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Abstract

The distribution of long-lived atmospheric constituents is strongly
influenced by the extent to which they are transported by large-scale
atmospheric circulations. At present our knowledge of the effects of these
circulations is incomplete and can in principle be improved by incorporating
inférmation on tracer distributions. Since each tracer cycle has its own
inherent uncertainties as well as the uncertainties in the atmospheric
transports, the overall model calibration problem becomes one of considerable
complexity once a number of different tracers are considered. The
application of transformations developed for analysing siesmic data can
separate the calibration problem into a number of essentially independent
parts, reducing the complexity to a more manageable level and allowing for
systematic inclusion of additional tracer information as it becomes
available.




Ak Modelling Atmospheric Transports

This report investigates some of the problems involved in modelling
the transports of passive tracers in the atmosphere. The 'passive' tracers
are those that do not directly change the dynamics of the atmosphere and so
the modelling can be performed using a kinematic description of the
transports.

The main aims of studies involving the transport of trace
atmospheric constituents usually fall into one of the following classes:

(1) Deducing the distributions of sources and sinks from the observed
distribution of a tracer.

(1i) Using the observed distribution of a tracer to deduce large-scale
features of the atmospheric circulation such as transport rates
between the two hemispheres.

(iii) Predicting the future concentrations of various atmospheric
constituents, given scenarios for changes in the sources.

(iv) Extending such studies from 'normal' conditions to the 'abnormal'
conditions ranging from the relatively small anomalies in
transports in particular years right through to the major changes
that might be associated with a nuclear war.

The various studies of atmospheric constituents will use various
types of transport models with varying degrees of spatial resolution. The
primary feature determining the appropriate spatial resolution is the
time~scales involved in the cycles of a particular tracer. Figure 1.1 is a
schematic representation of the time scales associated with atmospheric
mixing on various length scales. One important aspect is the differences
between the length vs time curves in the three different directions.

These scale differences mean that if the time scales involved are
too short to justify a zero-dimensional model, ignoring atmospheric
transports altogether, then a one-dimensional model with only vertical
resolution may be appropriate. Alternatively a one-dimensional model with
only horizontal mixing may be appropriate in other cases - the mixing times
from north to south and from troposphere to stratosphere are similar. The
most appropriate direction to resolve is the one in which there is most
variability.

For situations with shorter time scales or with significant
variability in both horizontal and vertical directions, a two-dimensional
(zonally-averaged) model becomes appropriate, so long as the time scales are
long enough to ensure zonal mixing. Finally if very short time-scales are of
interest or if there is variability in all three spatial directions, a full
three-dimensional model is appropriate.
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Figure 1.1: The length and time scales of varlous atmospheric processes

showing how on particular time scales different length
scales will be involved in the three directions.

When using the lower~dimensionality models, it is important to note
the different possible ways in which they can be interpreted. Bauer (1980)
has listed three different ways in which one-dimensional (height only) models
can be interpreted, namely
(1) as representing global average height distributions;
(ii) as representing hemispheric averages;

(iii) as representing typical mid-latitude (30°N) distributions.

Similarly, one-dimensional models in which only latitude is
resolved can be interpreted as representing

(1) surface values (averaged at that latitude):

(ii) tropospheric averages (at that latitude);

(iii) atmospheric averages (at that latitude).
Some insight into the ways in which these different types of one-dimensional
model should be tresated can be obtained by investigating the way in which

such models relate to a fuller two-dimensional model of the atmospheric
transports.




Zero—-dimensional (single reservoir models) can represent either the
troposphere or the atmosphere as a whole. Two-dimensional models are almost
always taken as representing zonally averaged distributions.

This report is concerned with the question of calibrating
atmospheric transport models and while much of the analysis is quite general,
it is two-dimensional models that are of most concern here. Two-dimensional
models have much more complexity than one-dimensional models because they can
include both advective and diffusive parameterization of the transports.
Two-dimensional models also have complications that are missing from
three-dimensional modelling studies because the process of zonal averaging
transforms some three-dimensional advective process (in particular those
involving eddies) into two-dimensional 'diffusive' processes in a poorly
determined manner. Thus two-dimensional models may be more complicated to
calibrate than three-dimensional models because they represent some
atmospheric processes in an indirect manner.

The remainder of this report is as follows. Section 2 reviews some
of the different tracers that are of possible use in calibrating
two-dimensional models and gives a discussion of the uncertainties in the
source/sink terms. Section 3 describes the calibration problem and the way
in which the use of a large number of tracers, each with its own
uncertainties, leads to a calibration problem that appears to have an
unmanageable degree of complexity., Section 4 shows how techniques developed
by Pavlis and Booker (1980) for analysing earthquake data can separate the
overall calibration problem into a set of managable sub-problems. Section 5
extends this approach and analyses an iterative calibration scheme that is
needed because of non-linear aspects of the problem and because of the
approximate nature of the initial separation into subproblems. Section 6
discusses the computational requirements for implementing this calibration
scheme.

