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Abstract

This report gives a description of a new two-dimensional
atmospheric transport model, suitable for studying atmospheric tracers
with relatively long lifetimes. The numerical conventions and input
requirements are outlined and a detailed description of the numerical
processes is given.




1. Introduction

This report describes a two-dimensional atmospheric transport
model that has been developed within the Division of Atmospheric
Research of CSIRO, Australia. It describes the characteristics of the
computer implementation of the transport model and in particular it
covers:

(i) numerical schemes;
(ii) sign and unit conventions;

(iii) the way in which different source terms can be included, but no
details of the ways in which specific sources are modelled;

(iv) the way in which the transport coefficients are represented, but
not the way in which these fields can be tuned as part of the
model calibration procedure.

This modelling project at DAR grew out of earlier work in this
Division (formerly the Division of Atmospheric Physics). A two-
dimensional model was described by Hyson et al. (1980) and applied to
modelling the seasonal cycle of CO_, by Pearman and Hyson (1980, 1981).
Further studies of CO distribu%ions using that model have been
described by Pearman et al. (1983). The earlier model has also been
used for a number of other studies involving constituents such as coO_,
13¢ and chlorofluorocarbons, (Fraser et al. (1983), Pearman and Hyson
(1986) , Fraser et al. (1985)).

The present report defines a new model. The objects of the
development of the model are:

(i) to improve the numerical techniques involved in the finite
difference scheme of the model;

(ii) to restructure the model so as to give more flexibility in its
possible uses, allowing for convenient changes in choice of
tracers, choice of transport fields, resolution and mode of
operation.

The transport model is defined by a transport equation and a set
of transport coefficients. In order to implement the model on a
computer, a finite representation of the transport equation is
required. This report is mainly concerned with a finite difference
representation of the model although a spectral form of the model is
also possible. For the purposes of defining particular cases, the
transport fields are always defined in spectral form. In the finite
difference representations of the model, these spectral expansions are
used to define the coefficients on the appropriate spatial grid. This




provides a systematic way of changing the resolution of the finite
difference scheme without involving ad hoc interpolations of transport
fields.

The layout of the remainder of this report is as follows.
Section 2 gives the general specifications that apply to all versions
of the model. Section 3 gives the basic transport equation and
describes the co-ordinate transformations that are “involved in
expressing this equation in the standard dimensionless form used in
the computer routines. Section 4 defines the standard spectral
representation of the transport fields and in particular it gives the
symmetries that are appropriate given the boundary conditions.
Section 5 gives the standard finite difference scheme that is used and
analyses the stability and accuracy of the numerical schemes that are
considered. Section 6 discusses some of the different ways in which
the numerical forms of the transport equation can be used in
particular calculations and describes how sources are represented.
Section 7 compares this model to the older two-dimensional model.

2. Specification of the computer model

The computer model is designed to be a finite difference
representation of the two-dimensional transport equations including
source and sink terms. The main features are

(1) Calculations within the model use dimensionless variables
(see Section 3).

(ii) The horizontal and vertical grids are equally spaced in
terms of their respective co~ordinates.

(iii) The vertical co-ordinate may be either reduced pressure p or
a height co-ordinate given by -1ln(p).

(iv) The transport equation also allows the horizontal
co-ordinate to be either the latitude (in radians), or
y=sin (latitude), but at the time of writing the routines to
input the relevant transport coefficients have only been
implemented for the latter case.

(v) All routines are written so as to be independent of the
resolution. The actual resolution is defined in a single
common block which is initialised by a data statement in a
BLOCK DATA subprogram. (The same subprogram must allocate
sufficient storage for the concentration, derivative and
transport fields.)

(vi) The tracer variables are formally described in terms of
their concentrations at relevant grid points rather than the
mass of tracer in each 'cell'. While the distinction is not



(vii)

(viii)

(ix)

(x)

(xi)

significant for an equal pressure and sine (latitude) grid
it is very important for all other grids.

