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Abstract

this report gives a description of a new two-dimensionatr
atmospheric transport model, suitable for studying atmospheric tracers
with retatively loncj l i fetimes. The numerical'conventions and input
requirements are outl ined and a detailed description of the numerical
processes is  g iven.



1 Introduction

This report describes a two-dimensional atmospheric transport
moder that has been developed within the Division of Atmospheric
Research of CSIRO' Australia. It describes the characteristics of the
computer implementation of the transport model and in particular it
covers:

( i )  numer ical  schemesi

(i i) sign and unit conventions;

(i i i) the way in which different source terms can be included, but no
details of the ways in which specific sources are modelled;

(iv) the way in which the transport coefficients are represented, but
not the way in which these fields can be tuned as part of the
model calibration procedure.

This modell ing project at DAR grew out of earlier work in this
Division (formerLy the Division of Atnospheric physics). A two-
dimensional nodel was d.escribed by Hyson et al. (1-980) and applied to
model-l ing the seasonal cycle of CO. by Pearman and Hyson (1980, 1981).
Further studies of CO" distributions using that model- have been
descr ibed by Pearman et-a l .  ( l -983) .  The ear l ier  model  has a l_so been

Y3:u.::';r:*iil:"::H:":*3:'"""#"""J"J.'ir"JJ#"n"J.'i"i,i"l"i""i3a;
( 1 9 8 6 ) ,  F r a s e r  e t  a l .  ( 1 9 8 5 )  ) .

The present report defines a new model.
development of the model- are:

The objects of the

(i) to improve the numerical techniques invol-ved in the finite
difference scheme of the model;

(i i) to restructure the model so as to give more flexibiLity in its
possible uses, allowing for convenient changes in choice of
t racers,  choice of  t ransporL f ie lds,  resolut ion and mode of
operation.

The transport modeL is defined by a transport equation and a set
of transport coefficients. In order to implement the model on a
computer, a finite representation of the transport equation is
required. This report is mainly concerned with a finite difference
representation of the model arthough a spectral form of the model is
also possible. For the purposes of defining particular cases, the
transport f iel-ds are always defined in spectral form. fn the finite
difference representations of the model, these spectral expansions are
used to define the coefficients on the appropriate spatiaL grid. This



provides a systematic way of changing the resolution of the finite
difference scheme without involving ad hoc interpolations of transport
f i eLds .

The layout of the remainder of this report is as follows.
Section 2 gives the general. specifications that apply to all versions
of the model. Section 3 gives the basic transport equation and
describes the co-ordinate transformations that are ' involved in
expressing this equation in the standard dimensionless form used in
the computer routines. Section 4 defines the standard spectral
representation of the transport f ieJ-ds and in particular it gives the
symmetries that are appropriate given the boundary conditions.
Section 5 gives the standard finite difference scheme that is used and
analyses the stabil ity and accuracy of the numerical schemes that are
considered. Section 6 discusses some of the different ways in which
the numerical forms of the transport equation can be used in
particular calculations and describes how sources are represented.
Section 7 compares this model to the older two-dimensionaL model.

2. Specification of the computer model

The computer model is designed to be a finite difference
representation of the two-dimensional- transport equations incJ-uding
source and sink terms. The main features are

( i )

(  i i )

( i i i )

( i v )

( v )

Calculations within the model- use dimensionless variabLes
(see  Sec t i on  3 ) .

The horizontal and vertical grids are equally spaced in
terms of their respective co-ordinates.

The vertical co-ordinate may be either reduced pressure p or
a height  co-ord inate g iven by - ln(p) .

The transport equation al-so allows the horizontal
co-ord inate to be e i ther  the la t i tude ( in  radians) ,  or
y=sin (latitude) , but at the time of writ ing the routines to
input the relevant transport coefficients have only been
implemented for the latter case.

A11 routines are written so as to be independent of the
resolution. The actual resolution is defined in a single
common block which is initial-ised by a data statement in a
BLOCK DATA subprograrn. (The same subprogram must al-locate
sufficient storage for the concentration, derivative and
transport  f ie lds. )

The tracer variables are formally described in tems of
their concentrations at relevant grid points rather than the
mass of  t racer  in  each 'ceI l r .  Whi le the d is t inct ion is  not

( v i )



( v i i )

( v i i i )

( i x )

significant for an equal pressure and sine (latitude) grid
it is very important for all other grids.

A spectral- representation of the transport f iel-ds is used as
the standard input. The grid values required by the finite
difference form are obtained by expanding the spectral- form
onto the grid. This provides a systematic way of redefining
the transport coefficients when the model resoLution is
changed.

The transport equation is set up so that the transport
fields can be effectively changed at each time step
according to the spectral representation. This provides a
smooth variation in derived quantit ies. (Section 4
describes the structures that are used in allowing the
'continuous' change of transport f ields.) The changes may be
made less frequently if required.

