that relations such as �_g = _�g are only approxi-
mately true because the spline is only approximately a stationary filter. Of course the greatest
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Figure 20: Rates of CO2 increase estimated from derivatives of a sequence
of spline fits to a composite data set from ice-cores and firn air. Successive
curves (going left to right) differ by fitting 3 more data points. The smoothing
corresponds to Tc � 19 years.

departure from stationarity occurs at the end of the record. The following example explores this
aspect of estimating growth rates using splines.

EXAMPLE 7: Growth rates and end effects in ice core data.

The data set is from Etheridge et al. (1996), combining both the data from bubbles in ice-cores
(as used above) and data from air extracted from the firn and additional 13 points spanning
effective dates of 1976–1993. Figure 20 shows a sequence of derivatives of spline fits to these
data. All the splines used � = 40 whence Tc � 19 years. The initial spline fit was based on
all the data. A sequence of additional curves was calculated by successively truncations of the
data set, each case omitting the last three points of the previous case. The common feature
is that each truncated case shows a flattening relative to the extended cases. This is of course
to be expected since the definition of the spline is in terms of (constrained) minimisation of
the absolute value of the second derivative (i.e. flatter first derivative), a criterion that becomes
relatively more important in regions (ends of gaps) where there are fewer data to impose any
curvature.
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6 Spatial analogues

6.1 The atmospheric transport inversion problem

As well as varying in time, atmospheric CO2 has spatial variations that can be interpreted to
provide information about the carbon cycle. The principle is that the spatial distribution of
concentrations can provide information about the spatial distribution of surface fluxes and that
this provides information about the processes involved. However, since the distribution of con-
centrations reflects the effects of both surface fluxes and atmospheric transport, a model of
atmospheric transport is needed for any such analysis.

The analysis of spatial data raises many of the same problems as the analysis of temporal data,
with the extra complication of additional dimensions.

In Section 2.3 it was noted that spectral analysis of concentration records gives only estimates
of the combined spectra of signal and noise. Additional information or assumptions are re-
quired in order to decide which parts of the observed variations represent meaningful signals.
When considering spatial variations, the situation is far worse — there are not sufficient data
available from which to estimate multi-dimensional power spectra to characterise spatial (or
space-time) variability. Indeed, for spatial variations it seems likely that the concept of statisti-
cally stationary distributions is likely to be of limited use, and that more complicated (and less
attainable) characterisations of the variability will be required for a comprehensive analysis of
the uncertainties in interpretation of spatial variations. Some initial studies of the relation be-
tween spatial and temporal variations in CO2 has been undertaken by Dargaville (1999) using a
singular vector decomposition.

The relation between concentrations and sources can be expressed as

c(r; t) = c�1 +
Z
G(r; t; r0; t0)S(r0; t0)dr0dt0 (6:1:1)

where the Green’s functionG(:) embodies the transport characteristics of the atmosphere. Since
(6.1.1) is not a convolution integral, even if S(r; t) could be regarded as stationary in space
and/or time, this would not imply that c(r; t) had such stationarity. Inversions of CO2 data
use G(:) based on numerical models. There is a distinction between those models where the
transport comes from analyses of observed winds, and those where the transport is based on
GCM calculations. The latter will not reproduce specific synoptic events and so on synoptic
time scales (6.1.1) will at best only be correct in an average sense. Many studies have implicitly
assumed that this is not a serious problem if monthly-mean data are fitted. It would seem that
there has been little, if any, systematic testing of this assumption.

There are two main types of inversion calculation, the synthesis techniques based on discretisa-
tion of (6.1.1) and mass balance techniques based on the differential form:

S(rx; t) =
d

dt
c(rx; t) + Trx;t[c(r

0; t0)] (6:1:2)
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Equations (6.1.2) applies at a set of locations, rx, generally the entire surface of the earth, at
which c(rx; t) is known and S(rx; t) is unknown.