28 Data for Calibrating two-dimensional models

There are four main classes of quantity that can be used in the
calibration of atmospheric transport models. These are the 'meteorological
variables', other natural trace constituents, products of nuclear testing, an
other anthropogenic trace constituents.

(a) Meteorological variables

The quantities involved are:

(1) Mass: The mass distribution is often used as the basis of
two-dimensional modelling with the vertical distribution being
expressed relative to pressure (i.e. mass) coordinates. If
advective flows are expressed in terms of stream functions then
mass conservation follows automatically.

(1i) Entropy: Entropy (heat) is of limited value in calibrating
transport models directly, partly because it is not a passive
tracer but mainly because it is not conserved by the transport
processes. As described by Hantel and Haase (1983), one of the
main uncertainties in the atmospheric heat budget is the vertical
transport by transient eddies - a process that will have a non-
linear dependence on the heat distribution. One way in which the
heat distribution constrains the transport coefficients is that the




major axis of the diffusion tensor is expected to be along the
isentropes. (Plumb pers. comm.).

(iii) Water: 1In the troposphere water is of little use as a tracer
since it has an active dynamical role and in particular it is not
conserved by the transport processes. It has however been used by
Hidalgo and Crutzen (1977) for determining eddy diffusion
coefficients in the stratosphere.

(iv) Momentum/Angular momentum: Oort (1983, Appendix B) shows that over
much of the earth, particularly in the southern hemisphere, the
mean meridional circulation cannot be determined directly from the
available observations but must be deduced indirectly from angular
momentum balance. Thus if these mean circulations are used then
angular momentum balance is already implicit in the transport data.
However Plumb (1979) has suggested that effective circulations
related to the Lagrangian mean may give better descriptions of
zonally averaged transports.

(b) Natural trace constituents

(i) Carbon dioxide: The natural seasonal cycle of CO, gives a useful
tracer, particularly for studies of interhemisphe¥ic transport.
The problems are that the source and sink strengths are very poorly
known, involving both the biosphere and the oceans.

(ii) Carbon-13: The studies of seasonal variability of carbon isctope
ratios could help to resolve the problems of the relative strengths
of biospheric and oceanic contributions to the cycle but the signal
is so small that the measurements are very difficult.

(¢) Products of Nuclear Testing

The use of any of these tracers is limited by the uncertainties in the
release rates, However many aspects of the source function are the same
for all of these tracers ~ the main exception being the distinction
between fission and fusion. In addition the location and timing of the
major releases is fairly well known ~ it is the amounts released that
are uncertain. The most important species are:

(i) Carbon-14: This has been widely observed and because of the large
difference between the stratospheric and tropospheric
concentrations, it should provide useful information in the
seasonal variability of transport between the stratosphere and
troposphere,

(ii) Strontium-90: This is a fission product and is subject to
relatively rapid rainout from the troposphere once formed. It has
been widely measured because of concern over the dangers to health
arising from its chemical similarity to calcium (Zirconium-97 is a
similar fission product).

(1ii) Tritium: A product from fusion only. Tritium distributions in
the oceans have been subject to extensive study but atmospheric
studies have been much more restricted.




(d) Other Anthropogenic Constituents

(i) Chloroflourocarbons: Compounds such as CCl_F (Freon-11) and CCl F2
(Freon-12) have been released at rates that increased steadily a%
least till the mid-seventies. The main sources were in the
northern hemisphere. This has led to a gradient between the
northern and southern hemispheres and between the stratosphere and
troposphere and these gradients can help to calibrate the transport
rates between these regions. There is however a problem with
CCl_F. Fraser et al. (1983) have indicated that the observed rates
of change of concentration appear to be inconsistent with the
release rates that are calculated from production data. They
calculated an alternative release function that gives agreement
with the observations. That calculation must be regarded as
preliminary because the model itself was partly calibrated using
distributions of CCl_F. Such an approach can quickly lead to
circularity in the calibration procedure. A consistent approach is
to estimate corrections to the release rate and the transport
parameters simultaneously, and then estimate the combined
uncertainties. This calculation can be simplified by using a
separation procedure similar to that described in Section 4, below.

(ii) Krypton~85: This nuclide is produced by nuclear reactors and has a
half-life of 10.76 years. Weiss et al. (1983) have observed
interhemispheric gradients of Krypton-85 at sea~level in the
Atlantic.

(iii) Carbon Dioxide: The steady increase in fossil carbon release has
led to an interhemispheric gradient in concentration but the
analysis is complicated by contributions from seasonal covariance
of atmospheric transport and ocean uptake. The vertical
distribution may be of interest in determining rates of transport
into the stratosphere, especially in view of the problems
associated with CC13F.