A spectral representation of the transport fields is used as
the standard input. The grid values required by the finite
difference form are obtained by expanding the spectral form
onto the grid. This provides a systematic way of redefining
the transport coefficients when the model resolution is
changed.

The transport equation is set up so that the transport
fields can be effectively changed at each time step
according to the spectral representation. This provides a
smooth variation in derived quantities. (Section 4
describes the structures that are wused in allowing the
'continuous' change of transport fields.) The changes may be
made less frequently if required.

The model is implemented as a library of routines that can
be linked together in different ways for different problems.
In particular, the calculation of the transports is entirely
separate from the source-sink calculations so that the same
transport routines can be used with any tracer, and with any
number of tracers, subject to the limitations of the
computer.

The time-stepping routines are provided with a standard
'interupt' facility to allow for abnormal actions (e.g.
additional output) at particular times.

The standard ordering of co-ordinates in the computer code
is: vertical, horizontal, time, regardless of whether real
space-time, or Fourier or mixed representations are
involved.

3. The transport equation

In the model, the transport equation is expressed in terms of
reduced quantities that are obtained by scaling the more general
physical quantities.

The gquantities that define the reduced units are

a the radius of the earth (6.371 x 106 m)

H the scale height of the atmosphere (8 x 103 m)

P the surface pressure (1012.5 mb)

M the mass of the atmosphere (5.137 x 1018 kq)




T the period of seasonal variation (1 year = 3.15576 x 107 sec)

These quantities are used to construct the dimensionless quantities:

p = PZ/PO (pressure in atmospheres), (3.1a)
t = time/T (time in years), (3.1b)
z = x3/H (height in scale heights), (3.1c)
¢ = x2/a (horizontal distance in earth radii

Z latitude in radians). (3.14)

The 'two-dimensional densities' are expressed in terms of =zonally
integrated mass per unit square

m¢z = (2ﬂa2Hp(x3)cos¢)/M, (3.2)

where x, and x. are the horizontal and vertical co-~ordinates in
general “units (e€.g. metres) and p(z) is the atmospheric density at
height z.

The isothermal assumption corresponds to

plxy) = p(0) exp(-x,/H) = p P, (3.3)
so
15 2 oL 2
M = 4na Jop(x3) dx3 4Ta poH (3.4)
and
B (3.5)
m¢z i os¢ . .

In the vertical there is a choice of p or z co-ordinates, the p
co-ordinate giving an 'equal mass' division of the atmosphere. 1In the
horizontal direction the reduced equal mass co-~ordinate is denoted y
where

y = sin¢ . (3.6)

(In more general units, asin¢ gives an equal mass co-ordinate).

In terms of other combinations of co-ordinates the
two~dimensional densities are:




m_ =% ; (3.7a
YP )
myz =% , (3.7b)
m¢P = %cos¢ , (3.7¢)
and are related by
T/2

<] -] 1
m, de¢dz= J J m_ dydz
Jo f— n/2%% 0J.1¥% "
[l J'rr/Z
= m
0 Jomy2 ¢p dédp

.
= m dydp =1 . (3.8)
0 /-1 YP

The advective flow conserves atmospheric mass, a property that can be
written in general vector notation as

div(mv)=0 . {3.9)
This implies that we can write

mv = curl ¥ . (3.10)

For two-dimensional flows ¥ can be regarded as a pseudoscalar and

my = - H)- 7 (3.11a)
£ oz

=Tl 1 (3.11b)
z dy

More generally,

y L)
myzvy = m¢zv¢ = oy . (3.12a)

Multiplying by %% = :% and using (3.5) and (3.7a-c) shows that
(3.12a) is equivalent to

=m v, = g s (3.12b)

In the vertical direction

m v =-m V = éi - (3.12¢)
Yz z yp p 9y




Iy _

Multiplying by 53 = cos¢ gives

L2t -3
m¢zvz = m¢pvp 56 (3.124)

These relations occur because

V.= V, 6 COS (3.13a)
y St
vp =-pPV, e (3.13b)

The velocity v, is the conventional mean meridional velocity and Ve is
the mean vertigal velocity. The quantity v_ is (in reduced units) the
vertical 'pressure velocity' w used by Oortp(1983).

