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Abstract

A numbeyr of techniques such as spline-smoothing and
complex-demodulation have previously been applied to the analysis of
background atmospheric constituent datas It 1is pointed out that an

interpretation in terms of digital filtering wunifies these approaches.
Earlier studies based on complex demodulation are re-examined in terms of the
equivalent digital filtering operations.




1. Introduction

The variability of background atmospheric constituent data contains
much information that is of potential use in understanding natural and
perturbed geochemical cycles. In particular we can often seek to identify:

(1) long~term trends (possibly due to anthropogenic influences):

(ii) interannual variability (either natural or anthropogenic);

(iii)seasonal cycles (including interannual variations in cycles) ;

(iv) synoptic variations;

(v) variability due to the process of selecting data to obtain a
'baseline' level that is believed to be representative of
large-scale air masses;

(vi) variability arising from the measurement process.

The analysis of baseline data has been undertaken using a variety of
techniques such as polynomial (and other) regression, spline fitting and
complex demodulation. A useful approach is to treat the analysis problem as
one of signal processing with an emphasis on digital filtering. This unifies
much earlier work and clarifies the determination of uncertainties. 1In this
report we only consider the statistical analysis of a single time series and
do not consider multiple-time series analysis.

2. Basic concepts

The aim of this section is to describe a number of the most
important concepts for the use of signal processing techniques in the analysis
of baseline data. Detailed mathematical results are given in later sections.

2a. Statistical analysis requires a statistical model

The statistical assumption that we make is to express an observed
time series z(t) as a sum of a signal y(t) plus a noise term e{t), i.e.

z(t) = y(t) + €(t) (1la)
or for discrete records,
zj yj + Ej 5 (1b)

In the context of analysing atmospheric constituent data, the signal
can be any combination of the 6 types of variations listed in Section 1, with
the noise consisting of the sum of all components that are not regarded as
'signal'. It is assumed that y(t) and €(t) are uncorrelated since any
correlation would imply that €(t) is incorporating part of the signal y(t).
Much of the theory of time series analysis is confined to stationary series
with zero mean but many of the filtering operations described below are of
greater generality. In some aspects of the analysis it may be necessary to
remove a mean and trend from the series before analysing it in order to
approximate a stationary series. The additive form of equation (1) is
reasonable since virtually all constituent concentrations are smooth functions
of their source/sink strengths. For conserved constituents the contributions
from different types of source combine additively and even for non—-conserved
tracers, the influences of perturbations can be 1linearised so that the
influences of different types of perturbation will be approximately additive.

2b. The construction of estimates of the signal

The analysis procedures considered here are concerned with
estimating the signal y(t), given only the information in the observed record
z(t). The estimates of y will be denoted ¥. If only the information from
within the records is used then there is no basis for giving any special




significance to particular time points, It is thus reasonable to use only
stationary procedures so far as is possible. The non-stationary process of
fitting monthly mean data by splines with nodes each 12 months has often been
used in the analysis of CO_ data. Enting (1986) has described some of the
unsatisfactory behaviour thé% the non-stationarity causes in this process.

Although non~linear digital filtering of CO, data has been described
by Cleveland et al. (1983), in this report we confiné our attention to linear
operations so that

R ]?; ijzk ; (2)

For stationary processes, Gk' depends only on j-k and so we can write the
estimates ¢ in the form J

K

yj =k£_chzj_k . (3)

The expression (3) represents the use of a digital filter to extract § which
is an estimate of the signal y. For practical purposes we will only consider
finite K in equation (3) and refer to K as the filter 'length' even though the
number of terms is 2K+1.

Within K time units of the end of a record, egquation (3) cannot be
applied and if estimates are required then the more general form (2) must be
used.

2c. Spectral representation

When the pure digital filtering operation is used then a spectral
representation is of particular value. This is because the functions exp(ijé)
(where i = V-1) are eigenfunctions of the filtering operation (Hamming, 1977).
The corresponding eigenvalue, H(8), is the transfer function of the filter and
is defined by

K
H(8) = I ¢, exp(-ik8) ! (4)

k=-K K

The interpretation of 6 as an angular frequency of a component of the data
implies that time is being expressed in units such that the data spacing is
At=1., This choice will be used unless otherwise indicated. Symmetric filters
(i.e. ¢ =C_ ) have transfer functions that are purely real so that phase
shifts are % or 7. The spectral characterisation of the time series y(t),
z(t) and €(t) is in terms of their spectral density functions £ __(6), £ (6),
fee(e) where, for a general stationary sequence, gj, with zd¥o mean, the
spectral density can be defined (Yaglom, 1962, p55) by

(=]

z exp(—ikS)Bk ; (5)

=00

n

1
fogl® =37

jor}
]

= Eley9y ) (6)




where E[*] denotes statistical expectations.

