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Abstract

A number of techniques such as spl ine-smoothing and
complex-demodulat ion have previously been applied to the analysis of
background atmospheric consti tuent data; f t  is pointed out that an
interpretat ion in terms of digital f i l ter ing unifr-es these approaches.
Earl ier studies based on complex demodulat ion are re-examined in terms of the
equivalent digital f i l ter ing operations.



2

l. Introduction

The variabi l i ty of background atmospheric consti tuent data contains
much information that is of potential use in understanding natural and
perturbed geochemical cycles. fn part icular we can often seek to identi fv:

( i)  long-term rrends (possibly due to anthropogenic inf luences);
( i i )  interannual variabi l i ty (either natural or anthropogenic);
( i i i )  seasona l  cyc les  ( inc rud ing  in te rannua l  var ia t ions  in  cycres)  ;
( j .v) synoptic variat ions;
(v) variabi l i ty due to the

'base l ine '  1eve l  tha t
la rge-sca le  a i r  masses ;

(vi) variabi l i ty arisingr from the measurement process.
The analysis of basel ine data has been undertaken using a variety of

techniques such as polynomial (and other) regression, spl ine f i t t ing and
complex dernodulat ion. A useful approach is to treat the analysis problem as
one of signal processingr with an ernphasis on digital f i l ter ing. This unif ies
much earl ier work and clari f ies the determination of uncertaint ies. In this
report we only consider the stat ist ical analysis of a single t ime series and
do not consider mult iple-t ime series analysis.

2 .  Bas ic  concepts

The aim of this section is to describe a number of the most
important concept-s for the use of signal processing techniques in the analysis
of basel ine data. Detai led mathematical results are given in later sections.

Za.  9 lu t i s t i .a f  anafys l  t i s t i ca l  mode l

The stat ist ical assurnption that we nake is to express an observed
t i m e  s e r i e s  z ( t )  a s  a  s u m  o f  a  s i g r n a l  y ( t )  p l u s  a  n o i s e  t e r m  e ( t ) ,  i . e .

z ( t )  =  y ( t )  +  e ( r )
or for discrete records,

z .  =  V .  +  E ,
I  

- l  
l

In the context of analysing' atmospheric consti tuent data, the signal
can be any cornbination of the 6 types of variat ions l isted in Section 1, with
f-he noise consist ing of the sum of al l  components that are not regarded as's igna l '  .  I t  i s  assurned tha t  y  ( t )  and €  ( t )  a re  uncor re la ted  s ince  any
correlat ion would inply that e (t) is incorporating part of the signal y (t)  .
Much of the theory of t ime series analysis is confined to stat ionary series
with zero mean but many of the f i l ter ing operations described below are of
greater general i ty. rn some aspects of the analysis i t  may be necessary to
remove a mean and trend from the series before analysing i t  in order to
approximate a stat ionary series. The addit ive form of equation (1) is
reasonable since virtual ly al l  consti tuent concentrat ions are smooth functions
of their source,/sink strengths. For conserved. consti tuents the contr ibutions
from dif ferent types of source combine addit ively and even for non-conserved
tracers, the inf luences of perturbations can be l inearised so that the
inf luences of dif ferent types of perturbation wil l  be approximately addit ive.

2b. The construction of est imates of the siqnal

The analysis procedures considered here are concerned with
estimating the signal y (t)  ,  given only the information in the observed record
z(t).  The estimates of y wi l l  be denoted f.  r f  only the information from
within the records is used then there is no basis for giving any special

process of select ing data to obtain a
is bel ieved to be representative of

( 1 a )

( 1 b )
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signif icance to part icular t i rne points. I t  is thus reasonable to use only
stat ionary procedures so far as is possible. The non-stat ionary process of
f i t t ing monthly mean data by spl ines with nodes each 12 months has often been
used in the analysis of CO^ data. Enting ( l-986) has described some of the
unsatisfactory behaviour thal the non-stat ionarity causes in this process.

Although non-I inear digital f i l ter ing of CO^ data has been described
by Cleveland et al.  (1-983) ,  in this report we confine' our attention to l inear
operations so that

v .  =  f ,  G . . 2 .- l  
1  J r  x

For stat ionary processes,
estimates i  in the form

GO. depends only on j-k and so we can write the

( 2 )

( 3 )
K

? .  =  X  c . z .  -
" 1  .  - - K ' t - K-  K=-K

The expression (3) represents the use of a digital f i l ter to extract I  which
is an estimate of the signal y. For practical purposes we wil l  only consider
f in i te  K  in  equat ion  (3 )  and re fe r  to  K  as  the  f i l te r ' Ieng thr  even though the
number of terms is 2K+1.