Synthesis inversions are based on a discretisation of (6.1.1) in space and time and the solution
of the resulting linear equations permits direct propagation of error statistics in the manner
described in Section 2.2. This was first applied to a cyclo-stationary case by Enting et
al. (1993). In the cyclo-stationary case, the data were expressed as Fourier components
of the seasonal cycle. For a stationary noise distribution, the Fourier component will
have independent errors. This provides a useful simplification in the computer codes and
simplifies the error modelling. Enting et al. (1993, 1995) based their data uncertainties
for the seasonal components on the residuals of regression analyses and their uncertainty
estimates for annual means on sampling experiments reported by Tans et al. (1990).

Mass balance inversions where c(rsurface) is needed, firstly to define the rate of change and
secondly to provide the boundary condition for the model that is used to calculate the
transport term. It is not computationally practical to propagate error statistics through the
transport operation T [:]. Uncertainty analyses for mass balance inversion have used the
bootstrap approach (Conway et al., 1994).

The analogies between spatial and temporal varibility can also be used to help clarify some of
the issues involved in discussing the resolution of inversion calculations. We do this in terms of
inverse length scales, �, and distinguish 4 different scales that need to be considered:
�grid: This is the cutoff defined by the discretisation of the transport model;
�S:N: This is the wavenumber above which fn(�) > fs(�), i.e. the estimation of the signal is
degraded because the noise is of greater amplitude than the signal (c.f. Equation 2.3.1);
�smooth: the resolution at which we wish to know the answers (c.f. Equation 2.3.9); and
�basis: (for synthesis inversions) the resolution imposed by the basis used to describe the source
distribution.

Clearly we need:
�smooth � �basis � �grid

and
�smooth � �S:N

6.2 Representativeness

The budget Equation (1.1) applies to the whole atmosphere, but in practice the concentration
data are only available at a relatively small number of locations, predominantly at the earth’s
surface. On sufficiently long time-scales the variations will be characteristic of the atmosphere
as a whole. The following argument addresses the issue of what might be meant by ‘sufficiently
long’. We consider the simplest problem of how well a surface average will represent an average
over the whole atmosphere and use a simple ‘toy model’ approximation of purely diffusive
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transport, following Enting and Newsam (1990). In this model, with different horizontal and
vertical diffusion and a specific form of enhancement of east-west diffusion the coordinates in
the differential equation separate. This means that the present problem can be characterised
as a one-dimensional diffusion model, corresponding to the m = n = 0 case of the solution
described by Enting and Newsam.

The equation for a mixing ratio c in terms of pressure coordinates in the range [0; 1] is

@

@t
c = Kp

@2c

@p2
(6:2:1)

where Kp is an effective diffusion coefficient and subject to the boundary conditions:

Kp
@c

@p
= 0 at p = 0 (6:2:2a)

and

Kp
@c

@p
= s(t) at p = 1 (6:2:2b)

The solution for a frequency ! has the form

c(p; t) = A!e
i!tcosh(�!p) (6:2:3a)

with the constraint (following from 6.2.1)

i! = Kp�
2
! (6:2:3b)

The change in the atmospheric content of the constituent described by c is given by the (pressure
weighted) integral of the change in mixing ratio:

d

dt
�c =

d

dt

Z 1

0
c(p; t) dp = Kp

@c

@p
jp=1 = s(t) (6:2:4)

In these units, s(t) is the source that determines the global budget. We can use the solution
to assess the scale of the error involved in using the rate of change of surface concentration
d
dt
c(p = 1; t) to represent the changes in the atmospheric mean d

dt
�c.

At frequency ! we have

d

dt
c(p = 1; t)=s(t) =

i!cosh(�!)

�!sinh(�!)
= �!coth(�!) = 1 + (�!)

2=3� (�!)
4=45 + : : : (6:2:5)

To avoid a major bias due to lack of vertical representativeness, we require

j(�!)2j = ji!=Kpj � 1

Using the value Kp =
4
9
� 103 Pa2s�1 from Enting and Newsam (1990) gives

! = 2�� � 1:4

or ��1 of order 4 years or longer.

45



CSIRO Atmospheric Research Technical Paper no. 40

1984 1986 1988 1990 1992 1994
-2

-1

0

1

2

D
et

re
nd

ed
 C

O
2 

(p
pm

)

Figure 21: Comparison of the interannual variability in the surface mean
(solid line) and the whole-atmosphere mean (dotted line) of detrended and
decycled CO2 concentrations for 1985–93.