Since myz is proportional to p, the divergence equation becomes

_ 3%y, 3%
949z 3z3¢
9 9
="l + =
36 "9z ¢ 9z "¢z z
S S ) 9
= 200 [8¢ pcosd X + cosq>,az o] VZ]
= %259 x [div pv in spherical co-ordinates, ignoring
Po radial divergencel]. (3.14)

In looking at the advection of tracers we use the relations (based on
3.13 a-b),

<
l
]

Jc 3C dy jc 3¢
CASE =L = = 3.15
slago” V¢ cosé o5 Vo A¢ 2y 6 3¢ (3.15a)

et ity ¥ 0 S dp: 36y ibe
v =-p vV, D Ve as 3p vESE H (3.15b)

The general derivative which represents the rate of change of pc in a
moving fluid parcel is

D (pc) 3 (pc) + div(pve) .
Dt ot

0 %% + p v.grad(c) J (3.16)




using %% =0 and div(pz)éo. Equations (3.15a-b) show that the v.grad(c)
can be expressed in any of the four co-ordinate systems using the
appropriate v.
The lowest order closure of the zonal averaging process equates %t(pc)
to the divergence of a flux that is linearly related to the
concentration gradient through a diffusion tensor K.
Thus the full transport equation can be written in y-p co-ordinates as
3C 9 3c 3c
m |— + v.grad c| = = m K —+m K —
YP[3t Z-9 } Yy ( yp YY 9y yp VYp 9p ]

+ d [ K 8¢ +m K s

- nm . . (3.173a)
ap YP PY 3Y YP PP 3P ]

Multiplying by p gives

ac 3 3c 3¢
== . =92 = 4+ K =
myz [at + v.grad c] Sy [myz Kyy 5y myz e ]
y & [m Kk L 4m x §EJ , (3.17b)
9z vz zy 9Y vz 22 3z
taking
K = -pK : (3.18a)
yp T yz '
X = -p K (3.18Db)
L
K = p2 K 5 (3.18c)
pp zz

Multiplying by cos¢ gives

ac d ac ac
= 4w 4 = 2 K — 4+ K —_
Top {3t * V-I® c} 3¢ [mcbp 96 3¢ = ¢p ¢p ap]

3 3c el
+ = K =+ K = (3.18d
5p [mcbp P 3¢  ¢P PP 3P ] 72

taking

K = 26 K (3.18e
gy = 057 Koo )
Kyp = cos¢ K¢p ' (3.18f)
K = K (3.18q)
o cosé 0o g

and finally, multiplying to both p and cos¢ gives



3 Bc]

] dc oc
i 9z [m¢z z¢ 3¢ :t m¢z Kzz 3z ] glleotte)
taking
Kyp = p cosd K¢z ’ (3.181)
K = K 3.185
T cos¢ o ( 3)

in addition to the relations (3.18a-d).

The relations can be summarised in a general tensor notation as

dc ac dc
Mg [ 3 " Vo %2t Ve 38 J

. %a [ My8 Koo %g T Mg KaB %% ]

i %s [ g Xga it "ug *pg ‘g—g ] 0 (3.19)
and relations (3.12) reduce to

maB vB = + %% . (3.20a)

m,Vv = - %% ’ (3.20b)

so long as (a,B) define a right handed co-ordinate system e.g. (y,2z),

(¢,2), (p,®), (P,y).

(For convenience of coding the numerical model actually uses o =
always increases northwards.)

Combining egs. (3.20 a,b) and (3.19) gives

dc

maB KBB 38 + (mo,'B KBa + ) 7= a (3.21)

dc
90,

= -z or p and B =y or ¢. Hence 0 always increases downwards and B
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Clearly, any anti~symmetric contribution to the diffusion tensor will
influence the transport in precisely the same way as the
streamfunction y. Therefore we define

K = + K 2 v 3.22
and
* = + K - K 2 3.2

so that eqg. (3.21) simplifies to

ple gie) < - %) S
muB 3t da [ mas Kaa 1] ! (maB Ng FvY a8 ]
3 xk 28 K % 2| 3.24
+as(mocs esae+‘mass+“’)8a] 20

It is this equation which will be numerically integrated.