3. The calibration problem

The discussion in the previous section reveals gaps in our
knowledge of the sources and sinks of each of the potential tracers. Any
model calibration technique that ignores this problem runs the risk of being
biased (if the uncertainties in the sources and sinks are ignored) or
circular (if an iterative procedure is used to determine the sources and
sinks and the atmospheric transports from a single data set). The preferred
approach is to estimate the transport parameters and the sources and sinks
simultaneously with as much accuracy as is possible given the data available,
In practice the estimation procedure will almost certainly be
under-determined and some form of constrained inversion (Twomey, 1977) will
be required.

Any direct attempt to estimate both the source/sink strengths and
the transport parameters simultaneocusly is likely to be unacceptably
complicated. As an example, the distribution of CCl_F is very difficult to
interpret even when no other tracers are considered.” Hyson et al (1980) used




the horizontal and vertical distributions of CCl_F to 'tune' the diffusive
transports in their two-dimensional model, assuming that the direct estimates
of releases were correct. Later studies by Fraser et al. (1983) used time
series for CCl,F concentrations to infer that there were inconsistencies in
the release daga, and modified release rates were calculated by fitting the
observed time series to the results of the model. This type of procedure,
using similar data to tune both the transports and the release rates,
involves a grave risk of circularity even though in this particular case
subsequent calculations (Enting, unpublished) seem to confirm that the
problem with the CCl.F release data in not an artifact of the calibration
procedure. Obviously a more detailed analysis of the use of the CCl_F data
is rneeded in order to determine which data can be used in which aspect

of the calibration. Apart from the uncertainties mentioned above, the
atmospheric lifetime of CC1_F is not entirely certain and one of the main
aims of the observational and modelling programs is to determine this
lifetime. Again, a detailed analysis of the use of the data is required to
determine whether the lifetime can be estimated, given all the other
uncertainties. Formally we could attempt to obtain simultanecus estimates of
an atmospheric lifetime and corrections to horizontal and vertical transports
and corrections to the direct estimates of release rates. Since however it
seems that these four factors can be estimated from four different sets of
CC1l_F data, (horizontal and vertical gradients for the respective transport
coe%ficients, atmospheric inventories for the lifetime and the curvature in
the time series for the release rates) a mathematical procedure that exploits
this approximate division into subproblems is desirable.

Even when different tracers are considered, the calibration
problems are not independent because in each case the atmospheric transports
are the same so long as the tracers are conserved, The calibration involves
determining the uncertainties in a number of source characteristics that are
connected because of the uncertainties in the transports.

The computational procedure should reflect this structure of inter-related
subproblems so far as is possible for the following reasons:

(i) to reduce the size of the individual calibration problems;
(ii) to improve the numerical stability of the procedure;

(iii) to give a more comprehensible description of the operation of the
calibration procedure;

(iv) to allow for the inclusion of additional tracers, to the extent
that the relative significance of new data can be assessed in the
context of one 'subproblem' without having to completely
recalibrate the model.

The comprehensibility of the calibration procedure is perhaps the most
important of these considerations. For many tracers, the process of
simultaneous improvement of our knowledge of the tracer cycle and the
atmospheric transports will be highly assymmetric. For some tracers, the
uncertainties in the sources and sinks will be so large that our (incomplete)
knowledge of atmospheric transports enables the net release rates to be
determined more accurately while for other tracers, at least some aspects of




their cycle will be known sufficiently well for it to be possible to make
significant improvements in the determination of atmospheric transport
parameters. The calibration procedure should be set up so as to indicate
which data are significant for which aspects of the calibration. Thisg is a
study of what Jackson (1972) has called 'the marginal utility of data'.

4. The linear approximation and the analogy with seismic analysis

The calibration problem described in the previous section was one
of deducing a single set of transport coefficients from a set of independent
responses to independent sources each of which has its own independent
uncertainties. The solution described in this section is taken by direct
analogy from the problem of deducing velocity profiles from earthquake data.
This problem can be described in almost identical words to the atmospheric
problem. The requirement is to deduce the 'transport' coefficients (the
velocity profile for compressive (or 'p') waves) given a set of independent
responses to independent sources (i.e. individual earthquakes) each of which
has its own uncertainties (i.e. the positions of the hypocentres and the
times of the original shock are unknown). Pavlis and Booker (1980) showed
that, in a linear approximation, the earthquake problem can be transformed so
that it breaks into separate subproblems. They were most interested in
separating the 'velocity-profile' subproblem from the 'source' subproblem so
that different inversion techniques can be applied to each subproblem. They
did however point out that the separation produced an independent subproblem
for each separate source (i.e. each distinct earthquake). The same
transformations apply equally well to the atmospheric transport calibration
problem because in mathematical terms the linearised forms of the problem are
identical. (The use of these solutions to the linearized problem to give an
iterative solution of the non-linear problem is discussed in the following
section).