In view of the approximate nature of the calculation, the 4-year time-scale cannot be taken too
literally. A more precise analysis needs to be undertaken, using model response functions such
as those used in time-dependent inversions (e.g. Rayner et al., 1999). In such analyses it may be
convenient to use multi-exponential parameterisations of the responses in the manner described
by Mulquiney and Norton (1998).

While there has not been such an analysis of the frequency-dependence of the relation between
surface and global means, there have been calculations of the actual relation for recent times.
Figure 21 shows concentrations (detrended by subtracting 345 + 1:5(t � 1985) and decycled
using a ‘12-month’ running mean) from a mass-balance inversion calculation by Dargaville
et al. (1999). The solid line shows the global mean surface concentration. This is based on
NOAA/CMDL data. The dotted line is the whole-atmosphere mean calculated by the model
when run with the surface concentration as the specified boundary condition. The model is that
described by Law et al. (1992), using wind fields from ECMWF analyses (Trenberth, 1992).
Although the calculation is based on winds that differ from year to year, the main result ob-
tained by Dargaville et al. (1999) is that these variations in transport have little effect on CO2

distribution. Figure 21 shows that the main difference is that the global means have a small
phase lag relative to the surface mean, as well as being slightly smoother.
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7 Recursive estimation

One widely-used class of estimation techniques for time series is the recursive estimation tech-
niques based on the Kalman filter (see for example: Gelb, 1974; Young 1984). The approach
is based on the definition of a state-space model in which the system is represented by a time-
evolving state that is to be estimated from indirect observations.

Some of the advantages of the state-space-modelling/recursive-estimation approach are:

� The recursive estimation procedure is computationally efficient;

� The approach integrates the deterministic modelling with the statistical analysis;

� The technique applies to non-stationary time series without any change. In particular,
missing data can be accomodated;

� The technique is inherently Bayesian, so that it can incorporate prior information; and

� The technique can be applied to multiple data sets.

Some of the important disadvantages of Kalman filtering are:

� The Kalman filter gives a one-sided estimate and so (except in special cases such as
estimating fixed parameters) the Kalman filter estimate has a higher variance than a two-
sided estimate;

� While the estimates also have their uncertainties calculated, this is restricted to x̂(t) and
Var[x̂(t)]. Correlations between estimates at different times are not calculated unless the
state-space is enlarged to include lags.

The state-space model is defined by the time evolution equation for the state x(t):

x(t +�t) = F(t) + u(t) +w(t) (7:1)

and by the relation between the ‘state’ and the observations z(t)

z(t) = H(t)x(t) + n(t) (7:2)

where F is the evolution matrix and u is a specified deterministic forcing. w is a stochastic
forcing with a specified covariance matrix Q. The matrix H projects the state onto the set of
observations and n is a noise term with a specified covariance matrix,R. Therefore the Kalman
filtering formalism requires a specification of Q, R, F, H and u, each of which may vary in
time.

The formalism produces estimates x̂(t)jz(t0 � t), i.e. estimates of the state vector at time t based
on the observations at time t and all previous observations. However the validity of the esti-
mates, and their associated covariance matrices, depends on the validity of the statistical model
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defined by (7.1–2). In view of the potential difficulty in obtaining the requisite a priori infor-
mation, it may be appropriate to adopt a ‘conservative’ approach and construct the model with
a larger-than-expected a priori uncertainty to avoid the risk of biasing the estimation by forcing
it to fit unrealistically precise prior values. The main mechanism for doing this is through the
matrixQ which defines the stochastic forcing.

Among the applications of Kalman filtering to biogeochemical problems have been:

� A time series analysis of the Mauna Loa record by Surendran and Mulholland (1986).
They estimated growth rates, in order to determine an airborne fraction;

� Deconvolution analyses by Trudinger (1999 and personal communication), making use
of the technique’s ability to handle multi-component non-stationary data, in order to in-
trepret CO2 and 13C records from ice and firn;

� Global inversions to estimate CFC lifetimes (Hartley and Prinn, 1993); and

� Estimation of methane emissions from north-west Europe using a regional transport model
(Stijnen et al., 1997).