4, Transport fields; spectral specification and boundary conditions

The four transport fields (the streamfunction and the three
diffusion coefficients) are expanded as a multiple Fourier series,
viz.,

F(p,y,t) =1 fomn Jc @) 9, (v*) g (28) (4.1)
k,m,n

where y* = L(y+1) , (4.2a)

and gn(x) = cos(ngx) nx0 (4.2b)

sin{nyx) n<0 .

This can be regarded as a triple Fourier expansion on the range

~lgy*<c1l (4.3a)
-lgp <1 (4.3b)
03 tlJgl 1M, (4.3c)

The extended range of y* and p (see egs. 4.3) has been chosen so
that each of the transport fields will be an odd or even function of
the space variables. This enables some of the boundary conditions to
be satisfied automatically.

Although each co-ordinate system uses one particular set of
transport coefficients (e.g. a constant pressure and sine (latitude)
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model uses VY, 2 K and K ) the computer code is written more
generally. Fourfer ddefficiefhfs of different types of co-ordinate
systems are read, the fields are projected onto the appropriate grid,
and then these grid values are multiplied by scaling factors to
convert them to the relevant co-ordinate systems. Thus at each grid
point we have a set of Fourier coefficients describing the temporal
variation of the transport coefficients. These spectral
representations are summed at regular intervals in order to obtain the
coefficients required in the transport routine. After the evaluation
of the coefficients for a particular time, additional constraints such
as the positivity constraints (4.6 a-c) are applied.

In practice the coefficients are derived from K, K and K_ (in
p-y space). These have been chosen because they v$¥§ mdte slowfy in
space than the other possibilities. Hence, a desired accuracy can be
achieved with the smallest possible number of fourier coefficients,

Both mass and velocity streamfunctions have been tested in the
initial Fourier decomposition. For further discussion of the
differences and the physical applicability of this formalism, see
Enting and Mansbridge (1986),

We have obtained sets of spectral coefficients by taking least
squares fits to various sets of transport coefficients from other
sources. The choices of expansions are as follows:

(i) The streamfunction, ¥, is odd in p and y. Thus there is no flow
through the boundaries as =0 for p=0 or 1 and y*=0 or 1.

(ii) The cross~diffusion term, K , is odd in p and y, and so K =0 on
the boundaries. At y*=0 and 1 this boundary condition is a necéssary
consequence of the geometry of a zonally averaged model. At p=0 and 1
the condition ensures that no tracer cross-diffuses through these
boundaries.

(iii) The horizontal diffusion, K , is even in p. This choice is
made because K is observed to be§93irly constant over height with no
tendency towards =zero at the horizontal boundaries. However, the
geometry of the model indicates that K+ 0 quadratically when y* > O
and 1 (see egn 3.18e). This behaviddr has been reproduced in two
different ways. One method is to express K as an even series in y
but to chose the Fourier coefficients so that’K_ = 0 at y* = 0 and 1;
this then ensures quadratic convergence. The ddcond method is to use
a sine series expansion. Although this only ensures a linear
convergence to zero it does not require any arbitrary modification of
a least squares fit. The former approach has been used in dealing
with the K 's of Hyson et al. (1980) and the latter in dealing with
those of Plumb and Mahlman (1985). Neither approach was clearly
superior.
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(iv) The vertical diffusion, K, is also handled differently for the
Hyson and the Plumb fields. “fhe Hyson fields were derived without
assuming any boundary conditions on the K 's. (The condition of no
tracer flux through the vertical boundifies is met by enforcing
3c/3p = 0 at those boundaries.) Accordingly, they were fitted by
cosines in p and y*. Because we are using an enlarged spatial domain
these series will fit the Hyson field smoothly. However, the Plumb
fields have Kzz > 0 at y* = 0 or 1 and p = 0. Hence it was
appropriate to éxpand these in sine series in both directions.