Within K t ime units of the end of a record, equation (3) cannot be
applied and i f  est imates are required then the more general form (2) must be

2c. Spectral representation

When the pure digital f i l ter ing operation is used then a spectral
representa t ion  is  o f  par t i cu la r  va lue .  rh is  i s  because the  func t ions  exp( i j0 )
(where i  = /-:- l  are eigenfunctions of the f i l ter ing operation (Hamming, L977).
The corresponding eigenvalue, H(e), is the transfer function of the f i l ter and
is defined by

K
H(o )  =  x  c , . exp ( - i k0 )

k=-K "

The interpretation of 0 as an angular frequency of a component of the data
implies that t ime is being expressed in units such that the data spacing is
At=1. This choice wil l  be used unless othe::wise indicated. Symmetric f i l ters
(i .e. c,_=c ,-) have transfer functions that are purely real so that phase

shifts Are-t or r.  The spectral characterisation of the t ime series y(t),

z ( t )  and e( t )  i s  in  te rms o f  the i r  spec t ra l  dens i ty  func t ions  f . . . , (e ) ,  f - - (e l ,
f ^^ (O)  where ,  fo r  a  genera l  s ta t ionary  sequence,  9+ ,  w i th  z6 io  mear f ' the
siEctral density can be defined (Yaglom, 1962, p55) byJ

( 4 )

rc ' '  = L
g s ' - '  2 n X exp ( - i kO)  B .

k=-@ 
- K

( s )

Bk = Etsrs i_sJ ( 6 )
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where  E[ ' ]  denotes  s ta t i s t i ca l  expec ta t ions .
The use of the spectral density functions is subject to t \ ,ro

problems. The f irst is that only f  (e) can be estimated from the
observations. Any knowledge of f , , , ,  and f j"zrnust be based on assumptions about
the processes involved. The s6tond pi5blern is that there are definite
l imitat ions on the estimation of f  _ from the data. Applying a discrete
Fourier transform to that data z. un&'th.r,  taking the square of the ampli tude
leads to a very irregular sequenc*e of est imates of f__ (0) .  Increasing N, the
length of the record, increases the number of indeff ident frequencies 0. at
which f is est irnated but the variance of each estimate remains of orddr 1
rather €fran decreasing as 1,// t t .  To obtain regular est imates of the spectral
density function, various smoothing functions are appl ied. These have the
effect of reducing the variance of the estimates at the cost of a loss of
abi l i ty to resolve neighbouring frequencies. The est- imation of spectral
dens i ty  func t ions  is  cons idered a t  lenq th  by  pr ies t l y  (1981) .

2d .  Er ro rs

When choosing a f i l ter ing operation the obvious aim is to extract an
estimate of the signal which has minimum error. A useful measure of this is
the mean square error in the signal which is given by

u t ( 9 . - v . ) 2 1  =- J  - l +  l H ( e ) l , r . . t o ) t a o ( 7 )

rn the integrand, the f irst term represents the error due to biasing the
signal by applyinq a f j- l ter that fai ls to pass i t  unchanged and the second
term r:epresents the error due to the f i l ter passing some of the noise. Since
the integrand is posit ive everywhere, the optimal f i l ter is obtained i f  the
integrand is minimised for each 0. Differentiat ing the inteqrand with respect
t o  H ( 0 )  g i v e s

I
I  t l r - s ( o ) l , r  ( o )
) _ r  y y

whence

(see  Yag lom,  7962,  p732) .
F igure 1a shows the estimated spectrum obtained from the monthly mean CO"
concentrat ions at Mauna Loa by Thompson et al.  (1986) by constructing 5
smoothed periodogram. The various features that can t 'e seen in the spectrum
are

(i) peaks corresponding to a 1 year cycle and i ts harmonics
(i i)  a low frequency component giving the interannual variabi l i ty of the

increase
(i i i )  a background noise component.

Because this is a set of smoothed values, no signif icance can be assigned to
the widths of the seasonal peaks as a charact.erisation of the interannual
varj ,abi l i ty of the seasonal cycle.

Figure 1b shows one possible division of the spectrum into dif ferent
contr ibutions. The chain curve on the left  could be regarded as representing
the long-term increase of CO"r including the interannual variat ions in this
increase. The set of dashed feaks represent the seasonal cycle, including i ts
interannual variat ions. The sol id curve represents a tbackground' variat ion
whose spectrum is close to a f lat white noise spectrum. Hamming (1977) has

- 2 ( 1 - H ( 0 ) ) f  ( 0 )  +  2 H ( e ) f  ( 0 )  =  0y y  e e '

" ( 0 ) o p .  
=  f y y ( 0 )  / ( f y y ( e )  + f r r ( 0 ) )  =  f

( 8 )

( o )  / f  ( o )  ( e )
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noted that such a nearly white-noj-se spectrum can often be expected to arise
from the effects of 'al iasingr when sampling from a process with a decaying
specrrum.

The type of division shor4rn in Figure 1b forms the basis of the
stat ist ical model that underl ies the analysis i .e. the model assumes that the
time series consists of signal ) '  and noise e with spectral densit ies f and
f^^  respec t ive ly .  Any  s ta t i s t i ca l  ana lys is  must ,  exp l i c i t l y  o r  imp l ic i t f i ,  be
bbBed on a model of this type. Furthermore the stat ist ical analysis wil l  not,
in  i t se l f ,  g ive  any  ind ica t ion  o f  whether  the  mode l  i s  sc ien t i f i ca l  l r r
reasonable or useful.

2e .  L imi ta t ions  o f  f i l te r inq

The abi l i ty to separate a signal from noise is l ini ted by two
factors. The f irst is the theoretical dif f iculty that even the optimal f i l ter
A a f i n o d  h r r  / Q \  h : c  a  m a r n  c m r i r 6  6 r r n ra mean square error

E ( ( 9  . - y ) 2 )  =- o p E  - ( 0 )  f  ( e )  / f  ( e )  )  d e
ee  zz

1T
I
l ( f
t v v
-1I

( 1 0 )

( Y a g l o m ,  1 9 6 2 ,  e q u a t i o n  5 . 3 1 - ) .