The use of the spectral density functions is subject to two
problems. The first 1is that only f (8) can be estimated from the
observations. Any knowledge of f and f °?must be based on assumptions about
the processes involved. The sbtond problem is that there are definite
limitations on the estimation of £ from the data. Applying a discrete
Fourier transform to that data z, and then taking the square of the amplitude
leads to a very irregular sequencCe of estimates of f__(0). Increasing N, the
length of the record, increases the number of indeﬁ%%dent frequencies 0, at
which £ is estimated but the variance of each estimate remains of orddr 1
rather ¥fan decreasing as 1//N. To obtain regular estimates of the spectral
density function, various smoothing functions are applied. These have the
effect of reducing the variance of the estimates at the cost of a loss of
ability to resolve neighbouring frequencies. The estimation of spectral
density functions is considered at length by Priestly (1981).

2d. Errors

When choosing a filtering operation the obvious aim is to extract an
estimate of the signal which has minimum error. A useful measure of this is
the mean square error in the signal which is given by

m

E[{Yy.-y.)2] = 1~-H(0) |2 6) + |H(B)|2f 0)146 7
[{9-v,)2] ul 0) | oy (© luce) |25 _(e)1] (7)

In the integrand, the first term represents the error due to biasing the
signal by applying a filter that fails to pass it unchanged and the second
term represents the error due to the filter passing some of the noise. Since
the integrand is positive everywhere, the optimal filter is obtained if the
integrand is minimised for each 6. Differentiating the integrand with respect
to H(O) gives

-2(1-H(B))f (6) + 2H(6)f€€(6) =0 (8)
whence Yy

6 = f 0 £ 0 £ 0 = f 8)/f 6) - (9
H( )o yy( )/« yy( ) +£_(6)) yy( )/ zz( ) - (9)

pt
(see Yaglom, 1962, pl32),
Figure la shows the estimated spectrum obtained from the monthly mean CO
concentrations at Mauna Loa by Thompson et al., (1986) by constructing &
smoothed periodogram. The various features that can be seen in the spectrum
are

(i) peaks corresponding to a 1 year cycle and its harmonics

(ii) a low frequency component giving the interannual variability of the

increase
(iii)a background noise component.

Because this is a set of smoothed values, no significance can be assigned to
the widths of the seasonal peaks as a characterisation of the interannual
variability of the seasonal cycle.

Figure 1lb shows one possible division of the spectrum into different
contributions. The chain curve on the left could be regarded as representing
the long-term increase of CO_, including the interannual variations in this
increase. The set of dashed peaks represent the seasonal cycle, including its
interannual variations. The solid curve represents a 'background' variation
whose spectrum is close to a flat white noise spectrum. Hamming (1977) has
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Figure 1: (a) Spectrum of the monthly mean CO_ concentration at Mauna Loa,
Hawaii, as estimated by Thompson et af. (1986) .
(b) Schematic decomposition of the Mauna Loa spectrum into long-term
(chain curve), seasonal (dashed) and approximately white noise
(so0lid) components.

(a)

(b)




noted that such a nearly white-noise spectrum can often be expected to arise
from the effects of 'aliasing' when sampling from a process with a decaying
spectrum,

The type of division shown in Figure 1b forms the basis of the
statistical model that underlies the analysis i.e. the model assumes that the
time series consists of signal y and noise ¢ with spectral densities £ and
f respectively. Any statistical analysis must, explicitly or implicit%%, be
b&&ed on a model of this type. Furthermore the statistical analysis will not,
in itself, give any indication of whether the model is scientifically
reasonable or useful.

2e. Limitations of filtering

The ability to separate a signal from noise is limited by two
factors. The first is the theoretical difficulty that even the optimal filter
defined by (9) has a mean square error

m
-y)3) = J (fyy(e)fee(e)/fzz(e))de (10)

-

E((Yopt

(Yaglom, 1962, equation 5.31).