The model- is inplemented as a library of routines that can
be linked together in different ways for d.ifferent problems.
In particular, the calculation of the transports is entirely
separate from the source-sink calculations so that the same
transport routines can be used with any tracerr dnd with any
number of tracers, subject to the l imitations of the
computer.

The time-stepping routines are provided with a standard
' in terupt '  fac i l i ty  to  a l low for  abnormal  act ions (e.g.
additional output) at particular t imes.

( x )

?

( x i ) The standard ordering of co-ordinates in the computer code
is: vertical, horizontal, t ime, regardl-ess of whether real
space-time t ot Fourier or mixed representations are
involved..

The transport equation

In the model-, the transport equation is expressed in terms of
reduced guantit ies that are obtained by scaling the more general-
physical- quantit ies.

The quantit ies that define the reduced units are

the radius of  the ear th (6.37L x 106 m)

the scale height of the atmosphere (8 x 103 m)

the sur face pressure ( l -012.5 mb)

the mass of  the atmosphere (5.137 x 1018 kS)



T the per iod of  seasonal  var iat ion (1 year  = 3.15576

These quantit ies are used to construct the dimensionl-ess

x  107  sec )

quant i t ies:

( 3 . 1 a )

(  3 .  1b )

(  3 .  L c )

(  3 .  1d )

( 3 . 2 )

( 3 . 3 )

p = Pr/Po

t = time,/T

z = xr/H

Q = xr/a

(pressure in atmospheres) r

(t irne in years) ,

(height  in  scale heights) ,

(horizontal- distance in earth radii
= la t i tude in radians) .

The 'two-dimensional densitiesr are expressed in terms of zonally
integrated mass per unit square

^6 ,  =  (2 ra2np  ( x r )  cos { )  /M ,

where x^ and x- are the horizontal- and vertical co-ordinates in
general 'un i ts  ( . ' .g .  metres)  and p(z)  is  the atmospher ic  densi ty  at
height  z .

The isothermal assumption corresponds to

o ( x r )  =  p ( 0 )  e x n ( - x r l H )  =  o o p ,

S O

M = 4raz d*3 = 4ra2goH ( 3 . 4 )

and

1

f r , _ = f , p c o s Q  ( 3 . 5 )
a z  z -

In the verticaL there is a choice of p or z co-ordinatesr the p
co-ordinate giving an 'equal mass' division of the atmosphere. In the
horizontaL direction the reduced equal mass co-ordinate is denoted y
where

ilo'",'

y  =  s i n Q  ( 3 . 6 )

(In more general- units, asinQ gives an equal mass co-ordinate).

In terms of other combinations of co-ordinates
two-dimensionaL densities are:

the



r-  11
d d d z = l  I  m  d v d z

) o  J - t Y ' '

rel,

2

m
vp

myz

m ,
9p

and are

T /
l @  t '

t l
t l
) g  ) -

(  3 .  7 a )

(  3 .  7 b )

l a  1 n \

n;Q"

m ,qp d9dp

1 1  1 1
= l  I  *  d y d p = 1 .  ( 3 . e )

J o  J _ 1  v p
The advective flow conserves atmospheric massf a property that can
written in general vector notation as

d i v  (mv )  =0  .  ( 3 .9 )

This implies that we can write

n g = c u r l E .  ( 3 . 1 0 )

For two-dimensional flows tf can be regarded as a pseudoscalar and

\ ,

\ p ,

Lcos$ ,

ated by

11- tn /2
_ t t-  

) o  ) - r , / z

at'
m v r = _ I Z  r

ailr
m v  = + -

z o y

More general-Iy,

m  r r  = m  r r  = - 3 J '
y z y  q z 9  d z

Aq.  -1
Mul t ip ly inq  by  #  =  i  and us inq  (3 .5 )  and (3 .7a-c )

d p p
(3 .12a)  i s  equ iva len t  to

m  v  = m , v , = 9 u
y p v  9 p 9  d p

In the vertical direction

m  v  = - m  v  = 9 9
y z z  y p p  d y

( 3 . 1 1 a )

( 3 . 1 _ 1 b )

( 3 . 1 2 a )

shows that

( 3 .  1 2 b )

( 3 . L 2 c l



Multipl-ying by P = .o"O gives
i iQ

^ Q r u r = - * o n t n = 3 #

These relations occur because
v  =  v . c o s d  ry 0

v  = - p v
p - 2

The velocitv v. is the conventional mean meridional- vel-ocitv and v is
the mean vertiEaf veJ.ocity. The quantity v- is (in reduced units) 

zthe

ver t ica l  'pressure veloc i tyr  to  used by oor tp( l -9e3) .