Th is  w i l l  be  zero  on ly  i f  y ( t )  and e( t )  have non-over lapp ing  spec t ra  i .e .  a t
leas t  one o f  f_ -__(e)  and f  (0 )  i s  zero  a t  each f requency .  I f  th is  cond i t ion
does not hotdYthen i t  i€€impossible to separate the signal from the noj-se
completely and unambiguously. An obvious extension of this result is that
good estimates of the signal can be obtained i f  the spectra of the signal and
the noise are only weakly overlapping while only poor est imates of the signal
wil l  be obtainable i f  the signal and noise have common peaks.

The second l imitat ion on f i l ter ing is that we usually want to work
with f ini te lenqth f i l ters i .e. f ini te K in equation (3) ,  whi le the optimal
f i l te r  i s  usua l ly 'o f  in f in i te  length .  The des ign  o f  a  p rac t ica l  f i l te r  w i l l
thus involve various compromises. There is extensive l i terature on the design
of digital f j - l ters (see for example Hammingr, 7977) .

2f.  Smoothing spl ines as f i l ters

The (cubic) smoothing spl ine is a function $(t) chosen so as to
minirnise the quantity

-  o / +  ' | \ 2  +- l [pJ ' . .
The use of smoothing spl ines in the analysis of Coo data was introduced by
Bacastow (7976) .  s ince  (1 -L)  i s  a  leas t  squares  expr6ss ion ,  the  bes t  f i t  S  i s
given by a l inear combination of the z,.  as expressed by the general equation
(2) .  Recent  ana lys is  (Cox ,  1983;  S i l ve i inan,  1984)  has  shown tha t ,  except  near
the ends of the records, the l inear relat ion is accurately approximated by the
f i l te r  re la t ion  (3 ) ;  Cox  (1983,  equat ion  4 .4 )  has  shown tha t  fo r  equa l ly
spaced data, the l imit ing form of the transfer function is

N
6  - -  E  @ .

; - l  )

=N

r I
)
tr.

(  1 1 )



H ( O )  =  ( 1 + l A t e 4 ; - 1
spr lne

making the spl ine process a low-pass f i l ter. In this definit ion, both the

angula::.  frequency, 0, and the t ime step, at,  are defined in terms of the same

time units that are used in expression (11). Thus 0 is defined on the range

f - r / L t ,  n / L t l .
I t  must be noted that near the ends of the records the f i l ter ing expression
(L2) breaks down. The eguivalent f i l ter becomes asyrnmetric in t ime so that

H(O)  i s  no  longer  pure ly  rea l .  Thus  f requenc ies  tha t  a re .passed are  sub jec t

to  a  phase sh i f t  o f  e rq tH(O) l  in  th is  reg ion .  S i l verman (1984)  has  ex tended

Cox's analysis to the case of unequally spaced data and has shown that the

effect ive f: l - l ter is only weakly dependent on the data density. This property

makes smoothing spl ines suitable for interpolat ing the non-uniform records

that arise from performing some form of basel ine data selectl-on. This

f i l ter ing interpretat ion of smoothing spl ines suggests that tr  should be chosen

on the hasis of the f i l ter ing propert ies expressed by equation {12) and i ts

general isat ions. GeneralIy in CO" studies L has effect ively been estimated by

eye, a procedure which is satisfSctory since the f i l ter ing propert ies depend

otrty *.. t  ty on tr over much of the frequency range. There are many stat ist ical

procedures for est imating tr from the data (Golub et al.  ,  1979 and references

therein) but these assume independent errors e. and behave very poorly i ' f  the

E. are autocorrelated (Digqle and Hutchinsor{, 1986; Diggle in discussion

s3ction of Si lvermsn, 1985) .  For studies of relat ively long-term variat ions i t

is usually possible to obt,ain equally spaced data, possibly by using spl ine

interpolat ion. Once such data are obtained, i t  is probable that smoothing

spl ines wil l  not be the optirnal f i l ters for further analysis and that

specif ical ly designed digital f i l ters wil l  give a superior separation of

signal and noise. One l imitat ion on the use of spl ines as low-pass f i l ters is

the relat ively broad transit ion band. This could be reduced either by using

specif ical ly designed f i l ters or, by using higher-order spl ines. Cox (1983)

has noted i f  mth derivatives are used in the constraint term of (11) then the

transfer function is of the form

s (0 )  =  (1 -  +  a le2m)  
-1 ( 1 3  )

The sharpness of the transit ion from pass-band to stop-band increases wj-th m.

29. Complex demodulat ion

Complex demodulat ion (Bloomfield, 1976) is a technique for analysing

a signal that is assumed to j-nclude a component of the form

y ( t )  [  A ( t )  c o s ( o t  +  0 ( t ) ) ( 1 4 )

where A(t) and o(t) are slowly varying functions. The proceduie gives

estimates A(t) and iD(t) which can, i f  desired, be cornbined to give an

estimated signal

9 ( t l  =  A ( t )  c o s ( o t  +  0 ( t ) ) (  1s)

Thompson et al.  (L986) used complex dernodul-at ion of CO, data to extract

estirnates A(t) and o(t) for both the annual cycle and i ts f i rst harmonic.