The linear problem described by Pavlis and Booker (1980) can be
regarded as a linearis?g}on about some initial solu?%?n described by P
transport parameters x and K source parameters s . In the seismic
problem the x_ represeht a parameterisation of the velocity profile while in
the atmosphergc transport problem they would be a parameterisation of the
atmospheric transport processes. The s, describe the times and positions of
the hypocentres in the seismic problem or the various unknown. source
strengths in the atmospheric transport problem.

K P
Yy, = Y (x ASITE T kL ShE SATUISRE 1), A G il i=1,I (4.1)

i i 202 e1 KK Ly i

where yfo) is the initial model prediction of the ith of I observations mi
and the”s, and x_ represent deviations from the initial parameters. Fitting
the observations mi reduces to solving

K P

W, = ¥ A,.s + I G, x, i=1,1 (4.2)
i k=1 ik"k p=1 ip p




where

H, = m, -y, 5 i=1,T ., (4.3)

The procedure described by Pavlis and Booker is to evaluate

1.
8, = E(A )ki L] (4.4)

‘g 22l
where A is the Moore-Penrose pseudo~inverse (see Deutsch, 1965) of A. This
matrix is expressed in terms of the singular-value decomposition of A, which
can be written as

T K
A, = z Lihy Urz Sellcai® vl (4.5)
ik {11 kr=y I i'k' 'k'k
where U and V are orthogonal matrices and A . 1s zero except for the first

r elements on the leading diagonal which aré equal to A, i the r non-zero
singular values of A. The pseudo-inverse is

+ £1
BTy 2= i, i, Viger B g0 Uy 00

where A_ is zero aparE from the first r elements of the leading diagonal
which are given by Ai .

The reasons for choosing the solution (4.4) are (Deutsch, 1965):

(i) It is a least-squares solution that minimises the sum of squares of
residuals ZDiz

where RIS H z Aik S - (4.7)

and (ii) Where the least-squares solution is not unique (i.e. if r, the rank
of matrix A is less than K the number of source parameters) then
solution (4.4) selects the least squares solution that minimises
the deviations s, (i.e. Z s, 2 is minimised subject to the
constraint of Epiz being a minimum).

The other advantage of the use of the pseudo-inverse in equation (4.4) is
that it allows for the separation of the 'transport problem' (i.e. estimating
the xp) from the 'source problem'.

Initially there are I measurements (d in the notation of Pavliis and
Booker) from which to estimate X source parameters (p in the notation of
Pavlis and Booker) plus a number of transport parameters.
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The estimate s defined by (4.4) lies within an r dimensional
subspace of possible s vectors. It is assumed that K < I and of necessity, r
< K so

-

r<K<TI (4.8)

A

The effective use of r independent equations to obtain s leaves K-r
independent equations from which to estimate x. Pavlis and Booker show how
these equations can be constructed explicitly using the orthogonal matrices U
and V that generate the singular value decomposition (4.6). The equations 4%
correspond to fitting the (transformed) linearised model to a transformed
data set that they call the annulled data set.

In the iterative solution to the non-linear calibration problem
(see Section 5 below) this independence disappears and so the generalised
formalism does not attempt to transform the data set explicitly. In any case
the procedure described below uses a solution matrix that is only .
approximately equal to the pseudo-inverse and so the precise separation would
not occur. The quantities that are of interest in the general case are the
sizes of the subspaces involved since these indicate how much of the data is
actually used in each of the subproblems.

5 Iterative solution of the non-linear calibration problem

In general, models of atmospheric transport can not be represented
linearly and so linear formalisms such as that of Section 4 can only be used
iteratively. This Section describes a calibration procedure based on
iterative use of a linear scheme closely related to that described in
Section 4.

In order to describe the general calibration procedure it is first
necessary to define the notation:

a,B are used as indices denoting particular tracers. Sums over o,B are
sums over all tracers and the limits are not given explicitly in
the equations below;

i,j are indices for observations of tracer concentrations and are used
in combinations ¢,i; B,i etc. The ranges of i,j will depend on the
tracer. Sums over g,i etc. are sums over all observations of all
tracers;

k,k' are indices for the parameters describing the tracer source/sink
strengths and are used in combination such as o,k; B,k' etc. The
ranges of k,k' depend on the number of parameters used to
characterise the sources and sinks of a particular tracer. Sums
over o,k etc. are over all the source/sink parameters of all the
tracers;

p,p' are indices for the transport parameters. The range of these
indices depends on the resolution that is chosen for the
description of the transports;
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is the kth parameter describing the source/sink strengths for the
ath tracer. Statistical estimates of this parameter are denoted

ak*

suk

)