Since *u" i" proportional to pr the divergence equation becomes

a2u a2v- 
aO5, - SZF6

= 
io *o"to

1 [ a= ro" lao

coso= - + x
t Q o

+ ;  m .  v
d z  Q z z

a lp c o s o 6  + c o s o i z r u r )

[div pv in spherica]- co-ordinates' ignoring

-?.  (pc)  + d iv  (pvc)

a t
l .p f r * o y . s r a d ( c )  ,

rad ia l -  d i ve rgenceJ .  (3 .14 )

advection of tracers we use the relations (based on

(  3.  r_2d)

( 3 .  L 3 a )

(  3 .  13b )

In looking at the
3 . 1 3  a - b )  ,

v . 0 - 9 = y  
" o " n 4 = . r  

9 I E = "  F ,  ( 3 . 1 5 a ), y  
ay  "0  __ -y  

0y  
.q  dg  0y  

-0  
a0

3c  ac  dp  3c  acrp ap- 
= -p Yz fr 

= 
", # r" 

= 
"rfr 

(3.1sb)

The general- derivative which represents the rate of change of pc in a
moving fluid parcel is

P
Dt

(  p c )

( 3 . 1 6 )



MultiplyinS by p gives

*r, [H 
+ v.erad I 

= 8" ['o, *", # * *o, "",8)
* 3" [*o,  *"o # *  ̂ r ,* ,"#. ]  ' t t ' t tor

B

l n
using # =0 and d iv(pv)=0.  Equat ions (3.1-5a-b)  show that  the v.grad(c)-  

iJE

can be expressed in any of the four co-ordinate systems using the
appropriate v.

The lowest order closure of the zonaL averaging process equates 
fratg.l

to the divergence of a flux that is J-inearly related to the

.concentration gradient through a diffusion tensor K.

Thus the full transport equation can be written in y-P co-ordinates as

m  f F . v . s r a d " l  = g  f  *  K  5 * * - * - F l- ' yp [a t  - ' - - -  -  
)  ay  I  yp  yy  ay  yp  yp  ap  J

r  f  ^ ^  r ^ ' \
* 9 l '  _ x--- 5 * *-.- *-- * I .  (3.17a)

a p l v p  p v a v  v p  p p a P j

taking

K  = - p K  ,  ( 3 . 1 - B a )
y p - y z

K__- = -p K___ ,  (3.1-Bb)
p y - z y

K  = p 2 K  ( 3 . 1 8 c )
p p - z z

Multiplying by cosg gives

-r" lffi + "'s"a "] = 3* [*rn *r* ffi * 'on .rn ** ]
t  (  A . - -  r c ' l* 3n l*rn \r ffi * *on *nn # ,J' 

(3'r.8'r)

taking

*oo  =  cos24  *OO ,  ( 3 .18e )

K  = c o s d r  ( 3 . 1 8 f )
vp 

'0p '

K  = c o s d K  ,  ( 3 . L 8 g )
py 'po '

and finall-y, multipLying to both p and cos$ gives



**, [# + y.erad I = *- [**" *** ffi * *r, .r, # ]
* *, [**, *", ffi *  ̂ 0, *,,#,] ' t ' '"n'

taking

K  =  p  c o s d  K ,  ( 3 . 1 - B i )
yp 9z

* n o = p c o s 0 K r ,  ,  ( 3 . 1 - 8 j )

in  addi t ion to the re lat ions (3.18a-d) .

The reLations can be summarised in a general tensor notation as

I  a .  o c  a . ]
" ' oB  I  a t  "o  Eq  "8  aB  J

a  |  , -  l n  a c l=;r 
|. *oB Kao fr * *oB ..e 5F ,J

r  I  D n  e g ' l* ie | 
*oB *eo fr * *oB *ee ie ) '  (3.1e)

and re lat ions (3.12)  teduce to

aE (3 .20a )n o B v B = + 5 o  '

au  (3 .20b )m c B t q = - m  '

so long as (o,8)  def ine a r ight  handed co-ord inate system e.9.  (yrz) ,
( $ , 2 )  ,  ( p , 0 )  ,  ( p ' y )  .

(For convenience of coding the numerical model actually uses q = In P
= -z or p and B - y or 0. Hence cr' always increases downwards and B
always increases northwards.)

Comb in ing  eqs .  (3 .20  a ' b )  and  (3 .19 )  g i ves

E c  a  f  3 c  E c ' \*og fr = 5" l. *aB Kq,o fr * (*oB KaB - 'l.,) tB- ,J

a  f  3 e  o c l
.  ig  [ *aB 

KBB i i  *  ( *og *Bo *  '1 , )  FA . ]  
(3 .21)



1 0

Clearly, any anti-symmetric contribution to
influence the transport in preciseLy
streamfunction r1. Therefore we define

K  =  ( K  ̂  + K ^ ) / 2  r
" o B 3 o

and

wi l l
the

the
the

diffusion tensor
same way as

( 3 . 2 2 )

( 3 . 2 3 ),lr*

so that

- l p

eq .