These quanti t ies were constructed both as possible sources of information

concerning the carbon cycle and as part of the process of examining long term

trends. when examining long-term trends, the estimated signals i . ,r( t)  and
g- (t) wittr periods L2 and. 6 months respectively were constructed acc-o?ding to
-e$uation 

(fS) .  These signals were then subtracted from the original data z (t)

tJ give a decycled data set

f  1 ? \



z D ( t )  =  z ( t )  - 9 r 2 ( r )  - 9 6 ( t ) f i-6)

An 
:st l .-mate' 9*(t) '  of the conbination of the long-term tr:end plus interannual

variabi l i ty was obtained by applying an appropriate low-pass f i l ter to z_ (t).
Much of the comptexity of this proce<lure used by fhompson et al.  (1986) cBn fe
avoided by noting that the signals g" 

" 
(t)  ancl f .  ( t)  could be obtained from the

original data by band-pass f i t tei fng. Theo mathematicar descri_ption of
complex-demodulat ion as a f i l ter ing operation is given in Section 4 below. I f
the  t rans fer  func t ions  o f  the  band-pass  f i l te rs  a re  denoted  H,^ (e)  anc l  H- (0)
then zn is constructed by operating on z (t) with a band-reie# f i l ter wfrose
transf6r funct- ion is

uo(0 )  =  1 . -HL2 (0 )  -H6 (0 )

Apply ing  a  low-pass  f i r te r  w i th  t rans fer  func t ion  H, (0 )  means tha t  g* ( t )  can
be obtained from z(t) by applying a f i l ter whose tra#sfer function is

H *  ( 0 )  =  H L  ( e )  ( 1 - H 1 2  ( e )  - H 6  ( 0 )  ) (  1 8 )

The suitabi l i ty of this combination can be seen from the arguments of topic
(e) above. a basic low-pass f i l ter, H,, is modif ied to ensure that the
transfer function is very close t-o zero in"bands where the original signal has
peaks ( i .e. 12 month and 6 month periods) that are regarded as noise to be
excluded from the f inal signal. However, for the purposes of extract i-ng
long-term variat ions, i t-  seems that direct appl icat ion of appropriate low_pass
fi l ters may be more suitable (see Section 4 bel_ow) .

2Li.  Fi l ters for l inear operations

A sl ight general isat ion of the discussion above is needed i f  we
require some operation to be performed on the signal. rn part icular, we may
have a set of observations

( 1 7 )

( l e )

to 1' (1; by some

z ( t )  =  y ( t )  +  E ( r )

and wish to obtain an estimate of w(t) which is related
process described by a stat ionary l inear operator

If  we construct

i . e  w ( t )  =  y ( t )

f r =  z

for some stat ionarv I inear operator
general ises to

t
E[  ( f i -w)  r ]  =  |  t  l r , tO l  -)

w h e r e  L ( 0 )  a n d  F ( 0 )  a r e
case in which this is
operator as in the work

F ( e ) l . t z z 1 e )  +  l r ( o )  l , f e J e ) l d e

the transfer functions for and
of most interest is when is

of Bacastow (l-976) and Thompson et

then the error expression ( 7 )

(21)

respectively. The
the dif ferentiat ion
a l .  ( 1 9 8 6 ) .



3.  Low-pass  f i l te rs

3a. ceneral characterist ics

one of the most basic types of f i l ter is the Iow-pass f i l ter.
rdeal ly a low-pass f i l ter has a transfer function

H ( 0 )  =  1  '
- n

t

0 < a t

0 > o c

( 2 2 a )
(22b\

Such a f i l ter would be used to extract the low-frequency part of a Lime
ser ies .  I t  can  a lso  be  used as  a  bas is  fo r  cons t ruc t ing  a  h igh-pass  f i l te r
with transfer function 1-H(e), and the dif ference of two low-pass f i l ters
(with <l i f ferent cutoff frequencies) wi l l  be a band-pass f i l ter. Low-pass

fi l ters also play an irnportant role in the process of complex demodulat ion

which is described in Section 4. The sharp cutoff at 0r^ as specif ied by

equation (22\ represents an ideal si tuation that would reqi ire an inf initely
long f i l ter. Any f ini te length f i t ter wi l l  depart from this i i leal in that

there wil l  be few, i f  any, points at which the transfer function wil f  have

e x a c t l y  t h e  v a l u e s  0  o r  l -  a n d  t h e r e  w i t l  b e  a  f i n i t e ' t r a n s i t i o n  b a n d ' i n

which the transfer function drops from values near 1 to nearly 0. An

addit ional problem that may occur is the appearance of osci l lat ions in the

transfer function, an effect known as 'Gibbs phenomenon.'

A low-pass f i l ter wi l l  have the value 1 at only a f ini te number of

frequencies due to the effects noted above and so, even in the pass band, the

signal wi l l  be subject to some distort ion. One measure of the qUali ty of a

low-pass f i l ter is the number of derivatives of H(e) that are zero at 0=0.
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Figure 2: Transfer functions of the low-pass fi l ters used by ThomPson et a1'
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1 0

The importance of this is that i f  H(O)=l and al l  derivatives up to order k(inclusive) are zero at the origin, then the f i l_ter passes a porynomial of
degree k exactly. In part icular, the transfer function of a symmetric f i l ter
w i l l  have a  grad ien t  o f  zero  a t  the  or ig in .  r f  i t  a lso  has  a  varue  o f  1 ,  i t
wi l l  pass a l inear term exactly anci so i t  wi l l  not be necessarv to extract
such terms prior to f i l ter ing.