This will be zero only if y(t) and e(t) have non-overlapping spectra i.e. at
least one of £ _(0) and £ (8) is zero at each frequency. If this condition
does not holdY¥hen it igeimpossible to separate the signal from the noise
completely and unambiguously. Aan obvious extension of this result is that
good estimates of the signal can be obtained if the spectra of the signal and
the noise are only weakly overlapping while only poor estimates of the signal
will be obtainable if the signal and noise have common peaks.

The second limitation on filtering is that we usually want to work
with finite length filters i.e. finite K in equation (3), while the optimal
filter is usually’ of infinite length. The design of a practical filter will
thus involve various’ compromises. There is extensive literature on the design
of digital filters {(see for example Hamming, 1977).

2f. Smoothing splines as filters

The (cubic) smoothing spline is a function ¢(t) chosen so as to
minimise the quantity

ty

(2, 9(£))2 + J [829 ]2 at . (11)

ot

Y

The use of smoothing splines in the analysis of CO, data was introduced by
Bacastow (1976). Since (11) is a least squares expréssion, the best fit ¢ is
given by a linear combination of the z  as expressed by the general equation
(2). Recent analysis (Cox, 1983; Silverman, 1984) has shown that, except near
the ends of the records, the linear relation is accurately approximated by the
filter relation (3). Cox (1983, equation 4.4) has shown that for equally
spaced data, the limiting form of the transfer function is




4 -1
H(e)spline = (1 + AAt07) (12)

making the spline process a low-pass filter. In this definition, both the
angular frequency, 6, and the time step, At, are defined in terms of the same
time units that are used in expression (11). Thus 6 is defined on the range
[-w/At, w/At].

It must be noted that near the ends of the records the filtering expression
(12) breaks down. The equivalent filter becomes asymmetric in time so that
H(9) is no longer purely real. Thus frequencies that are. passed are subject
to a phase shift of Arg[H(8)] in this region. Silverman (1984) has extended
Cox's analysis to the case of unequally spaced data and has shown that the
effective filter is only weakly dependent on the data density. This property
makes smoothing splines suitable for interpolating the non-uniform records
that arise from performing some form of baseline data selection. This
filtering interpretation of smoothing splines suggests that A should be chosen
on the basis of the filtering properties expressed by equation (12) and its
generalisations. Generally in CO studies A has effectively been estimated by
eye, a procedure which is satisfactory since the filtering properties depend
only weakly on A over much of the frequency range. There are many statistical
procedures for estimating A from the data (Golub et al., 1979 and references
therein) but these assume independent errors £. and behave very poorly if the
€, are autocorrelated (Diggle and Hutchinsoﬂ, 1986; Diggle in discussion
sdction of Silverman, 1985). For studies of relatively long-term variations it
is usually possible to obtain equally spaced data, possibly by using spline
interpolation. Once such data are obtained, it is probable that smoothing
splines will not be the optimal filters for further analysis and that
specifically designed digital filters will give a superior separation of
signal and noise. One limitation on the use of splines as low-pass filters is
the relatively broad transition band. This could be reduced either by using
specifically designed filtexrs or, by using higher-order splines. Cox (1983)
has noted if mth derivatives are used in the constraint term of (11) then the
transfer function is of the form

H(O) = (1 + are®™~t . (13)

The sharpness of the transition from pass-band to stop-band increases with m.

2g. Complex demodulation

Complex demodulation (Bloomfield, 1976) is a technique for analysing
a signal that is assumed to include a compcnent of the form

y(£) » A(t) cos(wt + ¢(t)) (14)

where BA(t) and ¢(t) are slowly varying functions. The procedure gives
estimates A(t) and &(t) which can, if desired, be combined to give an
estimated signal

g(t) = A(t) cos(wt + §(t)) . (15)

Thompson et al. (1986) used complex demodulation of CO; data to extract
estimates A(t) and &(t) for both the annual cycle and i%s first harmonic.
These quantities were constructed both as possible sources of information
concerning the carbon cycle and as part of the process of examining long term
trends. When examining long-term trends, the estimated signals ¥, (t) and
¢_{(t) with periods 12 and 6 months respectively were constructed according to
equation (15). These signals were then subtracted from the original data z(t)
to give a decycled data set




zD(t) = z(t) (t) -96(t) 0 (16)