Using symmetric expansions, as above, also ensures continuity of
the transport fields and their first derivatives. This improves the
rate of convergence of the Fourier expansion (see Acton, 1970,
pp 225-227).

Having found a spectral expansion of the transport fields it is
then easy to represent these fields at the appropriate points in the
grid used by the numerical scheme. However, the scheme will be
unstable if the tracer is transported counter-gradient. This is
demonstrated by the stability analysis in Section 5. Alternatively,
from physical grounds, it must be very difficult to describe the
"unmixing" process as tracer gradients are strengthened.

Values of the diffusion coefficients which imply up-gradient
transfer can occur for many reasons. Firstly, they may result from
errors involved in observing or modelling the real atmosphere. A
second source of error 1is the least squares spectral analysis
described earlier in this section. Also, up-gradient fluxes may
actually occur in some regions of the atmosphere. Wallace (1978)
describes, and offers an explanation for, this phenomenon.

The diffusive flux of a tracer is given in eqg. (3.19) and so the
condition of no up-~gradient flux is that

3 , o ae; 3¢ _ e, o 3¢, ac
—[maBKaa da 5 maB KaB 36] da [maBKBB 9B * maB Ba Ba]BB E5e
(4.4)

After some manipulation eq. (4.4) becomes

dc| 2 3c 3¢ | acl 2
K e + 2K — — + K = =20 o 4,5
oo [3&) s da 3B BB [38) T :2)
Note that the antisymmetric part of the diffusion tensor (which
contributes to streamfunction i$*) has disappeared and is therefore
unrestricted. It is easily shown that eq. (4.5) is true for any 3c¢/3a
and 3c¢/38 if and only if

K 20 , (4.6a)
oo

20 , 4.6b

KBB 2 ( )

|x_| = 3 RE 2 . (4.60)

s Kaa BB




These conditions are always applied to the gridded values of the
diffusion coefficients. In fact, as explained in Section 5, positive
lower bounds are sometimes put on the Kaa and KBB'

5. Numerical implementation and stability

In the general coordinates of Section 3 the tracer equation to be
solved is

9C

nt Ao 9c ac
aB 9t

3
T %a [maB Xaa 50 ¥ Map Ks ~ V¥ 38

9 9C . ]e;
e [mae Keg 55 + (Myg Kg * ¥ aa] + Mmoo Ry (5.1)

where R represents the combined source and sink terms.

In eq.(5.1) the transport terms can be arranged as the divergence
of a flux vector. This flux through the boundaries of a cell can be
approximated by a centred-space differencing scheme as described by
Miller et al. (1981). The resultant, mass conserving, finite
difference equation is

m(I,J) 8/8t [c(I,T)] - m(I,J) R(I,T) =

[c(I-1,T) - c(I,d})] Qaa(l—l'J) + [c(I+1,T) ~ c(I,J)] Qaa(I,J)

4

[c(I,TJ+1) - c(I,])] QBB(I,J) + [c(I,T-1) = c(I,d)] QBB(I,J—l)

+

{c(1-1,0-1) - c(I,3)] QS(I—l,J—l) - [c(I+1,0-1) = c(I,]] QS(I,J-l)

[c(I-1,T+1) - c(I,T)] QS(I—l,J) + [c(I+1,T+1) - c(I,0)] QS(I,J)

+ {e(I+1,J) - c(I,J+1)] P(I,T) + [c(I,T+1) - c(I-1,3)] ¥ (I-1,T)
+ [c(1-1,J) - ¢(1,3-1)] ¢(1~-1,3-1) + [c(I,T-1) -~ c(I+1,T)] ¢(I,J-1) .

(5.2)

Qua(I'J) m Kaa/(A(x)2 ’ (5.3a)

(,J)

m KBB/(AB)2 ’ (5.3b)

m Ks/(ZAuAB) ' (5.3¢)

%g
Q_(1,9)

y(1,J) Y*/ (2AaAB) ’ (5.34)

and the terms on the right-hand side of egs.(5.3) are evaluated at the
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positions shown in Fig.l. Note that the index I increases downwards
(increasing pressure or decreasing height) and the index J increases
northwards.