Yok is a prior estimate of the value of s .. This estimate should be
obtained independently of the tracer concentration data which will
be used to produce the refined estimates § ., . The ideas behind the
statistical description of constrained inversion calibrations are
discussed by Rodgers (1977) and discussions of the application of
these ideas in a geophysical context are given by Enting (1983) and
Enting and Pearman (1983). It is assumed that the units of all of
the r and the corresponding s are chosen so that the variances
of the prior estimates T are equal to 1 and that the
parameterization is such %hat covariances between distinct r ,'s

. ) X ak
are all zero. This assumption is made for the purposes of
simplifying the description given in this section. It does not
represent a fundamental restriction of the method because any
parameterization that is in a more general form can be transformed
into the special form used here. (Enting and Pearman, (1983)
describe and apply a similar formalism using the more general
description in which variances are not restricted to unity but
covariances are required to be zero. This degree of generality is
probably the most appropriate form for actual calculations).

X is the pth transport parameter. Again the common statistical
notation x_ is used to denote estimates of the 'true' value that
should be gssigned to the variable xp.

qp is a prior estimate of the value of x_. This estimate should be
obtained independently of the observafions m_.. Again it is
assumed that the units of x_ and q_ are such that the variances of
the are all equal to 1 ahd the Parameterization is such that all
the ggvarianceS'are Zero.

ms is the ith observed value of the concentration of the ath tracer.
It is assumed that the units of all the m_, (and the corresponding
y .) are such that the variances of the m T are all equal to 1, and
that the m . represent i.dependent observg%ions so that the
covariances are zero. Again this restriction is for the purposes
of simplifying the present description and Enting (1983) describes
a corresponding formalism with no restriction of the variances of
them ..
o1
is the model prediction for m .. This prediction will depend on
the values of the transport pa¥ameters x_ and on the source
strengths Suk” The calibration procedurg consists of adjusting the

parameters xp and Suk S° that the Yy; agree with the mai'

ai

The calibration procedure that is proposed here is based on
minimising the sum of squares €, given by

2 2 2
ai_mai) =Y é‘xp‘qp) +a£ na(sak'rak) 7 (5.3)

6 = Iy
i
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The sum of squares 0 is to be minimised with respect to the x_ and the s_, .
The weighting factors should ideally be set to one - Enting (9983) descrgkes
circumstances in which other values may be appropriate and discusses the
interpretation of the results in these cases. In addition, the computational
experience involved in obtaining the results described by Enting -and Pearman
(1983) suggests that the use of weighting factors greater than 1 in the early
steps of an iterative procedure can improve the numerical stability of such
procedures. (This use of the weighting factors is essentially the Marquardt
method for function minimisation - see Bard, 1974, Section 5.8).

Enting (1983) has pointed out that there are a number of different
approaches that suggest minimising 6 (for y = ME=F, 1).
(i) The minimisation of 6 can simply be regarded as a least squares fit
to an extended data set consisting of 3 classes of data: the mai'
the qp and the L

(1i) The analysis can be interpreted as a Bayesian estimation procedure
(see Box and Tiao, 1973). The data m_, are used to obtain refined
(posterior) estimates of the parameteré S and x_ for which prior
estimates (r . and g ) are available., This interBretation is most
direct when %ﬁe multivariate distributions are normal.

(iii) The analysis can be regarded as a constrained inversion (see for
example Jackson, 1972; Twomey, 1977) of the type common in
geophysical analysis. The information r ., acts as constraints
when the information m_, would lead to an ill®*conditioned
estimation procedure i¥'used on its own. Rodgers (1977) has
emphasised that the appropriate statistical interpretation of
constrained inversion techniques is obtained by reducing the
procedure to case (i) above.

The calibration procedure embodied in the minimisation of € is formally the
'all-at-once' procedure described in Section 3. Since this is, formally,
optimal (in the sense of minimum variance of the estimates) it is this
problem that we really want to solve., What is presented in this Section is a
technique for solving the combined problem as a sequence of subproblems in a
way that reproduces some of the desirable features of the analysis given in
Section 4.

ALGORITHM
A, Initialise siu to ria o xP to qp and v, na to appropriate values;
B. For each 0, estimate the sia by 'minimising' 8 with fixed values

of x and s,, (B#u).
P iB

C. Estimate x_ by 'minimising' 0 with the Sia fixed at the values
obtained inh B.

D. Repeat B and C to obtain iterative improvements to the x_ and s, ,
adjusting the weighting factors - the final estimates shguld use
weighting factors of 1.
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Remarks

(1) The minimisation step in B and C need not be an exact minimisation
at each stage. An approximate solution of the subproblems is
adequate so long as the overall procedure converges. In particular
linearised approximations to the subproblems can be solved at each
stage.