Y12
An estimate, §*(t), of the combination of the long-term trend plus interannual
variability was obtained by applying an appropriate low-pass filter to z_ (t).
Much of the complexity of this procedure used by Thompson et al. (1986) can be
avoided by noting that the signals § _(t) and ¢ (t) could be obtained from the
original data by band-pass filtering. The mathematical description of
complex-demodulation as a filtering operation is given in Section 4 below. If
the transfer functions of the band-pass filters are denoted Hl (6) and H_(6)
then z_ is constructed by operating on z(t) with a band-rejecg filter wgose
transfer function is

HD(G) = 1—H12(G)—H6(3) . (17)

Applying a low-pass filter with transfer function H_(6) means that 9, (t) can
be obtained from z(t) by applying a filter whose transfer function is

H,(8) = HL(G)(l—le(e)—He(e)) . (18)

The suitability of this combination can be seen from the arguments of topic
(e} above. A basic low-pass filter, H., is modified to ensure that the
transfer function is very close to zero in bands where the original signal has
peaks (i.e. 12 month and 6 month periods) that are regarded as noise to be
excluded from the final signal. However, for the purposes of extracting
long-term variations, it seems that direct application of appropriate low-pass
filters may be more suitable (see Section 4 below).

2h. Filters for linear operations

A slight generalisation of the discussion above is needed if we
require some operation to be performed on the signal. In particular, we may
have a set of observations

z(t) = y(t) + €(t) (19)

and wish to obtain an estimate of w(t) which is related to y(t) by some
process described by a stationary linear operator

ice w(t) = y(t) v (20)
If we construct
= z
for some stationary linear operator then the error expression (7)
generalises to
T
E[ (#-w) 2] =[ [z - reey|2g_(0) + |r(o)]2_g0)1a0 (21)
~m

where L(9) and F(6) are the transfer functions for and respectively. The
case in which this is of most interest is when is the differentiation
operator as in the work of Bacastow (1976) and Thompson et al. (1986).




3. Low-pass filters

3a. General characteristics

One of the most basic types of filter is the low-pass filter.
Tdeally a low-pass filter has a transfer function

(22a)

H(e) =1 ’ 6 <
6 > d (22b)

wc
=0 , wc
such a filter would be used to extract the low-frequency part of a time
series. It can also be used as a basis for constructing a high-pass filter
with transfer function 1-H(0), and the difference of two low-pass filters
(with different cutoff £frequencies) will be a band-pass filter. Low-pass
filters also play an important role in the process of complex demodulation
which is described in Section 4., The sharp cutoff at ®_ as specified by
equation (22) represents an ideal situation that would reqﬁire an infinitely
long filter. Any finite length filter will depart from this ideal in that
there will be few, if any, points at which the transfer function will have
exactly the values 0 or 1 and there will be a finite 'transition band' in
which the transfer function drops from values near 1 to nearly 0. An
additional problem that may occur is the appearance of oscillations in the
transfer function, an effect known as 'Gibbs phenomenon,'

A low-pass filter will have the value 1 at only a finite number of
frequencies due to the effects noted above and so, even in the pass band, the
signal will be subject to some distortion. One measure of the gquality of a
low-pass filter is the number of derivatives of H(8) that are zero at 06=0.

Response

Frequency

FPigure 2: Transfer functions of the low-pass filters used by Thompson et al.
(1986) when analysing decycled data. Solid curve, u =y/7, K=14 used
for Mauna Loa data, dashed curve mc=n/6, K=10 used for all other
sites.
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The importance of this is that if H(0)=1 and all derivatives up to order k
(inclusive) are zero at the origin, then the filter passes a polynomial of
degree k exactly. 1In particular, the transfer function of a symmetric filter
will have a gradient of zero at the origin. If it also has a value of 1, it
will pass a linear term exactly and so it will not be necessary to extract
such terms prior to filtering.