3b. Low-pass f i l ters using sigma factors

Bloomfield (1926) has defined a two-parameter set of row-pass
fi l ters based on the use of a smoothing technique to reduce the Gibbs
osc i l la t j -ons .  The '  idea l  low-pass  f i l , te r  o f  equat ion  (22 \  has  f i l re r
coef f i c ien ts

c  = t n / T

c , -  =  c  , _  =  s i n ( k o  ) , / n kK - K C '

The strong r ipples in the transfer function of this f i l ter can be reduced by
convolving i t  with an appropriate 'window'. This corresponds to mult iplying
each f i l ter coeff icient by a smoothing factor known as a siqma factor.
B loomf ie ld  uses

c = s,u /11o c

c , _  =  c  ,  =  c  s i n ( k o  )K - K O c '

( 2 3 a )

( 2 3 b )

( 2 4 a )

sLn(2rk /  (2K+t ) )  /  (2 luek2/  (2K+L) )

for k=1 to K ,

w i th  o  chosen so  tha t  H(0)=1.  The two f i l te r
frequency or^ and the length K. The subroutine
implernents -this 

f i l ter. Bloomfield quotes
transit ion band as

(24b\

parameters are thus the cutoff
LOPASS (Bloomfield, 7976, pt49)

the effect ive width of the

6 = 4 n / ( 2 K + 7 \ (25)

The two low-pass f i l ters used direct ly by Thompson et aI.  (1986) were of this
type and had (or^,K) given by (r/7, 14) for analysing the Mauna Loa data and
(n/6, 10) for al l  other sites considered. The transfer functions for these
fi l ters are shown in Figure 2. rt  wi l l  be seen that the length 10 f i l ter has
noticeably poorer behaviour in the pass band. However both f j- I ters are
symmetric and so have 2ero gradient at the origin and conseguently pass l inear
trend terms exactly. This property was of potential importance in the study
by Thompson et al.  (1986) since their series were dif ferentiated after
low-pass f i l ter ing but in practice they rernoved the l inear terms separately
prior to f i l ter inq. The f i l ters shown in Figure 2 have H(e) t  \  at t7A which
corresponds to the annual cycle in monthly d.ata. Thus they" cannot be used
directly to extract a long-term trend from a series containing an annual
cyc le .  Thompson e t  a1 .  (1986)  used these f i l te rs  in  con junc t ion  w i th
band-reject f i l ters that removed signals with freguencies around r/6 and, n/3
( i .e .  12  month  and 6  month  per iods) .  The de ta i l s  a re  g iven in  Sec t ion  4  be low

where i t  is noted that the effect ive f i l ters had lengths ranging from 28 to 41
months.

rt  is of interest to see whether the process of extract inq a
long-term trend might be better accomplished by direct use of appropriate
low-pass f i l ters. Figures 3 and 4 show the transfer functions of two sels ot
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fi l ters defined by equations (24a,b)
the transit ion band width as a
corresponds to f i l ters with cutoff

.  The expression (25) was used to define
function of K denoted 6 (K) .  Fiqure 3

-6  (K)  /2

for the various values of K. Although this has r/6 at the end of the nominal
transit ion band, i t  wi l l  be seen that H(T/6) is of order 0.05 which may be
undesirably large when analysing signals with a strong annual cycle. In order
to ensure that the annual cycle was more definitely in the stop bahd, the set
of f i l ters shown in Fiqure 4 used

' " = I  - 6 ' * ) / 2 ( 2 7 )

for various K values. Tt wi l l  be seen that H(n/O) is si .gnif icantlv reduced.

3c. More general low-pass f i l ters

The low-pass f i l ters in the previous section have part icularly good
cut-off propert ies in the stop-band but this is achieved at the expense of
loss of control of the transit ion band width for any griven f i l ter length. fn
some cases this may be undesirable and i t  may be appropriate to sacri f ice some
of the relat ive smoothness of the f i l ters defined by (24a,b) in ordef to
obtain a shorter f i l ter for a given transit ion band width. The class of
f i l ters that we consider here are approximations to the ideat f i l ter with

H ( 0 )  =  1 ,

=  ( o r - e )  / @ - u )  ,  o  <s s p p

Fourier analysis shows that the corresponding f i l ter coeff icients are

(26 \
1I

o  = ;

0 S trr^ (2Ba)
0 ) r,r- (28b)
0 < r , l o  .  l z a c )

c  =  ( ( t )  +  tn  ) /2no p s

.k="_k = [cos (kurp) - cos (kurs) ]  /  (rk2 (r"-rp) |  ,  k/o

Figure 5 shows the transfer functions for f i l ters obtained from various
truncations of (29b) using tr l-=n/I2 and u^=n/6 and without normalising to give
g(O)=1. Again i t  wi l t  be sedn that evenoat the intended beginning of the srop
band, H(It /6) has a value that may be signif icant when analysing data
containing a strong annual cycle. Figure 6 shows the results of studies
analogous to those of Figure 4 in which the transit ion band is manipulated so
that H(tt , /6) is very small .  For the present class of f i l ters this is a rather
more ad hoc procedure than that described above. Because of the Gibbs
osci l lat ions in the transfer function, much of the 'stop bandt has signif icant
departures from zero. What is required for analysing data with a strong
annual cycle J-s to have a transfer function with a zero near 1t/6. The example
shown in Fiqure 6 corresponds to op = n/I2, t= = n/7, with K=13.