(ii) If the overall calibration problem were linear then the technigque
would be equivalent to a Gauss-Seidel solution of the linear
equations applied to blocks of variables. Convergence will be
ensured if the 'diagonal' elements are sufficiently large, and in
particular if the weighting factors y and n, are sufficiently
large.

(iii) The 'Newton' method of minimising 6 would be to use the first and
second derivatives of 0 with respect to all of the unknown
parameters, (i.e. the x_and the s ,). This technique would have
quadratic convergence (sge Bard, 1995, Section 5.6). By breaking
the calibration into subproblems we are precluding any use of the
'mixed' second derivatives 3%, 329

axpasak asukasﬁk,

"The most convenient way of minimising & seems to be to apply a
further restriction and only consider those contributions to the second
derivative of 6 that involve products of first derivatives of the factors
whose squares are summed. (Bard, 1974, Section 5.9 refers to this as the
Gauss method).

It is readily seen that any solutions obtained by this iterative
procedure will be solutions of the original problem of minimising 6 with
respect to all the x_and s .. This is because convergence of the iteration
occurs when the chagges p%oduced by each step go to zero, i.e.

8 = 0 for all p (5.2a)
X
P
and 38 =0 for all o,k (5.2b)
9s
ok

The combined equations (5.2a,b) constitute the so-called 'normal eguations'
defining the minimum of 6.

At this point the analogy with the seismic problem described in
Section 4 becomes useful as a basis for describing the behaviour of the
calibration procedure.
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( )<such that

o
We define a matrix A
Aéz) - 2y (5.3)
0s
ok

so that in a linearised approximation, the minimisation subproblem for tracer
o uses

. (0) (o) 2 il
b, & i(ymi + iAik Sax " Way)” T Ny i(sak Toa) oo (5.4)

Dropping the tracer index ¢ and minimising with respect to the s, gives

k
]
(o) .
Zly.S ) - , &~ L
STy R, BypeSpe T Wy By F NS — ) v
iy k y
' 1 ( ) N
z ' = I - y© ‘
itls A Biper t 0 Tr | S nr o+ i‘[mi Yi J A (5.5)

The corresponding equation with N = 0 can be written in matrix form as

Tas = 2"y (5.6)

The pseudo-inverse gives the solution of equation 5.6 as

5 = A U (5.7)

since

= éT (a éT) M, (associativity) (5.8a)
= [(;_; éf)Té]T u, [()_( X)T = _T)_(T] (5.8p)
= @A T 4, (since 2 A is symetric) (5.8¢c)
= @y, @A A =2 defines A (5.84)

as required.
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(The various matrix properties of the pseudoinverse are given by Deutsch
(1965)). Thus even when the equations

As =y (5.9)

0 T T
have no solution the related equations A A's = A" y always do have at
least one solution which is a least squares solution of equations (5.9).

When we have already reduced the problem to the least squares form
(5.6) it is more convenient to use the pseudo inverse of A'A which is given
by

am’ = ataht . (5.10)

This can be proved by substituting (5.10) into the defining equation

@ na"nt @’y = 22 (5.11)
The solution to (5.6) is written as

s = aa’aly
= §+ §T+ éT i (from 5.10) (5.12a)
= ata™aty (5.12b)
= §+ (a QT)T i (as in 5.8b) (5.12¢)
= ataaty (as in 5.8¢) (5.124)
= A+ u (from basic property of A+) (5.12e)

as before

Thus the same s%lut%on is obtained by solving A s = m using éT or
by solving (5.6) using (A" A) . In terms of the singular value decomposition
described in Section 4 we have
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FEk o el Sl Ak Viger
t -1
TR A
(B gy st ey © S
and @) =1 Iy ) v (5.13)
AR e T o xk'' ‘= K''krrr Vgt .

=2 q ! .
wheye é is zero apart from the leading diagonal whose first r elements are
A, where the A, are the ngn-zero singular values of A and the non-zero
elgenvalues of A are Xi i

A T s + y
The two pseudo inverses (A" A) and A have been used as solution
matrices for the sets of equations (5.6) and (5.9) respectively.

The equations (5.5) with non-zero N would correspond to

The matrix AT A + n I will always have an inverse which can be
written in terms of the singular value decomposition as

T -1
= I I
[(é é + B I) ]kk' k" k"'vkkll ¢](llklll Vk‘llkl (5'14)
where_¢. ., ,,, is a KxK diagonal matrix with diagonal elements given by

1/(A 4 E N) where only the first r A, are non-zero. For A, >> 1 the
contributiong to the solution matrix™ (5.14) approximate those of the pseudo-
inverse of A" A while for Ai ~ 0 the contributions are 1/n rather than the 0
values used in 5.13,