+ m  -  ( r  - K  ) / 2
crB Bq qB'

(3.  21-)  s impJ- i f ies to

m  - =
s B  0 t

^^ . \
-  ,1,*1 -* .  Iv  ,  a g  J

+  , r , * l  4 l  e . 2 4 )Y  3 o J

r f
L l m
E o l  o B

: - l m
a B  I  o B

K  E +  ( m  K
s s E o  o B  s

x  E +  ( m  K
B B a B  q B  s

It is this equation which wil l be numerically integrated.

4. Transport f ields; spectral specification and boundary conditions

The four transport f ields (the streamfunction and the three
diffusion coefficients) are expanded as a multiple Fourier series,
v L z . ,

F  (p , y , t )  =  X  f , ___  g ,_  (p )  g_  ( y " )  g_ (2 t l  ,
t lm'n 

KInn -K -  -m -  -n

where O* = ! (y+1-) ,

and s.- (x) = f cos (n11x) n:0- n l

I  s in(n1x)  n<o .

This can be regarded as a triple Fourier expansion

- 1 s y " s 1
- 1  s P  s 1
0 < t  < L .

The extended range of y* and
that each of the transport f ields
the space variabLes. fhis enables
be satisfied automatically.

( 4 - L )

( 4 . 2 a )

(4 .2b )

on the range

(  4 .  3 a )
( 4 . 3 b )
( 4 . 3 c )

p (see eqs.  4.3)  has been chosen so
wiLl be an odd or even function of
some of the boundary conditions to

Although each co-ordinate system uses one particular set of
t ransport  coef f ic ients (e.9.  a constant  pressure and s ine ( la t i tude)
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model uses {, K-_-_, K__ and K__) the computer code is written more
general.J-y. r 'ouJ{%r J&rri"i"f€" of different types of co-ordinate
systems are read, the fields are projected onto the appropriate grid,
and then these grid values are multiplied by scaling factors to
convert them to the relevant co-ordinate systems. Thus at each grid
point we have a set of Fourier coefficients describing the temporal
variation of the transport coefficients. These spectral
representations are summed at regular intervals in order to obtain the
coefficients required in the transport routine. After the evaluation
of the coefficients for a particular t ime, additional constraints such
as the positivity constraints (4.6 a-c) are applied.

In practice the coefficients are derived from K____, K__ and K_ (in
p-y space) . These have been chosen because they vfii' *&fe stowfy in
space than the other possibil i t ies. Hence, a desired accuracy can be
achieved with the smaLlest possible number of fourier coefficients.

Both mass and velocity streamfunctions have been tested in the
init ial Fourier decomposition. For further discussion of the
differences and the physical appl-icabiLity of this formal-ism' see
Enting and t"lansbridge (1986) .

We have obtained sets of spectral coefficients by taking least
squares fits to various sets of transport coefficients from other
sources, The choices of expansions are as follows:

(i) The streamfunction, V, is odd in p and y. Thus there is no flow
through the boundaries as {r=0 for p=6 or 1 and. y*=O or L.

(i i) The cross-diffusion term, Kor is odd in p and y, and so Ko=O on
the boundaries. At.y*=0 and 1 this boundary condition is a necEssary
consequence of the geometry of a zonally averaged mod.el. At p=9 and l-
the condition ensures that no tracer cross-diffuses through these
boundar ies.

( i i i )  The hor izonta l  d i f fus ion,  \ , . , ,  is  even in p.  This choice is
made because K____ is observed to be'fairly constant over height with no
tendency towaJ& zero at the horizontal boundaries. However, the
geometry of the model- indicates that K,., + 0 quadratically when y* + 6
and 1 (see egn 3.1-Be). This behaviddr has been reproduced in two
different ways. one method is to express K-___ as an even series in y
but to chose the Fourier coefficients-so tnaEYr---- = 0 at y* = 0 and 1;
this then ensures guadratic convergence. the JJcond method is to use
a sine series expansion. Although this only ensures a l inear
convergence to zero it does not require any arbitrary modification of
a least squares fit. The former approach has been used in dealing
with the K____rs of Hyson et al. (1980) and the Latter in dealing with
those of S{unU and Mahlman (1985). Neither approach was clearly
superior.
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(iv) The vertical d.iffusion, K--r is also handled differentl-y for the
Hyson and the Pl-umb fields. tfhe Hyson fields were derived without
assuming any boundary conditions on the K 's. (The condition of no
tracer flux through the vertical bound5rzies is met by enforcing
Ec,/3p = I at those boundaries.) Accordingly, they were fitted by
cosines in p and y*. Because we are using an enlarged spatial domain
these series wil l f i t the Hyson field smoothJ-y. However, the pLumb
fields have K + 0 at y* = 0 or 1 and p = 0. Hence it was
appropriate to?xpand these in sine series in both d.irections.