-
J increasing

R(I,J)

c(x,d) QBB(LJ)

0. (1,3
‘ 0, (T3 ————=

v(1,d)

I increasing

Figure 1. The positions of c(I,J), Qua(I’J)' QBB(I'J)' QS(I,J),
R(I,J) and ¥(I,J) in the (I,J) cell.

The use of a centred space differencing scheme ensures that the
errors introduced by the transport terms are 0(Aa2,AB2). These small
errors are most noticeable when the value of ¢ changes greatly from
one cell to the next, such as when radiocactive tracer has just been
released in a simulated nuclear explosion. Of course, every grid
point method assumes that all fields only vary slowly and so will
handle such conditions poorly.

However, these errors will be much smaller than those in an
alternative scheme such as upwind differencing. There the O0(Aa,AB)
errors are manifested as numerical diffusion (see Noye, 1982, p.87).

For the time integration of eq.(5.1) a predictor-corrector method
was chosen. This has O0(At)2 errors and so is more accurate than a
simple forward time differencing scheme; it also has better numerical
stability properties which will be discussed later. The predictor-
corrector method was chosen ahead of fully implicit methods, which
have greater accuracy and are unconditionally stable, for two reasons.
Firstly an explicit scheme uses less computer time (per step) and less
space. Secondly, a fully implicit method is impractical once source
terms are included.

The predictor-corrector method is best described by using the
following notation. Let the sets of transport co-efficients and
concentrations be denoted by {¢. (t), k=1,K} and {c., i=1,N}. Then

A k i
ed. (5.2) can be rewritten as
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Bci N
T3 | I L(Q)ij cj + Ri(t) (5.4a)
j=1
N K
= I I L,. c., ¢ (t) +R,(t) . (5.4b)
SE¥ Reg ijk "3 "k i

The form (5.4b) emphasises that the transport operator L is linear and
independent of t.

The predictor-corrector method has two steps. The first, the
predictor, is a forward time step giving

c*x(t+At) = ¢, (£) + At {Z Li¢(E)],. c.(t) + R.(t)] L (5.5a)
i i 3 < i3 wag i

The second step, the corrector, gives

4 '
ci(t+At) = ci(t) + 3 At [? L[Q(t)}ij cj(t) + Ri(t) +

z L[_dg(t+At)]ij c;f(t+At) + Ri(t+At)] - (5.5b)
3

Efficient use of storage in the computer is achieved by using a
routine that takes a given vector x and adds to it

L L($) c..
3 ]

The integration scheme can then be schematically written at time t as

X 00

i

<« + + *
X X, g L(i(t))i:.l cj(t) Ri
3 .

c, < c, + At x,

i i i

T T D

i i

t <« t + At
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X, © x4 ? L(g(t)) cj(t) + Ry ¥

c, <« c, + At x, .

i i i
The routine to add the rate of change to the vector x is used in the
two steps denoted *. Note that in the second step t and c refer to
updated variables.

Integration of an initial value problem from t to t + nAt can
now be carried out by applying the predictor-correcté& methdd n times.
The linear transport term is described by the right-hand side of
ed. (5.2) divided by m(I,J).

This expression is always well defined provided that the boundary
conditions described in Section 4 are applied. If there are M levels
in the vertical and N zones in the horizontal then these boundary
conditions become

P*(0,7) = QS(O'J) = QPP(O,J) = 0, (5.6a)
l’)*(M,J) = QS(M’J) = O: C(M+1IJ) = C(MIJ)I (5.6b)
y*(1,0) = Qs(IrO) = ny(IIO) =0, {(5.6¢)

*(I,N = I,N = I,N) =0, 5.64
Y* (I,N) Qs( ) ny( ) ( )

In fact, because the above conditions involve setting terms in
eq. (5.2) equal to zero, the computer code can be written so that it is
not necessary to refer to indices of I and J outside the ranges 1 to M
and 1 to N respectively. However, an alternative version of the
transport routine wusing vector instructions explicitly requires
certain boundary values to be zero.