3b. Low-pass filters using sigma factors

Bloomfield (1976) has defined a two-parameter set of low-pass
filters based on the use of a smoothing technique to reduce the Gibbs

oscillations. The* ideal low-pass filter of equation (22) has filter
coefficients

co = wc/ﬂ (23a)

Cp = C—k = 51n(kmc)/nk . (23b)

The strong ripples in the transfer function of this filter can be reduced by
convolving it with an appropriate 'window'. This corresponds to multiplying
each filter coefficient by a smoothing factor known as a sigma factor.
Bloomfield uses

co = awc/w (24a)
ck = c__k = cO sin(kwc) sin(2ﬂk/(2K+1))/(2nwck2/(2K+1))
for k=1 to X , (24b)

with o chosen so that H(0)=1. The two filter parameters are thus the cutoff
frequency w_and the length K. The subroutine LOPASS (Bloomfield, 1976, pl49)
implements Cthis filter. Bloomfield quotes the effective width of the
transition band as

§ = 4n/(2K + 1) 9 (25)

The two low-pass filters used directly by Thompson et al. (1986) were of this
type and had (w_ ,K) given by (m/7, 14) for analysing the Mauna Loa data and
(n/6, 10) for ﬁil other sites considered. The transfer functions for these
filters are shown in Figure 2. It will be seen that the length 10 filter has
noticeably poorer behaviour in the pass band. However Dboth filters are
symmetric and so have zero gradient at the origin and consequently pass linear
trend terms exactly. This property was of potential importance in the study
by Thompson et al. (1986) since their series were differentiated after
low-pass filtering but in practice they removed the linear terms separately
prior to filtering. The filters shown in Figure 2 have H(8) A % at m/6 which
corresponds to the annual cycle in monthly data. Thus they cannot be used
directly to extract a long-term trend from a series containing an annual
cycle. Thompson et al. (1986) used these filters in conjunction with
band-reject filters that removed signals with frequencies around n/6 and w/3
(i.e. 12 month and 6 month periods)., The details are given in Section 4 below
where it is noted that the effective filters had lengths ranging from 28 to 41
months.,

It is of interest to see whether the process of extracting a
long-term trend might be better accomplished by direct use of appropriate
low-pass filters. Figures 3 and 4 show the transfer functions of two sets of
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Figure 3: Transfer functions of low-pass filters defined by equation 24, using
w_=1/6=-21/(2K+1) for K=16 (dashed), K=20 (solid) and K=24 (chain).
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Figure 4: Transfer functions of low-pass filters defined by equation 24 using
mc=w/7—2ﬂ/(2K+l) for K=16 (dashed), K=20 (solid) and K=24 (chain).
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filters defined by equations (24a,b). The expression (25) was used to define
the transition band width as a function of K denoted §6(K). Figure 3
corresponds to filters with cutoff

-8(K) /2 (26)

o=

for the various values of K. Although this has m/6 at the end of the nominal
transition band, it will be seen that H(m/6) is of order 0.05 which may be
undesirably large when analysing signals with a strong annual cycle. In order
to ensure that the annual cycle was more definitely in the stop band, the set
of filters shown in Figure 4 used

T
0, =% ~$ (K) /2 (27)

for various K values. It will be seen that H(T/6) is significantly reduced.

3c. More general low-pass filters

The low-pass filters in the previous section have particularly good
cut~off properties in the stop-~band but this is achieved at the expense of
loss of control of theé transition band width for any given filter length. 1In
some cases this may be undesirable and it may be appropriate to sacrifice some
of the relative smoothness of the filters defined by (24a,b) in order to
obtain a shorter filter for a given transition band width. The class of
filters that we consider here are approximations to the ideal filter with

H(O) = 1, 6 < w (28a)
=0, 8 > w® (28b)
(0 -8)/(w -w) , w £6¢gaw . (28¢)

s s p P S

Fourier analysis shows that the corresponding filter coefficients are

co = (wp + ws)/2ﬂ (29a)