Applying the solution matrix (5.14) to the right hand side of (5.5)
it will be seen that in directions correspondi@g to eigenvectors with Ai >>n
the right-hand side will be dominated by the A" m term and the solution
matrix will approximate the pseudo-inverse. In these directions the solution
will approximate the solution of (5.7). When A, ~ 0 the solution matrix
differs from the pseudo inverse which leads to differences but since the
right hand side will be dominated by the nr, term, the equations are
approximately NI s = N r and so the solution in these directions is only
weakly dependent on the M. Thus as in the pseudo-inverse approach used in
the seismic problem, the estimates of the s are based on the combinations of
data corresponding to the large singular values of A. The uniform treatment
of all directions avoids consideration of distinct cases depending on the
relative sizes of the subspaces (as is necessary in inversion formalisms such
as that used by Bolin et al. 1983).
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The solut%on matrix (5.14) is seen to be an approximation to the
pseudo-inverse of A~ A, The same solution can also be obtained by adding
additional rows to A in (5.9) so that the equations become (in block form)

A m
Se L HlIs] 0 = T | (5.15)
Jr_@ nr
= BrY) s
q T ! T
Since (A*(y)) A*(y)" = A A+ ~yI , (5.16)

the singular values of A*(y) Qust ge the square roots of the eigenvalues of
the right hand side (i.e. (Ai + 1) ). Lawson and Hanson (1974, Section 4 of
chapter 25) show this explicitly by applying Givens rotations to equation
(5.15).

The correspondence between the solution matrix (5.14) that occurs
in the calibration procedure outlined above and the pseudo-inverse used by
Pavlis and Booker (1980) shows that we can legitimately use the distribution
of eigenvalues as a measure of the extent to which a given set of data is
giving information about the source parameters S.k*

The present calibration procedure does not attempt to construct an
'annulled data set' of the type used by Pavlis and Booker. The reasons for
omitting this step are:

(i) Model predictions Y for any tracer will be obtained by a
numerical integratiohi of the full transport model. The amount of
computation will be proportional to the number of tracers that will
be essentially independent of the number of data points and so an
annulled data set does not give any computational saving. The
exception is the case in which a tracer can be completely ignored
for the purposes of calibrating the transports because the source
function is so poorly known that all data is used in attempting to
determine the release rate.

(ii) The independence properties associated with the use of the annulled
data set are desirable but will inevitably be lost in any iterative
calibration of a non-linear system. There is no point in having a
'local' independence in the substeps when it does not lead to any
'global' independence property of the overall calibration.

(iii) Since the estimates of the s and x_ are being 'biased' by the
prior estimates r and qg it Ms reasbnable to use any one
particular observation (dr combination of observations) to adjust

both sets, {sa } and {x } so as to obtain the best compromise
between fitting the prigr estimates and the observations.
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In the substep in which the transport parameters x_are estimated
the distribution of eigenvalues can again be used to indicatg the amount of
information in the residual data. The most appropriate way of assessing the
relative contributions of the different tracers appears to be repeating this
step with each successive tracer removed. In special cases it may be
appropriate to remove smaller data sets to determine the importance of a
particular type of observation. It may also be of interest to determine the
usefulness of proposed observational programs by generating possible data
sets and calibrating the system using this hypothetical data. This approach
has been used by Enting and Pearman (1984) in carbon cycle studies.

Apart from the parameter estimates (x_ and s_.) it is also
desirable to give indications of the uncertaintfes in these estimates and of
the uncertainties in any gquantities that may be calculated using the model.

Enting (1983) has described a computationally convenient technique

for calculating the variance of any quantity Z that depends on the parameters
of a model. The procedure is to minimise

$ = 06 - 2ez (5.17)

with respect to all the parameters., This gives a set of perturbed
parameters, the amount of perturbation being proportional to €, and Z is
evaluated using these values to give a quantity Z(e}. Enting (1983) shows
that, to a linear approximation,

Var (2) = (z(e) - 2(0) /¢ (5.18)

6. Implementation of the formalism

From the general formalism described in Section 5, three distinct
classes of calculation can be identified:
(i) using a reference data set, calibrate the system, estimating {s . 1,
x )
(ii) ineestigate perturbations about the reference calibration for
purposes such as calculating variances using equation (5.18);

ok

(iii) recalibrate the system with a slightly different data set and
compare the results to the reference calibration. These
calculations can be either for studies of the marginal utility of
various data sets or for extending the reference data set as new
information becomes available.