Using slzmmetric expansions, as above, also ensures continuity of
the transport f ields and their f irst derivatives. This improves the
rate of convergence of the Fourier expansion (see Acton, 1970,
pp 225-227).

Having found a spectraL expansion of the transport f ields it is
then easy to represent these fields at the appropriate points in the
grid used by the numerical scheme. However, the scheme will be
unstable if the tracer is transported counter-gradient. This is
demonstrated by the stabiJ-ity analysis in Section 5. AJ-ternatively,
from physical grounds, it must be very diff icult to describe the
"unmixing" process as tracer gradients are strengthened.

Values of the diffusion coefficients which imply up-gradient
transfer can occur for many reasons. Firstly, they may result from
errors involved in observing or modell ing the real atmosphere. A
second. source of error is the least sqluares spectral- anal-ysis
described earlier in this section. AJ.so, up-gradient f l-uxes may
actuall-y occur in some regions of the atmosphere. WaLl-ace (1978)
describes, and. offers an explanation for, this phenomenon.

The d i f fus ive f lux of  a t racer  is  g iven in eq.  (3.19)  and so the
condition of no up-gradient f l-ux is that

- [ m  ̂ K  Fq5 0,0 dq.
* *oB KoB ffi' # - t^oB*BB ffi * *ou*uo Ht,;.;l

After some manipulation eq. (4.4) becomes

Note that the antisymmetric part of
contributes to streamfunction 0*) has
unrestricted. It is easily shown that
and 3cl38 i f  and only i f

( 4 .  s )

the diffusion tensor (which
disappeared and is therefore

eq.  (4.5)  is  t rue for  any 3c/3a

K =
c[q

l r  I  s  K  \
'  s '  c o

(  4 .  6a )

(4 .6b ) ,

(  4 .  6 c )

" B B = o
L

* B B '
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These conditions are always appJ-ied to the gridded values of the
di f fus ion coef f ic ients.  In  fact ,  as expla ined in Sect ion 5,  posi t ive
lower bounds are sometimes put on the Koo md KgB.

5. Numerical implementation and stabil ity

fn the general coordinates of Section 3 the tracer equation to be
solved. is

E c  a f  D c  A e l*og fr = * l*oo 
*oo fr + (mo6 Ks - ,l'j*) -aB,J

* j  f *  ^  K ^ ^  E +  ( m  ̂  r  +  u * )  F ]  . r n  ^  R ,  ( s . 1 )' AB ["'oB "BB aB ""sB -'s Y ' 3oJ -.sB - '

where R represents the combined source and sink terms.

In eq. (5.1-) the transport terms can be arranged as the divergence
of a fl-ux vector. This flux through the boundaries of a cell can be
approximated by a centred-space differencing scheme as described by
Mi l ler  et  aI .  (198L).  The resul tant ,  mass conserv ing,  f in i te
difference equation is

m ( I , J )  A / A t  I c  ( I , J )  ]  -  n ( I , J )  R ( r , J )

[ c ( r - 1 , J )  -  c ( r , J ) l  Q o o ( r - 1 , J )  +  [ c ( r + 1 , J )  -  c ( r , J ) ]  9 q o ( r , J )

+  [ c ( r , J + l )  -  c ( r , J )  ]  Q B g ( r , J )  +  [ c ( r , J - l )  -  c ( I , J )  ]  Q 0 B ( r , J - 1 )

+  [ c ( ] - 1 , J - 1 )  -  c ( r , J )  I  Q s ( r - 1 , J - 1 )  -  [ c ( r + 1 , J - 1 - )  -  c ( r , J )  ]  Q s ( r , J - l - )

-  [ c ( r - 1 , J + l )  -  c ( ] , J ) l  Q s ( r - 1 , J )  +  [ c ( r + 1 , J + 1 )  -  c ( r , J ) ]  Q s ( r r J )

+  [ c ( 1 + 1 , J )  -  c ( r , J + 1 )  I  U ( r , . ] )  +  [ c ( r r J + 1 )  -  c ( r - 1 - , J )  ]  { . , ( r - 1 , J )

+  [ c ( I - ] - , J )  -  c ( r , J - L )  I  { , ( r - 1 - ' J - 1 - )  +  [ c ( I ' J - 1 - )  -  c ( r + 1 - , J )  ]  { r ( I , J - 1 )

( s . 2 )

Here

Q 0 0 ( I , J )  =  m  K o o , / ( A c ) 2  ,

QBB (1 ,J )  =  m KUU, /  (AB)  2  ,

Qs (1 ,J )  =  m K" , /  (2AcAB)  ,

(  5 .  3 a )

( 5 . 3 b )

(  5 .  3 c )

(  s .  3 d )0 ( I , . r )  =  \ ) * / ( 2 A a A B )  r

and the terms on the right-hand side of eqs. (5.3) are evaLuated at the
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positions shown in Fig.l. Note that the index I increases d.ownwards
(increasing pressure or decreasing height) and the index ,f increases
northwards.