8 Concluding remarks

Some of the key requirements for making consistent comparisons between different views of
the global carbon cycle (or other biogeochemical system) are:

� The comparisons must refer to the same quantities. For CO2 for example, there needs to
be consistent usage of storage or flux budgets;

� The comparisons must refer to the same time period. In addition to the strong natural
variability, the anthropogenic perturbations to the carbon cycle and other biogeochemical
cycles are changing over time; and

� When comparing averaged quantities (i.e. almost always) the form of averaging needs to
be equivalent. This applies to spatial averaging as well as temporal averaging.

The examples given in the preceeding sections of this report illustrate the implications for time
series analysis that these consistency requirements impose.

Among the important issues in time series analysis that are identified in this report are:

� an analysis of the autocovariance structure of time series estimates is an important part of
describing the significance of any time series estimation procedure;
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� the error amplification from numerical differentiation is a major source of error on short
time-scales and dominates the uncertainty in many deconvolution calculations; and

� there is a need for specific definitions of what is being estimated.

It is expected that many of the principles illustrated in this report will have wider utility in
biogeochemical studies, particularly when generalised to non-stationary processes. Two likely
examples are the analysis of spatial and spatio-temporal variability and the analysis of synop-
tic and sub-synoptic time variability. For the present, the principles outlined here are being
incorporated into re-analyses of our synthesis inversion calculations.
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Notation

hg(t)i Time average of g(t), formed by convolution with kernel   .

�g(t) Time average of function g(t) when averaging kernel is defined by context.

_g(t) Time derivative of function g(t).

ĝ(t) Statistical estimate of function g(t).

hhzii Result of applying digital filter with coefficients  k: to time series z(t).

a(t) General time series.

A(t) Amplitude of seasonal cycle.

B Backwards shift operator: Bzt = zt�1.

fa(�) Power spectrum of time series a(t).

F(t) Time evolution matrix in state-space model.

g(t) General time series representing a ‘signal’ of interest.

G(t) Green’s function.

H(t) Matrix defining relation between observations and state vector in state space model.

Kp Vertical diffusion constant (for toy model in Section 6.2).

M Atmospheric carbon content.

n(t) Error (noise) time series. (n(t) in state-space models with multi-component observations).

N Number of data points in time series.

p Atmospheric pressure.

rs Standard 13C:12C ratio for defining Æ13C for measurements isotopic differences.

R(t) Autocovariance of time series.

Rg(t) Autocovariance of function g(t).

Rr Reference 13C:C ratio for defining isotopic anomalies.

RX Isotopic ratio of flux �X .

s(t) Seasonal component of CO2 concentration.

u(t) Deterministic forcing in state-space model.

w(t) Stochastic forcing in state-space model.
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x(t) State vector in state-space model.

z(t) Observational data. (z(t) in state-space models with multi-component observations).

ÆA Carbon isotope ratio anomaly (relative to Rr) of the atmosphere.

ÆX Isotopic enhancement (or depletion if negative) of flux �X , relative to reference with ratio
Rr.

Æ0 Standard Æ13C measure of isotopic anomaly, expressed in terms of 13C:12C ratios.

�t Time spacing in time series.

� Generic label for specifying kernels that are used to produce functionals by the process of
convolution.

 Generic label for averaging kernels and digital filters.

� White-noise forcing in ARIMA models (and special cases).

�! Vertical scale (in pressure coordinates) of concentration variations at frequency !, from toy
model described in Section 6.2.

�(t) Phase of seasonal cycle.

�X Net carbon flux due to process X.

 k kth coefficient of digital filter.

 k: kth coefficient of digital filter .

	(�) Frequency response of filter with coefficients  k: .

� Dimensionless frequency, range [��; �].
� Weighting factor used in defining smoothing splines.

! Angular frequency, range [��=2�t; �=2�t].
!A Angular frequency of annual cycle, 2� y�1.

!c Angular frequency for 50% attenuation by smoothing spline.

� Frequency, range [�1=2�t; 1=2�t].
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