The above description of the numerical method does not indicate
what values of At should be used. An upper limit on At is provided by

the stability criteria.

A stability analysis is carried out after rewriting eq. (5.1) as

TS b M T
ot oo Ba2 BB aB2
1 | 50* | 3c 1 (s u*) ac
+:‘na_8ﬁ(mas‘<aa)+ae]ﬁ‘“mas[as(meKBs) 50| 38 °
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The source and sink terms have been neglected and for tractability it
is also assumed that KS = 0, i.e., there is no off-diagonal diffusion.

We then define the diffusion numbers

A T
and the effective Courant numbers
C, = Eig {5% (muBKaa) + 3%%} At/Aa,
¢, - ié {% (myg Kgg) = 9%] At/AB . (5.9)

3
(If 3o (maB Kuu) = 3B (maB KBB) = 0 then these become the more usual

Courant numbers).

We have applied a Von Neumann 1linear stability analysis (as
described in Noye, 1982, p.31l) to study eq.(5.7) for centred space
differencing and predictor-corrector time integration. The scheme
will be stable provided that S, S,, C. and C, all satisfy certain
restrictions. For the diffusion coefficient there are necessary and
sufficient conditions, viz.,

S, 2 0, SB > 0 and S, * SB <% 5 (5.9)

Two sets of sufficient conditions have been found for the Courant
numbers. These are

le b < V28, eyl < V2 s, (5.10)
and
Co2 55, [1_2(Sa+SB)]/2' Cg? 2 8¢ [1—2(sa+ss)]/2. (5.11)

T £S5, SB > 1/8 then conditions (5.10) are less restrictive, but if
Sa, SB <"1/8 then conditions (5.11) should be applied.

The first two conditions of eq.(5.9) are necessary for diffusion
to be down-gradient. We have discussed this in some detail in
section 4.
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The third of conditions (5.9) shows (after using eq.5.8) that

Al g8 i
At < (Ao) 2 ¥ (AB) 2 (5.12)

for stability. In practice, eq.(5.12) sets the upper limit on the
time step for the transport coefficients used by us. This is quite
restrictive because if the spatial resolution is doubled then the time
step must be quartered.

The sufficient conditions (5.10) and (5.11) indicate that in
regions where Sa or S, are small then the integration might become
unstable. In practice however this difficulty never arises. As
mentioned in Section 4 we usually impose physically realistic lower
bounds on the K and K,.. This serves not only to satisfy the
restrictions on “®he Couég%t numbers but also to smooth out the
0(Aa?,AB2) errors due to the spatial differencing.

Equation (5.11) indicates a further advantage of the predictor
corrector method over the forward time differencing. The latter
method has a necessary and sufficient stability criteria of C < 28 ,

< 28 For small Sa, S this is much more restrictf%e than

C .
e&.?S.l%). 8

6. Source specificiation and deduction

The time integration scheme described in Section 5 uses a
combined source and sink term, denoted by R(I,J) in eq.(5.2). The
specification of this term requires some care.

In the general formalism c represents a scaled mixing ratio of
the particular constituent. The total amount of the constituent is
proportional to J/mcdadB, where m is the "density" in terms of «,B
coordinates. In the finite difference form the mean, scaled
atmospheric mixing ratio is

c = i LCH Aq AB / i m, Aa AR . (6.1)

Note that if coordinates other than p-y are used then the denominator
of eqg.(6.1) will differ slightly from 1 because of discretization
errors.

Multiplying ¢ by M_, the number of moles of air, gives the total
number of moles of the @racer.
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It is this gquantity that the model conserves to within rounding
errors.

From these specifications it follows that a source of Si moles
per unit time will give

n, - = Si/(MA Ao ABY . (6.2)

Thus, in the notation of eq.(5.2),
m(I,J) R(I,J) = S(I,J)/(MA Ao AB), (6.3)

where S(I,J) is the number of moles of tracer being put into cell I,J
per unit time.