4>

,f increasing

( I , J )

+
I increasing

t r J )

F i g u r e  1 .  T h e  p o s i t i o n s  o f  c ( I , J ) ,  Q a o ( I , J ) ,  Q g 6 ( f , J ) ,  Q = ( I , J ) ,

R ( I , J )  a n d  V ( I , J )  i n  t h e  ( I , J )  c e I 1 .

The use of a centred space differencing schere ensures that the
errors introduced by the transport terms are O(La"z,Lg2), These smaLL
errors are most noticeable when the value of c changeS greatly from
one cell to the next, such as when radioactive tracer has just been
released in a simulated nucLear explosion. Of course, every grid
point method assumes that all f ieLds only vary slowl-y and so wil l
handle such conditions poorly.

However, these errors wil-l be much srnaller than those in an
alternative scheme such as upwind differencing. There the I lAo,rAB)
errors are mani fested as numer ical -  d i f fus ion (see Noye,  L982,  p.87) .

For the time integration of eq. (5.1) a predictor-corrector method
was chosen. This has O(At) 2 errors and so is more accurate than a
simpJ-e forward time differencing scheme; it also has better numerical
stabil ity properties which wilL be discussed later. The predictor-
corrector method was chosen ahead of fully impl-icit, methods, which
have greater accuracy and are unconditional-J-y stable, for two reasons.
Firstly an explicit scheme uses less computer time (per step) and Less
space. Second1y, a fully implicit method is impractical once source
terms are included.

The predictor-corrector method is best described by using the
folJ-owing notation. Let the sets of transport co-efficients and
concen t ra t i ons  be  deno ted  by  {0 , - ( t ) ,  k=1 ,K }  and  { c . ,  i = l rN } .  Then
eq.(5.2)  can be rewr i t ten as 

K l -
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3 c ,  N
= f  =  X  L ( 6 ) .  c ,  + R . ( t )
d c  - a l  I  r _

j=1

N K
=  X  X  L . . .  c .  0 .  ( t )  +  R .  ( t )

i = l  k= l  r lK  I  K  r
J  

-  ' -  4

(  5 .  4 a )

(  s .  4b)

(  5 .  5 a )

(  s.  sb)

The form (5.4b) emphasises that the transport operator L is l inear and
independent of t.

The predictor-corrector method has two steps. The first, the
predictor, is a forward time step giving

c f  ( t+A t )  =  c .  ( t )
l l

The second step, the

c .  ( t + A t )  =  c .  ( t )
t l

+  l t  [ r  L t o ( t )  ] .  .  c ,  ( t )
l.: 

]-r l

corrector, gives

t (

+  j  A t  
l l  " t g ( r )  

l i j  c .  ( t )  +  R .  ( t )
u

+ R .  ( r ) l' J

L [0  ( t+At )  ] , i  
" j  

( t+At )  +

Efficient use of storage in the computer
routine that takes a qiven vector x and adds to

The integration

x . + 0
l-

x .  < -  x .
l - r

X  L ( 0 ( t ) ) , .  c . ( t )  +  R .
L' l  ' l  1

7 -

A t  x .
t-

At

I

t
\ l' l
)

i s
i r

R. ( t+At
I

achieved. by using

X  L ( E )  c + .
j "

scheme can then be schematically written at time t as

c .  +  c .  +
a l

x .  +  - x .
1 I

t  +  t +
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x . + x .
I I

c .  < -  c .  +  L A t  x .
l _ r - I

The routine to add the rate of change to the vector
two steps denoted *. Note that in the second step
updated variables.

+ X
)

= Qs (o  ' J )

= Qs (M"I)

=  Q s  ( r ' 0 )  =

=  Q* -  (0 , J )  -  0 ,
!/P

-  0 ,  C ( M + 1 r , 1 )  =  C ( M , J ) ,

Q o " ( a ' O )  =  o  '

is used in the
and c refer to

( 5 . 6 a )

(  s . 6 b )

(  5 .  6 c )

(  s . 6 d )

x
t

Integration of an init ial
now be carried out by applying
The linear transport term j.s

e q .  ( 5 . 2 )  d i v i d e d  b y  m ( I , J ) .

value probLem from t_ to t_ + nAt can
the predictor-correct& methBd n times.
described by the right-hand side of

This expression is always well defined provided. that the boundary
conditions described in Section 4 are applied. ff there are M levels
in the vertical and N zones in the horizontaL then these boundarv
conditions become

rlr 'k (0rJ)

V *  ( M , J )

u * ( r , o )

In faet, because the above conditions involve setting terms in
eq.(5.2) equal to zero, the computer code can be written so that it is
not necessary to refer to indices of I and J outside the ranges 1 to M
and 1- to N respectively. However, an alternative version of the
transport routine using vector instructions explicit ly requires
certain boundary values to be zeto.