€ =C_y = [cos(kwp) - cos(kws)]/(ﬂkz(ws—wp)) , k#0 . (29b)
Figure 5 shows the transfer functions for filters obtained from various
truncations of (29b) using w =m/12 and ®w =m/6 and without normalising to give
H(0)=1. Again it will be seéh that even At the intended beginning of the stop
band, H(m/6) has a value that may be significant when analysing data
containing a strong annual cycle. Figure 6 shows the results of studies
analogous to those of Figure 4 in which the transition band is manipulated so
that H(T/6) is very small. For the present class of filters this is a rather
more ad hoc procedure than that described above. Because of the Gibbs
oscillations in the transfer function, much of the 'stop band' has significant
departures from =zero. What is required for analysing data with a strong
annual cycle is to have a transfer function with a zero near m/6. The example
shown in Figure 6 corresponds to wp = n/12, ws = m/7, with K=13,
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Figure 5: Low-pass filters fitted to transition band from g/12 to /6 as per
i equation (29) using K=12 (dashed), K=16 (solid) and K=20 {(chain).
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Figure 6: Low-~pass filter designed to have a zero near /6.
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4. Complex Demodulation
4a. Overview

The procedure of complex demodulation has been described by
Bloomfield (1976). The aim is to characterise a quasi~sinusoidal oscillation
whose amplitude and phase are slowly varying in time. The various steps
involved in analysing a series Zy which is believed to have a component with
frequency near W are:

(i) Multiply by exp(~iwt)

i.e. X, = zkexp(—lwk) 1 (30)

(ii) Low=-pass filter :

K
w = I c.x, .= I c.z, .expl{iw(j-k)) . (31)
k g J k-3 . 737k-j P J
J= ]
Complex demodulation can be used in constructing an estimated signal y(t) but
the conventional approach is to take the complex series u(t) and interpret

this as an amplitude A(t) and phase ¢(t) via

a(t) = 2|u(t) | (32)
¢(t) = Arg (u(t)) (33)
i.e. Tu(t) =% A(t)exp (19(t)) . (34)

The series A(t) and ¢(t) are regarded as the slowly varying amplitude and
phase of a function

A(t)cos(wt + ¢(t))
= % A(t) [exp(iwt + id(t)) + exp(-iwt -id(t))]
= u(t) exp(iwt) + u(t)* exp (-iwt)
= y(t) o (35)

If an estimate of the actual signal y(t) is required, this is most directly
obtained by the following two steps:

(iii) Multiply by exp(iwt)

= X =1 i W = 6
Vi exp (i k)uk : cjzk~j exp (iwj) (36)

(iv) Multiply real part by 2
*

= + = [A k] A 7
Ve = Ve t v ; 28 cos (@7j) E-j (37)

Thus in filtering terms, the procedure is equivalent to applying a filter
whose coefficients are derived from those of the original low-pass filter by
multiplying the jth coefficient by 2cos(wj).
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The effect of this procedure on a single frequency, A, is given by

z(t) = Rexp(ilt) + A exp(=ilt) (38)
x(£) = Bexp(i (A=0)E) + A exp (i (=w-A)t) - (39)
u(t) = H(A-0)Aexp(i(A-w)t) + H(-w-A) A*exb(i(—w-k)t) (40)

where ®w is the demodulation frequency and H(*) is the transfer function of the
low-pass filter with coefficients c..
Therefore ]*

v(t) = AH(A-w)exp(ilt) + A H(-w-A)exp(-iAt) (41)

*
y(t) = [H(A-w) + H(-w-1)][Aexp(ilt) + A exp(-iAt)]
= z(t) [H(A-w) + H{(-w~2)] g (42)
Thus if the filter described by H(.) is a symmetric low-pass filter with
cutoff © , then for w_>w , complex demodulation at frequency w. corresponds to
c . .g c e}

a band pdss filter with pass bands

i.e. S £ wgw-~w (43)

or W, - w £wg W, +w . (44)
When analysing the seasonal cycle of CO_, Thompson et al. (1986) used both the

A(t), ¢(t) representation and the recofistructed y({t) form in different parts
of their analysis.

Response

Frequency

Figure 7: Some of the band-pass filters effectively used by Thompson et al.
(1986) in extracting the annual cycle for CO, data. The nominal
pass band is q/6-uw gwsn/6 + w with ¢ = 10g/N. The filter lengths
are K=18 (dashed), K=22 (solitﬁ and K=28 (chain).
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4b. Details of past analysis

The complex demodulation analyses undertaken by Thompson et al.
(1986) were performed using computer routines based on those given by
Bloomfield (1976). These routines involve 3 parameters: w_, the demodulation
frequency, w , the cutoff frequency of the low-pass filter and K, the length
of the low-pgss filter. This is an appropriate degree of generality. However
the routines given by Bloomfield restrict K to be a factor of the length of
the series, N, i.e.