In section 5 it was explained how, given R(I,J), the time
evolution of ¢(I,J) can be deduced. However, the simple relationship
between 9c(I,J) /9t and R(I,J) in eq.(5.2) makes it clear that for any
cell it is just as easy to deduce the R(I,J) if 3c(I,J)/9t is known.

This property has been used in a second version of the model. 1In
this case R(I,J) is deduced for the cells near the lower boundary and
C(I,J) is found as a function of time for the other cells. The
procedure is practicable because the most complete observations of
tracers are usually made near the ground whereas the sources and sinks
of tracers are generally most complicated there. Enting (1984) and
Enting and Mansbridge (1986) have described the use of the present
model in the deduction of surface sources.

7. Relation to the older model

As indicated in the introduction, the development of this model
arose from earlier two-dimensional modelling work within the CSIRO
Division of Atmospheric Physics. There are two main differences
between the 'old' and the 'new' models. Firstly the transport fields
are different and secondly the technical details of the implementation
of the model have been refined.

The refinement of the transport fields has come about through the
use of transport fields obtained from a general circulation model
(Plumb and Mahlman, 1985). The present report describes the general
computer implementation of the model in a form that accepts as an
input any set of transport coefficients (subject to the stability
requirements in Section 5). The discussion of the refinement of the
transport coefficients is outside the scope of this report, but has
been given by Enting and Mansbridge (1986).
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The main differences in technical details between the old and new

models are:

(1)

(ii)

The new model gives a choice of .ceordinates and a choice of
spatial resolution.

The new model wuses diffusion coefficients that match the
coordinate system that is in use, unlike the 0ld model which uses
Kzz on what is predominantly an egual pressure grid and K on an
equal y grid. The new model takes the spectral expansion defined
on the p-y grid and evaluates the fields at equal intervals of P
or z and y or ¢ as appropriate and then performs any necessary
conversion of the diffusion coefficients.

(iii)The new model uses mass stream functions rather than velocities

(iv)

(v)

(vi)

to specify the advection. This reduces the storage reguirements
and automatically ensures the conservation of atmospheric mass.

The new model uses a spatial differencing scheme that is correct
to second order in the grid spacing. In contrast, the old model
uses upwind differencing for the advective terms and is correct
only to first order. The consequences of this are that the
results of the old model depend more strongly on the resolution
than would be the case with a higher order scheme. BAs part of
this effect the upwind differencing scheme produces a 'numerical
diffusion' (Noye, 1982) that is so large in certain critical
regions that the effective diffusion coefficients may be more
than 100% larger than the diffusion coefficients tabulated by
Hyson et al. (1980)., Hyson et al. do not give any analysis of
the accuracy of their 'mismatched' diffusion scheme (see (ii)
above) but any errors that arise from this aspect are likely to
be less serious than those arising from the wuse of upwind
differencing of the advective transport. The higher order
accuracy in the new model means that accurate results can be
obtained with low resolution.

The new model uses a spectral representation of the time
variation and so the transport coefficients can be made to vary
more smoothly than in the o0ld model. Theoretical and numerical
studies indicate that it is appropriate to update the transport
fields at intervals of At = 0.01 years. This gives a much
smoother behaviour than the monthly and seasonal updating used in
the o0ld model and yet still gives substantial savings in time
compared to wupdating at each time step. As -long as the
coefficients are set to values for the midpoint of the interval
At, the errors will be of order (At)2.

The new model is implemented in a more modular fashion than the
old model. This makes it possible to use it in a more flexible
manner. The most striking example of this is the use of the new




model in the 'source-deduction' mode described in Section 6
above. Enting (1984) gives an example of how wusing a
well-structured Pascal/Algol-like language, only 6 statements
need to be added to convert a conventional numerical integration
procedure into a procedure for carrying out the source deduction
calculations.

The new model has been implemented in Fortran-77 on two different
computers in the HP1000 series running under two different operating
systems. An alternative version of the transport routine has been
written in order to take advantage of the vector instructions
available on the machines.
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