U *  ( I , N )  =  Q s  ( I , N )

The above description of the
what values of At should be used.
the stabil ity criteria.

numerical method does not ind.icate
An upper limit on At is provided by

A stabil ity analysis is carried out after rewrit ing eS. (5.1) as

3c l- f  a
a "  - ; ^  l a go F t[,* 

''"u

0 c
5E

. 1
mcrB

= K + *BB
^ 2
d c

,7
A,r* l  3c- T;,l 5F

( s . 7 )

* o o ) . % ] ( toB *BB)



The source and sink terms
is also assumed that K" =

We then define the

have been neglected
O,  i . e .  t he re  i s  no

diffusion numbers

I 7

and for tractabil ity it
of f-diagonal dif fusion.

( 5 . 8 )

( 5 . e )

found for the Courant

(  s .  10 )

*ooAt
so = 

1ffii? '
KooAt

s B = f r

and the effective Courant numbers

1
d  m ^q E

(*o'*oo) . %
l a
t* L t /Aa ,

( s . e )

( r f o

0 o
(*oB *oo) (*oB *gB) = 0 then 'these become the more usual

Courant numbers).

we have applied a Von Neumann linear stabil ity analysis (as
descr ibed in Noye,  l -982,  p.31)  to s tudy eq.(5.7)  for  centred space
differencing and predictor-corrector t ime integration. The scheme
will be stable provided that S^r Spr C^ and Co alL satisfy certain
restrictions. For the diffusiofr coSftiEient tt iere are necessary and
su f f i c i en t  cond i t i ons ,  v !2 . ,

.u = 
*. [r* 

,-.u *uu, - u*] M/^B .

S o ) 0 , s 8 ) 0 a n d S o + s g S \

Two sets of sufficient conditions have been
numbers. These are

f l t l l t

l c o l  .  r / 2  S o t  l c B l  .  { 2  s g  r

and

c o ,  1  s c r  [ 1 - 2 ( S 0 + S B )  1 / 2 '  C A z  <  S B  [ 1 - 2 ( S 0 + S B ) 1 / 2 .  ( 5 . 1 1 )

r f  s^,  So t  l - /8  then condi t ions (5.10)  are less rest r ic t ive,  but  i f
so,  5g . -L/8 then condi t ions (5.1-1)  should be appl ied.

The first two cond.it ions of eS. (5.9) are necessary for diffusion
to be down-gradient. we have discussed this in some detail- in
sect ion 4.

o=  
a B
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c  =  
l * r " i A q A B / l ^ i A o A B .
1 1

Note that if coordinates other than p-y
of eq. (5. 1) wil l- dif fer sJ-ightly from
errors.

(af ter  us ing eq.5.8)  that

(  s .  L 2 )

( 6 .  1 )

are used. then the denominator
1 because of discretization

The third of conditions (5.9) shows

( z  x  2  K ^ ^ l - 1
^ r . <  l -  

- o o  
*  

-  - B B l
- -  -  

l (Aal  "  (AB)  , ,J

for  s tabi l i ty .  In  pract i ie ,  eq.(5.12)  sets the upper l imi t  on the
time step for the transport coefficients used by us. This is guite
restrictive because if the spatial resolution is doubled then the time
step must be quartered.

The suf f ic ient  condi t ions (5.1-0)  and (5.11-)  ind icate that  in
regions where S^ or SR are small then the integration might become
unstable. rn p"ractic5 however this diff iculty never arises. As
mentioned in Section 4 we usually impose physically realistic lower
bounds on the K_.^. and K... This serves not only to satisfy the
restrictions on 

o8?,. 
couffnt numbers but also to smooth out the

0(Ao2 rLB2) errors due to the spatial differencing.

Equation (5.1-1) indicates a further advantage of the predictor
corrector method over the forward time differencing. The latter
method has a necessary and sufficient stabil ity criterj.a of C- < 25
ce l-2le: For smatt- so, ,B this is much *"r;-;:;rf".i+.- .i3i
e E .  ( s . 1 r ) .

6. Source specificiation and deduction

. The time integration scheme described in Section 5 uses a
combined source and s ink term, denoted by R(I rJ)  in  eq.  (5.2) .  The
specification of this term requj.res some care.

In the general formal-ism c represents a scaled mixing ratio of
the particular constituent. The total amount of the constituent is
proport ional  to , fmcdodp,  where m is  the "densi ty"  in  terms of  or$
coordj-nates. In the finite difference form the mean, scaled
atmospheric mixing ratio is

Multiplying c by Mor the number of moles of air, gives the total
number of moles of the t'racer.



It is this quantity that
errors.