(29a)

. (2ebl
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4 . Complex Dernodulation
overvierv

The procedure of cornplex denodulation has been described by
Bloomf ie ld  (1976) .  The a im is  to  charac ter ise  a  suas i -s inuso ida l  osc i l la t ion
whose arnplitude and phase are slowly varying in time. The various steps
involved in analysing a series z,_ which is bel ieved to have a component with
frequency near t l  are:- 

K

( i )  Mu l t ip ly  by  exp( - iq r t )  .

i .e .  xk  =  zkexp( - iu lk )

( i i )  Low-pass f i l ter :

(  30 )

t  J l ,

Complex demodulat ion can be used in constructing an estimated signal y (t)  but
the conventional approach is to take the complex series u(t) and interpret
this as an ampli tude A(t) and phase 0(t) via

A ( t )  =  2 l u ( t ) l  t : z l

0 ( t )  =  A r s  ( u ( t ) )  ( 3 3 )

i . e .  u ( t )  = % A ( t ) e x p ( i 0 ( t ) )  ( 3 4 )

The series A(t) and Q(t) are reqarded as the slowly varying ampli tude and
phase of a function

A ( t )  cos  ( ( l ) t  +  0  ( t )  )

= b A (t) [exp ( ir , t t  + i0 (t)  )  + exp (- i tr t t  - i0 (t)  )  ]

=  u ( t )  e x p ( i o t )  +  u ( t ) *  e x p ( - i u r t )

=  y  ( t )  ( 3 s )

ff  an esti lnate of the actual signal y(t) is required, this is most direct ly
obtained by the fol lowing two steps:

( i i i )  Mu l t ip ty  by  exp( io t )  z

vk  =  exp( iu ik )uk  = c  . z -  exp  ( i t r l i )
f  K - r

(  36 )

/ i r r l  M r r l + i n l r r
\ r v l  r r s r L & y r J

t r = r r +. K  K

Thus in f i l ter ing
whose coeff icients
mult iplying the j th

( 3 7 )

K
u ,  =  t  c , x ,  . = L c . z . . e x p ( i t r l ( - i - k ) )

K  .  , .  l K - l  .  l K - l
l = - K  l

=  E  2 c  c o s ( t l i )  z
. "l - K-' l

J -

I
j

byrea

*
t t

K

terms, the procedure is equivalent to applying a f i l ter
are derived from those of the original low-pass f i l ter by
coeff icient by 2cos (oj )  .
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The effect of this procedure on a single frequency, l ,  is given by

z(L)  =  aexp( i t r t )  +  A*exp( - j - f t )  (38)

x ( t )  =  A e x p ( i ( l - o ) t )  +  A * e x p ( i ( - 0 r - I ) t )  ( 3 9 )

u ( r )  =  H ( l - o ) A e x p ( i ( l - o ) t )  +  H ( - o - t r )  a * e x 1 i ( i ( - o - f ) t )  ( 4 0 )

where o.r is the demodulat ion frequency and H(') is the transfer function of the

low-pass f i l ter  wi th coef f ic ients c . .
Therefore

v ( t )  =  AH( I -o )exp ( i t r t )  +  a *s ( - t i - t r ) exp ( - i t r t )

y( t )  = tH( I -ur)  + H(-0r- l )  1  laexp( i t r t )  + e*exp(- i t r t )  ]

=  z ( t )  [ H ( t r - o )  +  H ( - o - l ) ]  .

( 4 1  \

(42)

- o J - - ( r }  s 0 ) < ( l ) - o .
c l  c c q

0J_ - 0J s uJ s l! + (l).
c l c c c t

when analysing the seasonal cycte of COr, Thompson et aI.  ( l-986) used both t-he

A(t),  O(t) representation and the recofistructed y(t) form in dif ferent parts

o f  the i r  ana lys is .
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Thus i f  the f i l ter described by H(.) is a s1'mrnetr ic low-pass f i l ter with

cutoff o^, then for o.l>oc, complex dernodulation at frequency od corresponds to

a band p5ss f i l ter wiEh bass bands

l - .  e . (43 )

(44)
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4b.  Deta i l s  o f  pas t  ana lys is

The complex demodulation analyses undertaken by Thompson et al.
(1986) were performed using computer routines based on those given by
Bloomfield (1976). These routines involve 3 parameters: 0)o, the demodulat ion
frequency, o^, the cutoff frequency of the low-pass f i l ter" and K, the tength
of the low-pdss f i l ter. This is an appropriate degree of general i ty. However
the routines given by Bloomfield restr ict K to be a factor of the tenqth of
t h e  s e r i e s ,  N ,  i . e .