K = N/m for some integer m (45)
and also require
wc = {m + 2n)m/N for some integer n . (46)

Table 1 lists the various sites from which CO, data were analysed by Thompson
et al. (1986) and gives the characteristics ‘of the filters involved in the
complex demodulation. It also includes the characteristics of the low-pass
filters used in the extraction of interannual variations from the decycled
series. The series were demodulated at w_ = m/6 and w, = 7/3, Figure 7 shows
some of the band pass filters that were equivaleng to the use of these
demodulations at m/6. As noted in Section 2g above, the signals obtained from
demodulation at 7/6 and 7/3 were subtracted from the original data. This is
equivalent to constructing a band-reject filter with transfer function
1-H _(6)-H_(8). Some of the transfer functions of these band-reject filters
are shown in Figure 8.

Response
o © © 2 o o © O o .
O R VU Y B - N I - - IS

Frequency

Figure 8: Some of the band-reject filters effectively used by Thompson et al.
(1986) in decycling CO, data. The reject bands are 7/6-y _gwgn/6 + o
and 1/3-6_swsn/3+w. with o = 10x/N. The filter lengths are K=1§
(dashed) , K=22 (sofid) and K=28 (chain).
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Figure

&g

The effective filters used by Thompson et al. (1986) in extracting
long-term trends from the CO, data. These filters represent
successive application of band-feject filters of the type shown in
Figure 8 and low-pass filters as shown in Figure 2. The filter

lengths are shown in the form (K + K ). {(a) Effective
demod low-pass

filters used for Barrow (28+10) chain, Samoa (22+10) solid, and Cape
Kumakahi (18+10), dashed. (b} Effective filters used for Mauna Loa
(27+14) solid, South Pole (19+10) dashed, and Bass Strait (26+10)
chain.
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The interannual variations were obtained by applying one of the
low-pass filters whose transfer functions H_(8) are shown in Figure 2. The
resulting transfer function is H (6)[1-H12(6)—H (8}]1. The effective filter is
given by the convolution of the low-pass filter with the band reject filter
and so the length of the effective filter is the sum of the length of the
final low-pass filter (i.e. 10 or 14) and the length of the demodulating
filter (from 18 to 27).

The final transfer functions of the filters equivalent to the trend
extraction process of Thompson et al. (1986) are shown in Figures 9a,b.
Comparison with Figure 4 suggests that direct application of an appropriate
low-pass filter will give as good, if not better, separation of the seasonal
cycle and the long-term trend.

Site Series Demodulating filters low-pass filters Effective
length,N W Kdemod we KL lengths
Kumakahi 108 10w/108 18 w/6 10 28
Samoa 132 l0m/132 22 n/6 10 32
Bass Strait 156 10w/156 26 /6 10 36
Barrow 168 10m/168 28 /6 10 38
South Pole 228 16w/228 19 n/6 10 29
Mauna Loa 324 20%/324 27 /4 14 41

Table 1: Details of filters used by Thompson et al. {(1976) in decycling
series and extracting long-term variations. The series lengths are
the number of months. The demodulating filters are the low-pass
filters used for demodulation at both 7/6 and /3 (i.e. 12 month and
6 month cycles). The low-pass filters were applied to the decycled

series. The effective filter length is K + K .
demod L

5. Data reduction

5a. Monthly means

In most studies of atmospheric constituents, it is necessary to
obtain summaries of the data at regular intervals for the purposes of
comparison with other records and to exhibit the major trends in the data.
The general requirement is to reduce the size of the raw data set and possibly
to produce a uniformly spaced data set from non-uniform raw data. One very
common way in which this is done is simply to take monthly means of the data.

In order to characterise the effects of taking monthly means, the
case of uniformly spaced data with n points per month is considered. The
process of taking monthly means of such data is equivalent to taking n-point
running means to smooth the data and then sampling this smoothed data at
intervals of one month. The transfer functions for various n-point running
means have been given by Hamming (1977, p30, Fig.3.2-2). However Hamming's
discussion is in terms of units such that At=1 in each case. For comparison
of running means each averaging over 1 month, the appropriate At is 1/n months
when using n-point means. Hamming's expressions for the transfer functions
for n points (n odd) convert to
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sin(8/2)

~ 7 sin(e/2n) * (a7

Hn(e)
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Figure 10:Transfer functions for n-point running means applied to data with.n
points per month, with angular frequencies in units of months .
The solid curve is for n=9. The curves for n=3, 5 and 7 follow this
closely except near their respective cutoff points of 37, 5¢ and 7.
The departures from the n=9 curve are shown as dashed.