The implementation of these calculations can best be described by
starting with the data structures that are used. Since the calculations
above represent a set of inter-related computations that are likely to be
performed at a variety of times, it is clear that the system must be built
around a set of permanent files that preserve the information between runs,
A schematic example is shown in Figure 6.1.
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REFERENCE FILE WORKING FILE

version #

data decriptions
q, var (q)

- % (current) as for reference
. file

For each &

reference to @ file [ |

m,, var (ma)

ryr Var (ra)
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status flags " —

Vo (8,%)

al FILE 02 FILE

03 FILE
ul ”

. P L

02 FILE Figure 6.1

" Relations between files.
| The working file is used
i q both for independent
studies involving

| perturbations about the
reference and as a step
in extending the data set
(or parameter set) used
as a reference.
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The main features of the file set are:

(1) A reference file: This hglds the inputs (r, g and their variances)
and outputs (the current x, the current s and the current yi{x)).
It also holds basic descriptors of the various quantities and
pointers to other files (one for each tracer) containing the
derivatives of y.

The reference file holds status flags for each of these files
indicating which of the rows of the derivative matrix have been
calculated using the current & rather than a previous 2.

The file akso includes a version number that is incremented each
time x is changed and which serves to distinguish the reference
file from the working file.

(ii) A working file: Used in studies of variations about the reference
calibration. The structure is the same as for the reference file
although the contents of the file will reflect the changes that are
being investigated. For initial iteration steps or simple
perturbation studies it may be possible to make use of derivatives
calculated at the reference parameters, and the derivative files
will be copied from those associated with the reference file.

(iii) Derivative files: There is one file for each tracer, holding

aya ' aya . When these files are first set up they are only

asa 39x
skeéletons - the rows (i.e. derivatives of all observations of

tracer o, with respect to an x_ or an sak) are written as they are
calculated. P

The various computations can be defined in terms of the changes
that they induce in these files. The following list gives the main processes
described in terms of these changes. The interrelations between these
processes are shown in Figure 6.2.

(i) INITIALISE: Read inputs r, g, m and their variances and
specifications of the tracers and their weight factors. Create
reference file and skeletons of the derivative files.

(ii) MODIFY: Create a working file which is a copy of the reference
file, subject to certain changes. Create skeleton derivative files
and copy in as much information as possible from the previous
derivative files. If the data set for a particular tracer is being
extended then all rows in that tracer matrix will be recalculated.

(iii) MATRIX: Work through the status flags and recalculate any matrix
rows that are unknown or only known for earlier parameter sets.
This process is designed to be restartable. The status flags keep
track of its progress. This process starts to be recalculating
X&(ﬁ) if necessary.




21

CALIBRATION
INITTALISE EVALUATE y REFINE 5,%
X¢gs s¢IT
“ MATRIX FITy MATRIX FITx
= # I Y | Y
SOLVE TRANSFORM » INTEGRATE
EQUATIONS PARAMETERS, EQUATIONS
SET UP DATA
SELECTION
SET UP EVALUATE y Figure 6.2.
EQUATIONS
_T Relations between
processes involved
TRANSFORM INTEGRATE in calibration and
PARAMETERS, EQUATIONS sensitivity
SET UP DATA studies. Based on
SELECTION structure diagrams
of Jackson (1975).
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(iv) FITa: Calculate an improved set of source parameters s and revise
o
Reset status flags for tracer q.

¥, (X8

(v) FIT x: Calculate an improved set of transport parameters % and
revise Ys for all tracers and reset all status flags. This process
should bé made restartable if several tracers are involved.

(vi) SENSITIVITY: Calculate a revised set of s * and x* that minimises
€ - aZ for a specified Z. Evaluate yq(g%,if) and tabulate the
differences from y (s,x).

Ly (2l
For these main processes there are four main classes of subprocess.

(vii) FILE CREATION: Used by INITIALISE and MODIFY.

(viii) EQUATION SOLVING: Used by FITu, FITx and SENSITIVITY.

(ix) PARAMETER HANDLING: To convert the lists of parameters 5, and x
into the form required to integrate the model equations. Set up
list to select Yo:

(x) INTEGRATION: Integrate the model equations for tracer o, storing
the particular set of results, corresponding to the observations,

as Y,-
7. Discussion

The procedures described in the preceding sections were designed
mainly for calibrating two-~dimensional atmospheric transport models. The
analogy with the analysis of seismic data (Pavlis and Booker, 1980) provides
a demonstration of the feasibility of splitting the calibration procedure
into a series of subproblems associated with each tracer's sources and sinks
followed by a subproblem involving the atmospheric transport parameters.

This type of approach would be likely to have much wider applications in
global biogeochemical studies; some possible applications are suggested here.

(i) Most two-dimensional atmospheric transport models use typical
circulations for all years. With sufficient data it may be
possible to look at interannual variability in tracer transport,
applying the analysis above to the 'anomalies' in concentrations
and transport rates,

(ii) It may be possible to apply similar techniques'to the modelling of
reactive atmospheric constituents. For example the distribution of
OH radical is a common point of contact for a number of atmospheric
chemical cycles that are otherwise loosely coupled and so the
techniques described in this report may be applicable to modelling
atmospheric chemistry as a set of subsystems that are nearly
independent apart from their coupling to the OH radical
distribution.
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