From these specifications
per unit t ime wil l give

the model conserves

it follows that a
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to within rounding

source of  S.  moles
l-

0 c .
r, -t 

= s!/ (MA A0 AB)

Thus ,  i n  t he  no ta t i on  o f  eq .  (5 .2 ) ,

m ( r , J )  R  ( r , J )  =  S  ( r  , J l  /  ( M e  A a  A B )  ,

where S( I .J)  is  the number of  moles of  t racer  being
per unit tirne;

( 6 . 2 )

( 6 . 3 )

put into cel l  I ,J

In  sect ion 5 i t  was expla ined how, g iven R(I ,J) ,  the t ime
evolution of c(1,,1) can be deduced. However, the simple relationship
be tween  8c ( I , J ) / 3 t  and  R( I , J )  i n  eq . (5 .2 )  makes  i t  c l ea r  t ha t  f o r  any
ce I1  i t  i s  j us t  as  easy  to  deduce  the  R( I , J )  i f  3c ( I , J ) /A t  i s  known .

This property has been used in a second version of the model. In
this case R(I'J) is deduced for the cell-s near the lower boundary and
c(I,J) is found as a function of t ime for the other cel-Is. The
procedure is practicable because the most complete observations of
tracers are usually made near the ground whereas the sources and sinks
of tracers are generalJ-y most complicated there. Enting (1984) and
Enting and Mansbridge (1986) have described. the use of the present
model in the deduction of surface sources.

7. ReLation to the older model

As indicated in the introduction, the development of this model
arose from earLier two-dimensional modell ing work within the CSIRO
Division of Atmospheric Physics. There are two main differences
between the 'old' and the 'newr models. Firstly the transport f ields
are different and secondly the technical details of the impJ-ementation
of the model have been refined.

The refinement of the transport fields has come about through the
use of transport f ields obtained from a general circulation model
(Plumb and Mahlman, L985). The present report describes the general
computer implementation of the model in a form that accepts as an
input any set of transport coefficients (subject to the stabil ity
requirements in Section 5). The discussion of the refinement of the
transport coefficients is outside the scope of this report, but has
been given by Enting and Mansbridge (1986).
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The main differences in technical details between the old and new
models are:

(i) The new moder gives a choice of -ceordinates and a choice of
spatial resolution.

(i i) The new model uses diffusion coefficients that, match the
coordinate system that is in use, unlike the old moder which uses
K on what is predominantly an equal pressure grid and K*a on an
effiat y grid. rhe new model- takes rhe specrr"l 

-;;;";i""A8"ii""a

on the p-y grid and evaluates the fields at equal intervals of p
or z and y or 0 as appropriate and then performs any necessary
conversion of the diffusion coefficients.

(i i i)The new model uses mass stream functions rather than velocities
to specify the advection. This reduces the storage requirements
and automatically ensures the conservation of atmospheric mass.

(iv) The new model uses a spat5-al differencing scheme that is correct
to second order in the grid. spacing. rn contrast, the old model
uses upwind differencing for the advective terms and is correct
only to first order. The consequences of this are that the
results of the old modeL depend more strongly on the resolution
than would be the case with a higher order scheme. As part of
this effect the upwind'differencing scheme produces a 'numericar
d i f fus ion '  (Noye,  L9B2) that  is  so large in  cer ta in cr i t ica l
regions that the effective diffusion coefficients may be more
than 100s larger than the diffusion coefficients tabulated by
Hyson et  a l .  (1980).  Hyson et  a1.  do not  g ive any analys is  of
the accuracy of their rmismatched' diffusion scheme (see (i i)
above) but any errors that arise from this aspect are rikely to
be less serious than those arising from the use of upwind
differencing of the advective transport. The higher order
accuracy in the new model means that accurate results can be
obtained with low resolution.

(v) The new model- uses a spectral representation of the time
variation and so the transport coefficients can be made to vary
more smoothry than in the old model. Theoretical and numerical
studies indicate that it is appropriate to update the transport
f ie lds at  in tervals  of  At  = 0.01 years.  This g ives a much
smoother behaviour than the monthly and seasonal updating used in
the old model and yet stiLl gives substantial savings in time
compared to updating at each time step. As .J-ong as the
coefficients are set to values for the midpoint of the interval
At ,  the errors wi l l  be of  order  (At)2.

(vi) The new model is impremented in a more modul-ar fashion than the
old model-. This makes it possible to use it in a more flexible
manner. The most striking exampLe of this is the use of the new
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model in the tsource-deductiont mode described in Section 6
above. Enting (L984) gives an example of how using a
well-structured Pascal,/A1-9o1'l ike language, only 6 statements
need to be added to convert a conventional numerical integration
procedure into a procedure for carrying out the source deduction
calculat ions.

The new model has been implemented in Fortran-77 on two different
computers in the HPI-000 series running under two different operating
systems. An alternative version of the transport routine has been
written in order to take advantage of the vector instructions
available on the machines.
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