Fach transfer function applies over the interval [-nm, nr]. The n=9 case is
shown as the solid curve in Figure 10. Near the origin all the curves behave
similarly and so Figure 10 only shows (as dashed curves) the n=3, 5 and 7
cases near their cutoff points. Sampling any record at 1 month intervals
introduces an aliasing effect in that any components remaining in the record
with angular frequencies greater than g (ie periods less than 2 months) are
aliased onto lower frequencies). A noticeable characteristic of the
transfer functions shown in Figure 10 is their relatively rapid drop-off near
the origin so that, for example, cycles with period 4 months are reduced by
10% by the averaging process.

5b. Smoothing splines

Enting (1987) describes how the work of Cox (1983) and Silverman
(1984, 1985) can be used to determine the appropriate ways of using smoothing
splines in the analysis of baseline data. Spline functions can be used in
data reduction by the same process of smoothing followed by sampling that is
described in Section 5a above. Silverman has shown that Cox's asymptotic
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results for the transfer function still hold (asymptotically) when the data
are no longer uniformly spaced but are described by a mean density of data
points. Since the spline fit to discrete data defines a continuous funétion
9(t), spline fitting provides a way of producing a uniformly spaced record
from non-uniform raw data. The smooth decay of the splines transfer function
{equation 12) shows that by incorporating smoothing, spline fitting can avoid
problems of local polynomial interpolation. Hamming (1977, p48 Fig 3.7-1)
shows how such interpolations can introduce severe distortions of -high
frequency noise terms. As well as giving an interpolating function that tends
to suppress high frequency noise, smoothing splines also have desirable
properties at low frequencies. The transfer Ffunction given by equation (12)
has its first three derivatives at the origin equal to zero, indicating that
its initial decay is much slower than the transfer functions for the running
means described above.

As noted by Enting (1987) (see also Section 2f above) the signal
processing approach suggests that spline fitting should be used by choosing A
on the basis of the spectral properties of the data, interpreted as signal
plus noise. Enting (1987) notes that several of the most readily available
computer routines construct smoothing splines by minimising the integrated
squared second derivative in eguation (11) subject to a fixed sum of squares.
Thus A is not used explicitly. However routine SMOOTH of de Boor (1978) can be
modified to solve the minimisation of expression (11). Enting also notes that
the normalisations used in representing expression (11) differ between authors
- indeed different normalisations are used in the 1984 and 1985 papers by
Silverman. As in Enting (1987), expression (11) above uses the normalisation
chosen by de Boor (1978) and so relates directly to his computer routines.

6. Summary

The discussion in Section 2 describes a 'signal processing' approach
to the analysis of baseline atmospheric constituent data that provides a
unified framework withih which a number of earlier analysis techniques can be
compared. It is suggested that in many cases a direct use of digital
filtering is the most desirable approach. Obviously, in any data analysis,
both the techniques used and the underlying model assumptions should be fully
specified. Digital filters should be described either by specific sets of
coefficients or by their transfer functions, or both. Smoothing splines can
be very conveniently characterised in terms of the factor A in equation (11).
This quantity determines the asymptotic filter coefficients equivalent to the
spline fit and therefore also gives the asymptotic transfer function. It is,
however, important to specify the normalisation used in defining A (Enting,
1987) . The signal processing approach outlined in Section 2 indicates that any
estimates of confidence levels for the signals that are extracted must be
based on assumptions about the error spectrum.

The complex demodulation procedures used by Thompson et al. (1986)
have been reviewed in some detail, partly because the technique does not seem
to have been previcusly described in terms of band-pass filtering and partly
because the work of Thompson et al. omitted details of the filters that were
used. The discussion in Section 4 above suggests that the vroutines from
Bloomfield (1976) as used by Thompson et al. (1986) are unduly restrictive.
In particular there is no inherent reason why all of the time series could not
have been analysed using the same filter rather than using a different
effective filter for each different length of series.
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