K
and also require

u)

= N,/m

. 
= (* + 2n) n,/N

for some integer

for some integer

( 4 s )

(46)

Table 1 l ists the various sites from which Co. data were analysed by Thompson
et aI.  (1986) and gives the characterist ics t t  t fre f i l ters involved in the
complex demodulat ion. I t  also includes the characterist ics of the Iow-pass
fi l ters used in the extraction of interannual variat ions from the decycled
series. The series were demodulated at tl-to = r/6 and, 6a = T/3. Figure 7 shows
some of the band pass f i l ters that weEe equivalenf to the use of these
demodulat ions at r/6. As noted in Section 29 above, the signals obtained from
denodulation at r/6 and t/3 were subtracted from the original data. This is
eq,uivalent to constructing a band-reject f i l ter with transfer function
l - -H12(e) -H6(0) .  Some o f  the  t rans fer  func t ions  o f  these band- re jec t  f i l te rs
are-shown in Fiqure 8.

1.0

0.9

0.8

0,7

0.6
@

E  I I . \
6  - '

o

o 0 .L
d -

0'3

0.2

0 .1

Figure  8 !  Some o f  the  band- re jec t  f i l te rs  e f fec t i ve ly  used by  Thompson e t  a I '

(1986)  in  decyc t ing  COa data .  The re jec t  bands  are  r /6 -5^353a/6  +  5 .

and 1 /3-6^55gr /3+d^  w i th  o^  =  lOn lN.  The f i l te r  leng tTrs  a re  K= lB

(dashed)  , ' k=22 (so f id )  and K=28 (cha in )  .

;.., ; ii
6 r l + / 3

t a -  
r "



t 7

1 '0

0.9

0'8

0.7

u'o
@

o  v -
r
o n./.

d

1 '0

0.9

0 8

0.7

0.6

0.3

0.2.

0.1

0.2

0'1

( b )

a

o  w -
o

# 0'1

Figure  9 :  The e f fec t i ve  f i l te rs  used by  Thompson e t  a I '  (1986)  in  ex t rac t ing

long-term trends from the Co, data' These fi l ters represent

successive application of band-r'eject f i l ters of the type shown in

Figure 8 and iow-pass fi l ters as shown in Figure 2' The fi l ter

lenqtns are shown in the form (K.lu*od * *lo*-p."") '  (a) Effective

f i l te rs  used fo r  Bar row (28+10)  cha in '  Sanoa (22+10)  sb l id '  and Cape

Kumakahi (18+10), dashed. (b) Effective fi l ters used for ' l '4auna Loa

(27+14)  so l id ,  sou th  Po le  (19+10)  dashed,  and Bass  St ra i t  (26+10)

cha in .

i \ '

l t
l l

I

2z- J.r

T 
'IT .IT

1 2 6  1 Frequency



1 8

The interannual variations were obtained by apprying one of the
low-pass f i l ters whose transfer functions H,(0) are shown in Figure 2. The
result ing transfer function is H, (0) t1-H.. (O)"-H. (e) I  .  The effect ive f i l ter is
given by the convolution of the" Iow-pasis" fiftSr with the band reject filter
and so the length of the effect ive f i l - ter is the sum of the len th of the
final low-pass f i l ter ( i .e. LO or 14) and the length of the demodulat inq
f i l te r  ( f ron  18  to  27 \ .

The f inal transfer functions of the f i l ters equivalent to the trend
extraction process of Thompson et aI.  (1986) are shown in Figures 9a,b.
comparison with Figure 4 suggests that direct appl icat ion of an appropriate
low-pass f i l ter wi l l  give as good, i f  not better, separation of the seasonal
cycle and the long-term trend.

Series Denodulating fi l ters
length ,N 0  K

c demod

Iow-pass fi l ters Effective
,. 

\ 
lengths

KumaKana lua
Samoa 132
Bass  St ra i t  156
Barrow 168
South  Po le  22A
Mauna Loa 324

Ior /1OA
l v T  /  L J Z

r u T l l 5 b

] U?I/  f  bU

t6r /22A
2Or  /  324

L 8
2 2
26
2A
19
2 7

r/6
n /6
n/6
T / b
r/6
r/4

1 0
1 0
10
1 0
1 0
L 4

2 8
3 2
3 6
3 8
2 9
4L

Tab le  1 :  Deta i l s  o f  f i l te rs  used by  Thompson e t  a l .  (1976)  in  decyc l ing
ser ies  and ex t rac t ing  long- te rm var ia t ions .  The ser ies  Iengths  are
the number of months. The denodulating fi l ters are the low-pass
fi lters used for demodulation at both n/6 and r,/3 (i.e. 12 month and
6 month cycles). The low-pass fi l ters were apptied to the decycled.
s e r i e s .  T h e  c € f a ^ + { r ' a  f i r + 6 '  ] a - ^ + L  i "  K d u * o d  *  K t .

Data reduction

5a. Monthly means

rn most studies of atmospheric consti tuents, i t  is necessary to
obtain summaries of the data at regular j .ntervars for the purposes of
comparison with other records and to exhibit  the rnajor trends in the daca.
The general requirement is to reduce the size of the raw data set and possibly
to produce a uniformly spaced data set from non-uniform raw data. one very
cotnmon way 5.n which this is done is simply to take monthly means of the data.

rn order to characterise the effects of taking monthly means, the
case of uniformly spaced data with n points per month is considered. The
process of taking monthly means of such data is equivalent to taking n-point
running means to smooth the data and then sampling this smoothed data at
j-ntervals of one month. The transfer functions for various n-point running
means have been g iven by  Hamming (1977,  p30,  F ig .3 .2 -21 .  However  Hamming 's
discussion is in terms of units such that 61=1 in each case. For comparison
of runnj-ng means each averaging over 1 month, the appropriate At is I/n months
when using n-poj.nt means. Hammingrs expressions for the transfer functions
for n points (n odd) convert to
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( 4 7 )

- 0.1

-U. L

- 0.3

Fiqure 1O:Transfer functions for n-point running means applied to data witl ln

points per month, with angular frequencies in units of months 
-'

T h e s o l i . l c u r v e i s f o r n = g . T h e c u r v e s f o r n = 3 | 5 a n d 7 f o l l o w t h i s
c lose ly  except  near  the i r  respec t ive  cu to f f  po in ts  o f  31 ,  5 r  and 7r '

The deDartures from the n=9 curve are shown as dashed'

Each transfer function applies over the interval [-nn, nn]. The n=9 case is

shown as the sol id curve in Figure 10. Near the origin al l  the curves behave

similarly and so Figure 1-0 only shows (as dashed curves) the n=3, 5 and 7

cases near their cutoff points. Sarnpl ing any record at 1 month intervals

introduces an al iasing effect in that any components remaining in the record

v/j- th angular frequencies greater than T ( ie periods less than 2 months) are

al iased onto lower frequencies). A noticeable characterist ic of the

transfer functions shown in Figure 10 is their relat ively rapid drop-off near

the origin so that, for example, cycles with period 4 months are reduced by

1-0* by the averaging process.

5b. Smoothilg_qP!!nee

Enting (1987) describes how the work of cox ( l-983) and si lverman
(19g4, l-985) can be used to determine the appropriate ways of using smoothing

spl ines in the analysis of basel ine data. Spl ine functions can be used in

dita reduction by the same process of smoothing folLowed by sampling that is

described in Section 5a above. Si lverman has shown that Coxts asymptotic
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results for the transfer functj .on st i l ]  hold (asymptotical ly) when the data
are no longer uniformly spaced but are described by a mean densj-ty of data
points. Since the spl ine f i t  to discrete data defines a continuous functj .on
9 (t) '  spl ine f i t t ing provides a way of producing a uniformly spaced record
from non-uniform raw data. The smooth decay of the spl ines transfer function
(equation 12) shows that by incorporating smoothing, spl ine f i t t ing can avoid
probrems of local polynonial interporation. Hamming (1977, p4g Fig 3.2-1)
shows how such interpol-at ions can introduce severe di$tort ions of .high
frequency noise terms. As well  as giving an interpolat ing function that tends
to suppre.ss high frequency noise, snoothing spl ines also have desirable
propert ies at low frequencies. The transfer function given by equation (;-2l
has i ts f i rst three derivatj-ves at the origin equal to zero, indicating that
i ts ini t ial  decay is much slower than the transfer functions for the running
means described above.

As noted by Enting (1987) (see also Section 2f above) the signal
processing approach suggests that spl ine f i t t ing should be used by choosing I
on the basis of the spectral propert ies of the data, interpreted as signal
plus noise. Enting (1987) notes that several of the most readi ly avai lable
cornputer routines construct smoothing spl ines by minimising the integrated
squared second derivative in equation (1j_) subject to a f ixed sum of squares.
Thus ;,  is not used expl ici t ly. However routine sMoorH of de Boor (Lg7B) can be
nodif ied to solve the minimisation of expression (11). Enting also notes that
the normalisations used in representing expression (1-1-) dif fer between authors
- indeed dif ferent normalisations are used in the l-994 and j-985 papers by
Silverman. As in Enting (1987), expression (11) above uses the normalisation
chosen by de Boor (1978) and so relates direct ly to his computer routines.

6. Summary

The discussion in Section 2 describes a 'signal processing' approach
to the analysis of basel ine atmospheric consti tuent data that provides a
unif ied framework withih which a number of earl ier analysis techniques can be
compared. rt  is suggested that in many cases a direct use of digital
f i l ter ing is the most desirable approach. obviously, in any data anarysis,
both the techniques used and the underlying rnodel ass.uriptions should be fully
specif ied. Digital f i l ters should be described either by specif ic sets of
coeff icients or by their transfer functions, or both. Smoothing spl ines can
be very conveniently characterised in terms of the factor I  in equation (L1).
This quanti ty deternines the asymptotic f i l ter coeff icients equivalent to the
spl ine f i t  and therefore also gives the asymptotic transfer function. I t  is,
however, important to specify the normalisation used in defining I (Enting,
1987). The signal processing approach outl ined in Section 2 indicates that any
estirnates of confidence levels for the signals that are extracted must be
based on assumptions about the error spectrum.

The complex demodulat ion procedures used by Thompson et al.  ( i-986)
have been reviewed in some detai lr  part ly because the technique does not seem
to have been prevj-ously described in terms of band-pass f i l ter ing and part ly
because the work. of Thornpson et a1. omitted detai ls of the f i l ters that were
used. The discussion in Section 4 above suggests that the routines from
Bloomfield (1976) as used by Thompson et a1. (1996) are unduly restr ict ive.
rn part icular there is no inherent reason why al l  of the t ine series could not
have been analysed using the same f i l ter lather than using a dif ferent
effect ive f i l ter for each dif ferent length of series.
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